
R. Winfrey and others

September 1968
Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

FEDERAL HIGHWAY ADMINISTRATION Offices of Research \& Development Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the Office of Research of the Federal Highway Administration, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.
Teshical Repart Documentation Page

ECONOMICS OF THE MAXIMUM LIMITS OF MOTUR VEHICLE DIMENSIONS AND WEIGHTS, VOL. 2. September 1968
6. Perfarming Organization Code
7. Author's)

Robley Winfrey and others
9. Performing Orgonization Name ond Address

Environmental Design and Control Division
Offices of Research and Development
Federal Highway Administration
12. Sponsoring Agency Name and Address
u. s. $_{\text {, Federal Highway Administration, }}$ Department of Transportation Washington, D.C. 20590
8. Perfarming Orgonization Repart Na.
10. Work Unit Na. (TRAIS)
11. Cantroct ar Grant Na.
15. Supplementary Nates

Staff Study (HRS-41)
This is the second volume of a two-volume report. The first volume is published as report No. FHWA-RD-73-69.
16. Abstroct
Determing the desirable maximum limits of dimensions and weights of motor vehicles is approached on the basis of highway cost and the operating cost so far as the factors of economy are concerned. Axle weight, gross vehicle weight, and vehicle length are analyzed on the basis of six highway systems consisting of the rural and urban systems within the Interstate, primary and secondary highway systems. The analysis is based on data on truck weight studies conducted in 46 States; operating cost data obtained from truck fleet operators; and experimental data on pavements and bridges obtained from the comprehensive AASHO road test. Numerous other studies also contributed to the findings of the report.

The desirable limits of dimensions and weights were found to be the following:

1. Vehicle height of 13.5 feet
2. Vehicle width of 102 inches
3. Maximum lengths on all highways of 40 feet for single-unit trucks and trailers, 55 feet for tractors and semitrailers, and 65 feet for any other combination of vehicles.
4. Axle weight limits of 22,000 and 38,000 pounds for, single and tandem axles respectively.
5. Gross weight limit of at least 120,000 pounds, or better yet, no gross weight limit at all with control of axle weight and spacing.

17. Key Words Sizes and weights; load limits; 18. Distribution Statement No restrictions. This benefit-cost analysis; economy of truck transport; trucking cost; truck dimensions; document is available to the public truck axle weights; legal limits of vehidle through the National Technical dimension and weights; economic vehicle Information Service, Springfield, dimensions and weights; highways and truck Virginia 22151. limits			
19. Security Classif. (of this report) Unclassified	20. Security Classif. (of this page) Unclassified	$\begin{aligned} & \text { 21. No. of Pages } \\ & 397 \end{aligned}$	22. Price

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION WASHINGTON, D.C. 20590

May 1974

This report should provide useful perspectives to transportation agencies and legislative bodies responsible for recommending changes related to motor vehicle sizes and weights regulations and policies.

This report was originally produced in 1968 but was not released for publication until a thorough review of the findings and methodology was completed. This review, titled "Summary and Assessment of Sizes and Weights Report" (Report No. FHWA-RD-73-67) is a companion volume which is required reading for anyone who seriously considers using the findings reported in the subject report. The assessment extends the analysis, examines assumptions made by Winfrey and others, and points out particular limitations of the "Sizes and Weights" report.

This report demonstrates a substantial economic benefit to be obtained by rebuilding the highway system to higher weight limits and advocates an "immediate" implementation of policies to move in that direction. In addition, vehicles hauling heavier loads would need to be designed with adequate propulsion, braking, steering and suspension systems to operate safely and efficiently with mixed traffic on the upgraded highway system. However, any substantial increase in legal loads without a massive program to update, monitor, and maintain the highway system would create disastrous effects in many States. Many pavements would need to be overlaid and bridges reinforced or posted for limiting maximum loads. These consequences of an immediate increase in legal vehicle size and weight restrictions without an investment to upgrade the capacity of existing pavements and bridges were not analyzed.

Important related questions not addressed in this report:

1. Is it in the national interest to encourage further shift of cargo from other transportation modes to highways, even when more economical?
2. How are the conclusions affected by increased fuel costs and limited petroleum supplies?

Both of these questions have gained considerable importance in the years following the original preparation of the report and should be considered in evaluation of specific size and weight policies or proposed legislation.

PREFACE

This 1968 research report is the direct result of a project started in September 1963 as an outgrowth of the report completed by the Bureau of Public Roads in 1963, revised and resubmitted to the Department of Commerce in January 1964, and finally published in August 1964 as House Document 354, 88th Congress, 2d Session. The 1963 report on the desirable dimensions and weights of motor vehicles came into being as the fulfillment of Section 108(k) of the Federal-Aid Highway Act of 1956.

For many years prior to the beginning of the study of the limits of dimensions and weights of motor vehicles, as a result of the 1956 Highway Act, the Bureau of Public Roads and the American Association of State Highway Officials were active on the subject. The list of references in Appendix A of Volume 2 gives the more important papers appearing since 1920.

This 1968 report does not specifically review the literature on the subject. Further, the report does not discuss the state of the art, the good and bad aspects of
prior work, opiaions, and policies. Rather, the research project which resulted in this 1968 report was designed to accomplish the specific results herein reported.

Two quotations from House Document 354 (1964) will
help to place this 1968 report in proper perspective. In the Letter of Transmittal the Secretary of Commerce says,

The findings of the report do not necessarily represent the ultimate maximm limitations that would be desirable, or any improved methods o? governing motor vehicle dimensions and weights. Such improved methods are under study as part of the comprehensive highway research program of the Department. A research plan to realize more modern approaches to size and weight administration is suggested in the report.

On page 2, under Sumary and Recommendations, the report states,

The resources of technical research available for this report have been considerable; nevertheless, the field is so couplex and the variables so many that each conclusion is subject to important qualifications. Furthermore, the interrelationship between each conclusion requires further exploration to provide overall solutions for a highway system. The conclusions available from present research cannot justify greater standards than those proposed in this report; a more comprehensive program of research and investigation must proceed to enable future standards to be related specifically to technical criteria, and applicable to additional components of the Federal-aid highway systems.

One important factor missing in all prior reports (except the preliminary analysis in House Document 354) is any analyses to show the transportation economy of the limits of
vehicle dimensions and weights. Prior studies stressed the design of pavements and structures and traffic safety. Thus, this report is the first to explore thoroughly the economy of the limits of vehicle dimensions and weights, considering both highway cost and motor vehicle transport cost.

About 1945 the Highway Research Board appointed a Committee on Economics of Motor Vehicle Size and Weight. This committee is still in existence, though less active than it was up to about 1962. The long tenure of the comaittee indicates that there was early and continued interest in the subject and that the objectives have not been achieved. The Highway Research Board committee was the motivating force which produced Highway Research Board Bulletin 9A on time and fuel consumption of trucks on grades and Bulletin 301 on the overall operating cost of line-haul trucks.

This present 1968 report has as its main objectives the development of the economic and technical guides essential to policy and legislative considerations and the procedural techniques for future research application. There is no attempt (at least not a deliberate one) to recommend what public policy should be or to recommend changes in the Federal and State laws. For this reason the AASHO policy on maximum dimensions and weights of motor vehicles as published October 21, 1963, is not discussed.

House Document 354 (1964) and this 1968 report furnish recently assembled facts for the guidance of policy makers on the probable consequences of increasing limits of vehicle dimensions and weights.

ACKNOWLEDGMENTS AND STAFF

This report on the research project to determine the desirable dimensions and weights of motor vehicles is the result of individual work by some 50 or so persons, including some 30 professionals working as a task force. To all these individuals, whether or not they are named here, full appreciation for their contribution is expressed.

The project as a whole was directed by Robley Winfirey, who is also responsible for the design and the writing of the overall report of the project and this condensed report. Certain sections of these reports, however, were extracted from separate staff reports.

Much of this report is supported by separate staff reports and research on the individual studies into which the main project was divided, studies that were assigned to specialized members of the task force. These staff reports and their authors are listed at the end of these acknowledgments.

Special credit is given to the late Hoy Stevens of the Traffic Systems Division, Office of Research and Development, for his overall counsel on may aspects of the research. Professor Robert G. Hennes of the University of Washington, Special Consultant, offered many suggestions and belpful discussions.

$$
0-6
$$

A special word of appreciation is also due Professor William G. Adkins of the Texas Transportation Institute, Texas A\&M University, and Professor Hennes for their compreheasive review of the manuscript. The report benefited from their helpful suggestions.

Elizabeth Samson is especially mentioned for her painstaking efforts in editing manuscript, arranging for the production of all materials, and for supervising the work of the assembly of the report. Her splendid performance freed the project leader to concentrate on analysis of the results and writing of manuscript. Miss Samson also reviewed the State laws and brought up to date the summary of maxinum limits given in Chapter 3.

Malcolm F. Kent made important contributions in connection with adopting the procedure of calculating equivalent 18,000pound axle weights for the computer program, the analysis of hauling 2,000 tons of payload by different classes of vebicles, and in sumarizing the A. T. Kearney report and reducing its results to pavement costs.

Charles Dale contributed to the 2,000-ton study following Mr. Kent's retirement. Duke Niebur computed the truck operating costs to accompany the Kearney-Kent study, as well as refining the early calculations by Mr. Kent and Mr. Dale. Mr. Niebur also did the work on the marginal limits of axle weight, gross vehicle weight, and average daily traffic. He also developed the relationships between empty vehicle weight, horsepower, and
practical maximum gross vehicle weight.
James R. Iink wrote the computer program for the pavement design, motor vehicle operating costs, and the early phases of the computer program for the financial cost of reconstruction and resurfacing. Ezio C. Cerrelli wrote the computer program for calculating the E l8-kip axles for each type of vehicle and completed and perfected the program for the financial studies.

Maude M. Sparagna, William F. Warlick, Lillian Washington, Carol B. French, Barbara A. Price, and Edna Wolf performed hundreds of thousands of general statistical calculations, coding entries, and transfers of data involved in the economy and $f i n a n c i a l$ studies.

Typing of the report was done largely by Agnes McHugh, Carol B. French, Marian Higgins, and Linda Cameron, though many other typists, stenographers, and secretaries in the Economics and Requirements Division and elsewhere contributed greatly to this major task.

Special acknowledgment is due the Office of Planning for cooperation and assistance in making available the truck weight study data. Appreciation is expressed specifically to Alexander French, Ted Dickerson, and Alma Clark. The Office of Engineering and Operations and the Office of Administration furnished many construction statistics by highway systems that were important factors in the study.

The project leader gratefully acknowledges the support and teamwork of the professional and support members of his Engineering Economy Group, which shouldered the responsibility for Chapters 4, 7, 8, and 10 through 17. The study leaders are especially thanked for their cooperation and fine production in the accomplishment of the objectives of the study as a whole.

STAFF REPORTS AND AUIHORS OF INDIVIDUAL STUDIES OF IHE OVERALL PROJECT

Study No.
1 A Forecast of Highway Traffic by Vehicle Type, 1962-1990

2 Analysis of the Truck Weight Frequencies and ADT Composition by Road Systems (Results not written up as a separate staff report, but incorporated directly into the overall project report.)

3 Urban Street System Use by Heavy Trucks

4 A Study of the Effect on Truck Transport Practice of Liberalizing Weight and Dimensional Limitations of Vehicles

5A Braking Performance of Motor Vehicles as Found Operating on Public Highways

5B Offtracking of Vehicles on Turns
5C Relationship between Gross Weights and Horsepowers of Commercial Vehicles operating on Public Highways

5D Analysis of Accident Experience-Frequency and Cost of Accidents

6 Pavement Design

7 Highway Geometric Design

Authors

Edmond L. Kamrit Walter H. Bottiny Alma F. Eckartt Beatrice T. Goley

Principal investigators were R. W. L. Doering Phebe D. Howell

This study was not undertaken.
A. T. Kearney \& Company under research contract

Samuel C. THgnor
F. William Petring

Hoy Stevens
John M. Wright

Charles M. Billingsley
H. D. Cashell

Stuart Williams
G. W. Ring, III
T. J. Pasko
A. A. Carter
J.W. Hess

Study No.	Title of Staff Report	Authors
8	Design of Structures	E. G. Wiles R. F. Varney C. F. Galambos
8 A	Inventory of Bridges	Charles W. Dale Earle Newman
9	Highway and Structure Construction Costs (Results not written up as a separate staff report, but incorporated directly in the overall project report.)	Principal investigator was John G. Trapnell
10	Line-Haul Trucking Costs in Relation to Vehicle Gross Weights	Hoy Stevens
11	Analysis of the Economy of Motor Vehicle Size and Weight	Robley Winfrey R.W. L. Doering Phebe D. Howell
12	Financing	T. R. Todd James V. Boos
13	Effects of Increased Size and Weight Inmitations on Other Modes of Intercity Freight Transport	E. M. Nolan
14	Regulation of Transport Carriers and Tariffs	Josephine Ayre
15	Public Attitudes Torard Increased Size and Weight of Vehicles	This study was not undertaken.

Page
Preface 0-2
Acknowledgments and staff 0-6
Staff reports and authors of individual studies of the overall report $0-10$
Table of contents $0-12$
List of tables $0-28$
List of figures $0-40$
Definitions $0-45$
Summary $0-50$
Volume 1*
CHAPIER 1
BACKGROUND AND THE RESEARCH PLAN 1-1

1. Background 1-1
2. General objectives and content of this report 1-3
CHAPIER 2
PARTIAL SLMMMARY OF THE JANUARY 1964 REPORT "MAXIMUM DESIRABLE DIMENSIONS AND WEIGHTS OF VEHICLES OPERATED ON THE FEDERAL-AID SYSTEMS 2-1
CHAPIER 3
REVIEW OF 1963-67 LEGAL LIMITS ONVEHICLE DIMENSIONS AND WEIGHTS ANDFACTORS TO RECEIVE RESEARCH ATTENIION3-1
3. State legislation, 1964 through 1967 3-2
4. Federal limits as of December 31, 1967 3-11
[^0]Table of contents (continued)
Page
3. Summary of State maximum limits and indicated scope of research on each factor of dimension and weight 3-12
A. Width of vehicles 3-12
B. Height of vehicles 3-13
C. Length of vehicles 3-16
D. Number of towed vehicles $3-24$
4. Legal maximun weight limits $3-28$
A. Enforcement tolerance 3-28
B. Single-axle weight limits 3-28
C. Tandem-axle weight limits $3-30$
D. Maximum gross vehicle weight limits 3-32
5. Conclusions 3-34
CHAPIER 4
DESIRABLE MAXIMUM LIMITS ON MOTOR VEHICLE DINENSIONS 4-1

1. Width of vehicle 4-2
A. Transport factors 4-2
B. Effect of vehicle width on traffic 4-4
C. Conclusion on vehicle width 4-5
2. Height of vehicle 4-6
A. Highway overhead clearance $4-6$
B. Transport requirements 4-7
C. Traffic considerations related to vehicle beight 4-9
D. Summary and conclusions on vehicle height 4-10

Table of contents (continued)

Page
3. Length of vehicle 4-11
A. Factors of vehicle length to consider $4-12$
B. Length of buses $4-23$
C. Requirements of length and attitude of transport industry $4-14$
D. Length of trailers as manufactures $4-16$
E. Summary of length requirements of the transport industry $4-19$
F. Vehicle turning movement and offtracking $4-20$
(1) Turning track widths summarized $4-22$
(2) Comparison of four different trailer combinations $4-23$
(3) Discussion and conclusions on vehicle length as related to offtracking $4-26$
G. Effect of length of vehicle on the traffic stream $4-27$
H. Summary and conclusions on vehicle length 4-31
CHAPTER 5
EFFFECTS OF GROSS VEHICLE WEIGHT ON MOTOR VEHICLE PERFORMANCE IN TRAFFIC 5-1

1. Field surveys of vehicle weight, horsepower, and braking performance 5-2
2. Vehicle gross weight and net horsepower $5-3$
A. Results of survey of weight-power ratio 5-3
B. Significance of weight-horsepower ratios with respect to desirable maximum weight of vehicles 5-16

Table of contents (continued)
Page
3. Braking performance of commercial vehicles 5-20
A. Braking performance by vehicle class 5-22
B. Capacity groups and weight groups 5-25
C. Braking performance compared to the uniform vehicle code 5-25
D. Braking performance in relation to axle weight 5-28
E. Braking performance without brakes on the steering axle 5-30
4. Summary and significance of the braking factors 5-32
CHAPTER 6
HIGHWAY SAFETY 6-1

1. Analysis of accident experience-- frequency and cost of accidents 6-1
A. Accident frequencies and cost related to highway systers $6-2$
B. Accident occurrences of loaded and empty trucks 6-4
C. Accident frequencies and costs related to gross vehicle weights 6-6
D. Accident frequencies and costs related to type of accident 6-6
E. Intersectional and nonintersectional accident locations 6-8
F. Sumary and significance of findings 6-11

Table of contents (continued)
2. Analysis of the probable relationship of increases in vehicle dimensions and weights to accident experience 6-13
A. Vehicle dimensions and highway safety 6-14
B. Two- and three- unit combinations 6-15
C. Weight of the vehicle 6-16
D. General considerations-o vehicle and driver 6-17
E. Effect of highway design on the safety of line-haul freight vehicles 6-17
F. Effects of line-haul vehicles upon the general traffic 6-18
G. Accident experience with double-trailer combinations on toll turnpikes 6-19
H. Test operations in Idaho with double and triple-cargo units 6-20
3. Sumary and evaluation of the factor of highway safety 6-22
CHAPTER 7
ANALYSIS OF THE 1962 TRUCK WEIGHT DATA 7-1

1. Plan of the truck weight studies 7-1
2. Axle-weight distribution 7-2
3. Gross vehicle-weight distribution 7-11
4. Other data from the 1962
truck weight study $7-18$
5. Trends in truck weights, number of axles, and ADI 7-21
A. Summary of some factors from truck weight studies, 1937 to 1963 7-27

Table of contents (continued)

Page
Page
B. Significant trends $7=27$
CHAPTER 8
HIGHWAY COSTS 8-1

1. Cost elements of the highway affected by changes in vehicle dimensions and weights $8-1$
2. Analysis of the relationship of highway construction cost to changes in vehicle dimensions and weights 8-3
A. Rigint-of-way and clearing 8-3
B. Earthwork and small drainage facj.lities $8-4$
C. Pevement structure and shoulders 8-5
D. Bridges, tunnels, and grade- separation structures 8-6
3. Unit prices of highway cost elements 8-7
A. Unit cost of unclassified excavation $8-7$
B. Unit prices for the pavement structure $8-10$
C. Unit price of structural steel $8-11$
4. Construction cost of structures 8-15
A. Inventory and cost of bridges per bighway mile $8-15$
B. Percentage of bridges by span length 8-20
5. Cost per highway mile, total construction and reconstruction $8-20$
6. Cost of maintaining the highway $8-26$
A. Classification of maintenance costs $8-26$
B. Road maintenance cost resulting from increased vehicle weight $8-32$
Table of contents (continued)
C. Bridge maintenance cost resulting from increase in vehicle weight
Page 8-34
D. Overall average cost of highway maintenance 8-35
CHAPTER 9
LINE-HAUL TRUCKING COSTS IN RELATION TO VEHICLE GROSS WEIGHTS 9-1
7. Sources of line-haul operating costs 9-2
8. The operating costs of line-haul vehicles 9-2
A. Meaning of loaded gross weight 9-3
B. Operating cost per payload ton-mile 9-8
(1) Effect of increasing the gross vehicle weight and reducing the number of trips 9-8
(2) Payload ton-mile cost curves 9-11
9. Application of the line-haul trucking cost to the analysis of economy of vehicle weights 9-11
Volume 2
CHAPTER 10
ECONOMI OF MAXIMUM AXLE-WEIGHTI LIMITS 10-1
10. Conceptual approach 10-1
11. Basic procedures and methods 10-2
A. Levels of axle-weight limits to be considered 10-2
B. Highway systems and census divisions 10-4
C. Vehicle classes 10-5

Table of contents (continued)
Page
3. Method of analysis 10-8
4. Method l-Census-division-to- census-division transference of axleweight distributions $10-11$
A. Basic concept 10-12
B. Axle-weight distribution by State maximum weight limits 10-12
C. Distribution of ADF by vehicle class, by census division, and by highway system $10-14$
D. Distribution of axle weights $10-16$
E. Adjustment of the 1962 base distribution of axle weights to higher axleweight levels 10-16
F. Calculation of the axle-wreight distribution and number of vehicles for 1990 10-23
5. Design of pavement structures 10-25
A. General provisions 10-26
B. Soil support for rigid and plexible pavements 10-26
C. Rigid pavement design 10-26
D. Base design for rigid pavements 10-30
E. Flexible pavement design 10-30
F. Subbase for flexible pavements 10-32
G. Computation of E 18-kip axle applications 10-32
H. Calculation of the pavement structure depths and construction cost 10-33

Table of contents (continued)

Page
Page
6. Construction cost of the highway as affected by axleweight limits 10-34
A. Pavement geometric design 10-34
B. Unit, price and construction cost of the pavement structure 10-36
C. Construction cost of bridges related to increments of maximum axle weight 10-36
D. Cost of construction of earthwork and small drainage structures 1.0-50
7. Cost of highway maintenance as related to maximum axlesreight limits 10-51
A. Pavement maintenance cost attributable to increase in axleweight limits $10-51$
B. Bridge maintenance cost attributable to increases in maximum axle weights $10-52$
8. Motor vehicle operating cost-e
procedure for calculation $10-54$
9. Calculation of the benefit-sost ratio for the econorry of axleweight limits $10-58$
A. Average daily traffic 10-58
B. Computed depths of pavement structure and construction cost $10-58$
C. Calculation of the equivalent uniform annual highway cost 10-62
D. Dalculation of the equivalent uniform annual motor vehicle operating cost 10-62
E. The benefit-cost ratios 10-64
10. Considerations relative to the AASHO interim pavement design formulas 10-65

Table of contents (continued)
11. Method l-M--economy of axle-keight limit
Page
Page
when using a minimum depth of pavement 10-66
12. Method 2--extrapolation by practical gross weight relationships 10-80
A. Payload weight vs. practical maximum gross vehicle weight 10-80
B. E l8-kip axles vs. practical maximum gross vehicle veight 10-82
C. Results of Method 2 10-85
13. Method 3-rrepeat of Method 2, but omitting the 29-percent increase in payload per vehicle 1962 to 1990 $10-35$
14. Comparison of the economy of axleweight limits as determined by analysis Methods $1,1-1,2$, and 3 $10-86$
A. Brief summary of table $10-35$ $10-87$
B. Results of Method l-M analysis 10-94
C. The transition period 10-95
D. Effect of the $29-p e r c e n t$ increase in payload per vehicle, 1962 to 1990 10-97
E. Rigid and flexible pavement comparisons 10-105
F. Comparison of Methods 1 and 2 ofdetermining the economy of axle-weight limits10-106
15. Counterinteracting effects on pavement construction cost of increasing the number of E l8-kip axle applications 10-112
CHAPTER 11
ECONOMY OF VEHICLE LENGTH--METHOD 4 11-1

1. Vehicle length and its significance 11-1

Table of contents (continued)
Page
2. Limitations of the truck weight studies 11-3
3. Procedure used in Method 4 -0 economy of vehicle length 11-4
A. Selection of length limits 11-4
B. Assignment of payload total weight to vehicle classes 11-6
C. Assignment of average payload per vehicle within a fleet and determining the ADT of each vehicle class 11-6
D. Determining number of E 18-kip axle applications 11-11
4. Results of the analysis by Method 4 11-13
5. Discussion of results of Method 4 11-23
CHAPIER 12
ECONOMY OF SIMULTANEOUS INCREASES IN THE
LIMITS OF AXLE WEIGHT AND OF VEHICLE LENGTH 12-1

1. Plan of Method 6 12-1
2. Procedure used in Method 6 12-2
3. Results of Method 6 12-3
4. Discussion of the results of Method 6 12-10
CHAPTER 13
SUMMARY AND ANALYSIS OF THE ECONOMY OF VEHICLE DIMENSIONS AND WEIGHTS BASED ON STUDIES MADE BY A. T. KTARNEY AND COMPANY UNDER RESEARCH CONTRACT 13-1
5. Plan of study 13-1
6. Correlation of vehicle-mile estimates 13-6
7. Vehicle-mile estimates 13-8

Table of contents (continued)
Page
4. Second study 13-10
A. Developing possible liberalization-e universal application 13-10
B. Developing possible liberalization-a separate highway systems 13-13
5. Application of the Kearney findings 13-15
6. Economy of higher axle-weight levels 13-17
7. Increased vehicle width 13-19
8. Summary 13-22
CHAPTER 14
TRANSPORTATION FACTORS IN HAUTING
2,000 TONS OF PAYLOAD ONE MILE AND THE MARGINAL LIMITS OF VEHICLE WEIGHTS 14-1

1. Empty weight of vehicles related to axle-weight and gross weight limits 14-1
A. Tare weight of tractors 14-2
B. Weights of empty trailers $14-2$
C. Empty weights of various vehicle classes at a range of axle-weight limits 14-2
D. Practical maximum gross vehicle weights $14-6$
2. Equivalent l8-kip axle applications and vehicle operating costs resulting from hauling 2,000 tons of payload in different classes of vehicles and fleets 14-9
A. Concept and basic provisions $14-9$
B. Scheme 1: Hauing 2,000 tons of freight by one vehicle class $14-14$
C. Schemes 2, 3, and 4; Hauling 2,000 tons of freight in fleets made up of several classes of vehicles $14-16$
Table of contents (continued)
(1) Distribution of the 2,000 tons among the various vehicle classes 14-17
(2) Comparison of number of vehicles and E 18-kip axle applications 14-24
(3) Comparison of vehicle operating costs 14-24
3. Marginal axle-weight limits based on economy of transportating 2,000 tons of payload 14-26
A. Concepts and procedures 14-26
B. Results of the analysis 14-30
4. Marginal gross weight limits based on economy of transporting 2,000 tons of payload 14-36
A. Concepts and procedures 14-37
B. Results of the analysis for marginal gross vehicle weight 14-38
C. Concluding analysis with respect to marginal gross vehicle weight 14-40
5. Marginal ADT for economy of increased axle-weight limits 14-41
A. Scope of study 14-41
B. Concept and approach to solution $14-42$
C. Results 14-43
CEAPTER 15
DISCUSSION, SUMMARY, AND CONCLUSIONS WITH
RESPECT TO DIMENSION AND WEIGHT LIMITS 15-1
6. Lack of uniformity of State laws 15-1
7. Tolerances and enforcement 15-2
8. Basic factors supporting the research 15-2

Table of contents (continued)
Page
4. The gross vehicle weight limits 15-3
5. Implication of higher axle-weight limits, gross weight limits, and vehicle lengths 15-4
6. Higher limits for access- controlled highways 15-5
7. Economy of axle weight 15-6
8. Sensitivity of factors 15-6
9. Marginal limits of weight and ADT 15-7
10. Minimum pavement depth and marginal limits 15-8
11. Ramp width for 102-inch vehicle width limit 15-9
12. Truck ADT 15-10
13. Probable actual use of higher limits 15-11
14. Feasibility of double- and triple-cargo combinations $15-12$
15. Effect on passenger cars 15-12
16. The beneficiaries of higher limits on vehicle dimension and weight $15-13$
17. Shortening of service life of pavement, resulting from increased axleweight limits 15-14
18. National summary of Method l-M 15-16
19. Annual reductions in truck operating costs by highway systems $15-16$
CHAPTER 16
HIGHWAY FINANCING REQUIREMENTS UNDER INCREASED AXLE-WEIGHT LIMITS 16-1

1. Basic concept and approach 16-1

Table of contents (continued)
Page
2. Assembly of historical data on pavement construction to 1964 16-4
3. Selection of survivor curves and service lives $16-4$
4. Projection to 1984 of the yearlylane-miles constructed and survivingunder the base-axle-weight limits16-14
A. Lane-miles in service yearly 1965 through 1984 16-14
B. Control lane-miles by surface types 16-i.'t
5. Total construction experiditures yearly from 1965 through 1984 16-20
A. Base construction cost $16-20$
B. Construction cost of new highways 16-20
C. Reconstruction cost 16-21
6. Split of total yearly construction into new construction, reconstruction, and resurfacing 16-23
7. Selection of service lives and survivor curves for increased axleweight limits 16-25
8. Computer calculations and print-outs 16-27
9. Discussion of results-e
20-year financial requirements 16-34
A. Interstate systems 1 and 2 $16-34$
B. Primary systems 3 and 4 16-43
C. Percentage of capital outlays required for new construction, reconstruction, and resurfacing $16-44$
D. 20-year total capital outlay 16-51
E. Capital outlays on a National basis 16-51

Table of contents (continued)
10. Probable construction programs and replacement of bridges 16-55
11. AASHO report on the pavement evaluation survey--1962 $16-56$
12. Twenty-year capital outlays compared to reductions in truck operating costs 16-59
13. Comparison of reported capital outlays for 1964, by highway system, with requirements under higher axle-weight limits 16-62
A. Assembly of basic information 16-62
B. Comparative 1964 capital costs for the six systems 16-64
CHAPITER 17
GENIERAL SUMMARY AND EVALUATION 17-1

1. General summary 17-1
2. Evaluation 17-4
APPENDIX
References to the literature A-I
Page
CHAPTER 3
3-2. Summary of State legislation changing the limits on motor vehicle dimensions and weights, January 1964 through December 1967 3-3
3-3 Comparative length limits for two-cargo combinations in States permitting the operation of three-unit combinations more than 55 leet long 3-26
CHAPTER 4
4-1. Trends in trailer lengths 4-17
4-2. Turning track widths for various classes and lengths of vehicle combinations on city street intersections and interchange ramp loops $4-23$
4-3. Comparison of turning track widths on 90-degree turns required by various practical trailer combinations 4-25
4-4. Comparison of turning track widths on 270-degree turns required by various practical trailer combinations 4-25
CHAPIER 5
$5-3$. Range and average of the gross weight, net horsepower, and weight-power ratio for all comercial vehicles weighed in the 1963 test 5-4
5-4. Comparison of percentile values from cumulative frequency distributions of weight-power ratios for all comercial vehicles weighed in 1955 and 1963 5-8
5-5. Percentile values from cumulative Prequency distributions of weight-power ratios for loaded vehicles in 1963 5-12
5-6. Comparison of average weight-power ratios forall vehicles, by vehicle class, for 1949, 1950,1955, and 19635-15

List of tables (continued)

Page
5-7. Percentage of all vehicles weighed in the 1955 and 1963 tests that could not meet indicated performance levels 5-17
508. Percentage of loaded vehicles weighed in 1963 that could not meet the indicated performance levels 5-18
5-9. Net horsepower required for a weight-power ratio of 400 pounds per horsepower for different classes of vehicles and a range of maximum axle-weight limits 5-19
5-12. Turnpike or toll-highway exceptions to normal limits on vehicle length and gross weight 5-21
5-13. Average vehicle weight and brake systen application and braking distance for vehicles tested in 1955 and 1963 5-26
5-14. 1963 brake test results compared to the Uniform Vehicle Code 5-27
5-16. Braking performance with and without brakes on the steering axle 5-33
CHAPTER 6
6-1. Accident-involvement and direct-cost rates for passenger cars, single-unit trucks, and vehicle combinations, classified by rural and urban accident location and highway system $6-3$
6-2. Accident-involvement and direct-cost rates for loaded and empty trucks, by vehicle class and rural and urban location 6-5
6-3. Number of trucks involved in traffic accidents, direct costs of truck accidents, and involvement and cost rates, classified by severity of accident and registered gross weight of trucks 6-7
6-4. Accident-involvement and direct-cost rates for single-unit trucks and vehicle combinations, classified by type of accident and by highway system 6-9

> List of tables (continued)
Page
CHAPIER 7
7-11A. Sumary of axle weighings above legal limits for the primary highway system (system 3), by vehicle class and legal weight group 7-6
7-11B. Sumary of vehicle axle weights above legal limits grouped according to excess 7-10
7-l2A. Numbers and percentages of vehicle grossweights that are above legal limits, groupedaccording to excess weight, by vehicle classand legal maximum weight, for the primary ruralhighway system (system 3) and all censusdivisions7-14
7-19. Total tons of cargo, percentage hauled by each vehicle class, and number of vehicles by class in the total ADT, based on the 1962 truck weight data for the primary rural system (System 3) 7-17
7-20. Average weight in pounds of trucks asweighed in the 1962 truck weight survey, by axleclassification (Primary rural highway system)7-19
7-21A. Percentages of trucks with 3 or more axles counted in the 1962 truck weight study, primary rural highway system, by vehicle class and census division 7-20
7-23A. Total number of axles weighed in the 1962 truck weight study distributed according to the relation between their operating weights and the maximum legal axle limits, by vehicle class and census division, system 3 7-22
7-24. Average empty weights of vehicles andvehicle combinations developed from the 1962truck weight data and expanded to higher axle-weight limits, by vehicle class and highwaysystem7-25

List of tables (continued)

Page

7-25. Summary of data on trucks and combinations for all main rural highways, 1937-1963. $7-28$
7-26. Average gross weight by class of trucks and combinations, loaded and empty, on all main rural highrays, 1937-1963. 7-29
7-27. Percentage distribution of trucks and combinations by class on all in rural highways, 1937-1963. 7-30
CHAPTER 8
8-1. Unclassified roadway excavation 8-8
8-2. Price of paring materials per cubic yard in place 8-12
8-3. Ratio of average census division cost of paring materials to Nationsl average 8-13
8-4. Average bid price per pound of structural steel by census divisions. 8-14
8-5 -- 8-7. Number, length, and cost of bridges 8-17
8-5. Interstate system 8-17
8-6. Federal-aid primary system 8-18
8-7. Federal-aid secondary system 8-19
8-8. Percentage distribution of the span lengths of bridges, by highway system and census division 8-21
8-9. Fstimated cost of grading and small drainage structures per mile for Federal-aid primary and Interstate projects $8-27$
8-10. Cost of complete new highway, construction or reconstruction, in dollars per mile, by highway system and census division. $8-28$
List of tables (continued)
8-11. Cost of bituminous-concrete resurfacing per highway mile on portland-cement-concrete and bituminous-concrete old surface 8-31
8-12. Incremental study of maintenance costs: estimated 1964 costs for Federal-aid systems in the 48 contiguous States and the District of Columbia 8-36
CHAPTER 9
9-2. Operating cost in cents per vehicle-mile for line-haul vehicles, by loaded gross weight in kips 9-6
9-3. Loaded gross vehicle weight and operating cost of selected vehicle classes 9-12
9-4. Loaded gross vehicle weight and operating cost of selected vehicle classes (For Method 1 including 29-percent increase in payload, 1962 to 1990 9-14
CHAPIER 10
10-4. Number of each class of vehicle in the ADI for 1962 and 1990 for each highway system and census division as used in the analysis of the economy of maximu axle-weight limits 10-17
10-4A. Average payload, empty, and gross weights of each class of vehicle in Method l--East North Central--primary, rural 10-24
10-5. Average daily traffic-volume guide to number of lanes 10-27
10-6. Summary of number of lanes for each highway system and census division 10-28
10-7. Representative average soil support values used for the design of pavements 10-29
10-8. Granular base thickness and material for rigid pavement 10-31
10-9. Critical vehicles 10-37
10-10. Structural steel required per linear foot of 2-lane bridge for proposed higher axle-weight limits: increments of pounds of steel by span length of bridge required above the H2O-Sl6 loading 10-38
List of tables (continued)
10-1l. Structural steel required per linear foot of 2-lane bridge for proposed higher axle-weight limits: increments of pounds of steel per bridge above the H2O-Sl6 design loading, weighted by span length and shown by highway system and census division 10-40
10-12. Total length of bridges in feet per mile and construction cost in dollars per mile of highway, by highway system and census division 10-43
10-13. Pounds of structural steel per mile of highway, excess over standard H20-S16 design $10-46$
10-14. Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H2O-S16 design 10-48
10-16. Annual cost per highway mile of patching pavement and shoulders as a result of effects from axle-weight applications 10-53
10-17. Unit cost per ton of structural steel of repainting steel bridges 10-55
10-18. Annual highway cost per mile of repainting steel bridges: excess above the standard H2O-Sl6 design 10-56
10-19. Practical maximum gross vehicle weight with a range of maximum axle weights 10-59
10-22. Kumber of each class of vehicle in the ADT for 1962 and 1990 for each census division, as used in the analysis of the economy of axle weight (Method 1 with payload increase) 10-61
10-23A. Computer printout on pavement design and pavement construction cost as affected by axle-weight maximum limits by highway system and census division 10-63
10-26. Minimum pavement depth most frequently used by the States in each census division for each of six highway systems 10-67
10-27. Daily E 18-kip axle applications corresponding to minimum design depth of rigid and flexible pavement surface for each census division 10-71
$10-28 \mathrm{~N}$. Comparison of highway cost and motorvehicle operating cost for five levels of axle-weight maximum limits, for the 20 -year period1965 through 1984--National average10-74
10-35. Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axlewweight limits with transition, by highway system, census division, and analysis method: Methods 1 and $1-M$ 10-88
10-37. Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits with transition, by highway system, census division, and analysis method: Methods 1-M, 2, and 3 10-98
10-38. Comparison of the benefit-cost ratios for rigid and flexible pavements for Method 1 with transition, New England and East North Centrel census divisions 10-107
CHAPTER 11
11-1. Combinations of vehicle lengths used in Method 4, analysis of the economy of vehicle length 11-5
11-2. Average payload, empty and gross weights of each class of vehicle in Method 4--East North Central-oprimary rural 11-7
11-3. Number of each class of vehicle in the ADI for 1962 and 1990, by highway system and census division used in analyzing the economy of vehicle length 11-14
11-4N. Comparison of highway cost and motor vehicle operating cost for five levels of maximum length of vehicles and combinations, for the 20-year period 1965 through 1984-- National average 11-15
11-6. National averages for Method 4, economy of vehicle length - rigid pavement 11-21CHAPIER 1212-1N. Summary of highway and truck operating cost,truck ADI, and pavement depth under a range ofaxle-weight limits and of vehicle length limits;rigid pavement12-4

List of tables (continued)

$12-2 N$. Differences and ratios of highway
cost and ADT, indicating the relative economy of increases in axle-weight limits and in vehicle length limits 12-11
12-4. Comparison of highway cost and motor vehicle operating cost for five levels of axle-weight maxi- mum limits by each of four maximum lengths of vehicle for the 20-year period 1965 through 1984: National average 12-18
CHAPIER 13
13-1. Liberalized levels of vehicle dimensions and axle-weight limits studied by A. T. Kearney and Company 13-2
13-2. Commodity density levels 13-3
13-3. Line-haul tonnages transported in highway vehicles, by special classification, United States, 1960 13-5
13-4. Estimated line-haul tonnage, miles of vehicle travel and ton-miles that would likely be affected by vehicle weight and size limit liberalization by special classification, 1960 13-7
13-5. Estimated percent of miles of vehicle travel in line-haul transportation of freight that would not have been required in 1960 under 30 levels of increased vehicle dimension and weight limits 13-11
13-6. Projection from 1965 to 1990 of the potential decrease in accumulated vehicle-miles of travel resulting from line-haul transportation of freight in maximum payloads 13-12
13-7. Liberalized levels of highway freight vehicles showing ratio of relocation in pavement damage as determined by A. T. Kearney and Company 13-14
13-9. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost between axle- weight levels for primary rural system 13-18
13-10. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost resulting from an increase in vehicle width from 96 to 102 inches on the primary rural highway system $13-20$

List of tables (continued)

Page
CHAPTER 14

> 14-1. Net horsepower and tare weight of tractor related to practical maximum gross vehicle combination weight based upon truck weight studies, manufacturers' data, and judgment 14-3

14-2. Weight in pounds of empty trailers for use
in combinations of vehicles at the $18 / 32$ single/
tandem axle-weight limits $14-4$
14-3. Empty weights of different classes of vehicles and combinations for different length limits and combinations of vehicles $14-5$

14-4. Empty weights of various vehicle
classifications for axle-weight limits up to
$60 / 95 \mathrm{kips}$. $14-7$
14-5. Practical maximum gross weights of several
classes of vehicles for axle-weight limits up
to $60 / 95$ kips $14-8$
14-6. Empty weights of each of eight classes of vehicles and combinations hauling 2,000 tons of freight at various axle-weight limits 14-12

14-7. Average payloads in pounds carried in eight
classes of vehicles for four different schemes of
hauling 2,000 tons of frelght at various axle-
weight limits $14-13$
14-8. Scheme 1: Average payloads, number of vehicles, number of E 18-kip axles, and dollars of transport cost necessary to move 2,000 tons of freight in each of eight classes of vehicles and at various axle-weight limits 14-15

14-10. Scheme 2: Shipping density in pounds per
cubic foot at which cargo can be stowed visibly
fully loaded at various axle-weight limitations in
highway vehicles with single cargo-body dimensions
of $40-$ feet length and 96 inches width 14-18
14-11. Shipping density in pounds per cubic foot at which cargo can be stowed visibly fully loaded at various axle-weight limits in highway vehicles with double cargo bodies with dimensions of 27 feet and 40 feet leagth and 96 inches width

List of tables (continued)

Page14-12. Distribution of 2,000 tons of payload by 5 -pound shipping density groups and an estimate of the total cubage required to baul the 2,000 tons of payload 14-20
14-13. Number of vehicles, dollars of transport cost, and E $18-$ kip axles necessary to move 2,000 tons of freight at various axle-weight limits for schemes 2, 3, and 4 14-25
14-14. Average payloads per vehicle for the axle-weight limits of $28 / 47 \mathrm{kips}$ and above 14-28
14-17. Loaded gross weight and operating cost per mile for selected vehicle classes 14-29
14-18. Number of vehicles, transport cost, and E 18-kip axles for hauling 2,000 tons of payload one mile on system 3, primary rural, East North Central census division - rigid pavement 14-31
14-19. Analysis of the marginal maximum axle-weight limits based on hauling 2,000 tons of freight over a mile of 4-lane rigid pavement, primary rural high- way system: East North Central census division 14-34
14-20. Marginal ADT's based on Method 1-M, rigid pavement, and the concept of minimum parement design depth - National average, or composite of 10 census divisions 14-44
14-21. Marginal ADT's for various minimum pavement design depths based on Method 1-M, for the East North Centrel census division, rigid pavements, and the primary rural highway system, using the average ADT for the study period 1965-1985 14-45
CHAPTER 15
15-2. Shortened years of average service life with increase in axle-weight limits for Method 1-M with transition 15-15
15-3. Comparison of highway cost and motor vehicle operating cost for five levels of axle- weight maximum limits, for the 20 -year period 1965 through 1984: National averages 15-17
List of tables (continued)Page
15-4. Centerline miles, truck ADT, daily truck- miles and daily operating costs, by axle-weight limits and road system: 1965 and 1984-- Method l-M, National totals $15-24$
15-5. Annual average truck traffic, annual truck= miles, and annual truck operating costs at base axle-weight limits and differences between the base and higher axle-weight limits: 1965 and 1984--Method 1-M, National totals 15-25
15-6. Centerline miles, truck ADT, daily truck- miles, and daily truck operating costs, by vehicle leagth steps and highway system: 1965 and 1984--Method 4, National totals $15-26$
15-7. Annual average truck traffic, annual truck- miles, and annual truck operating costs at length step 0 and differences between the base step 0 and steps 1, 2, 3, and 4: Method 4, National totals 15-27
CHAPIER 16
16-1. Estimated lane-miles of highway construction and related type survivor curves for five axle- weight limits 16-5
16-2. Projected lane-miles of highways in service December 31, 1964 through 1984 by census division and surface type 16-16
16-3 - 16-6. National average cost of new construc- tion and reconstruction on the Interstate and Federal- aid primary systems, expressed in thousands of dollars per lane-mile 16-22
16-8. Additional construction cost and total capital outlays for highways, 1965 through 1984, by axle-weight limits 16-28
16-10. Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Interstate system, East North Central census division, for five levels of axle-weight limits 16-35

List of tables (continued)Page
16-11. Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Federal- aid primary system, East North Central census division, for five levels of axle-weight limits 16-38
16-12. Twenty-year total National capital outlays and present worth values for highways 1965-1984, by system and axle-weight limits, expressed in absolute values and percentage of base 16-52
16-13. Dollar cost of construction per lane-mile per year for the 20-year period 1965-1984 for each axle-weight limit--National averages by highway system 16-54
16-14. Ratio of the 20-year total truck operating cost reductions to increased total highway capital outlays from 1965 to 1984 at higher axle-weight limits - National total by highway system. 16-60
16-15. Additional 1964 highway construction cost by axle-weight limits and the percentage increase over 1964 actual capital outlays had higher axle-weight limits been provided for 16-63
Page
CHAPTER 5
5-2. Cumulative frequency distributions of weight- power ratios for all commercial vehicles, 1955 brake test 5-6
5-3. Cumulative frequency distributions of weight- power ratios for all comercial vehicles, 1963 brake test 5-7
5-4. Cumulative frequency distributions of weight- power ratios for all 3-S2 and 2-Sl-2 trailer combinations, 1963 brake test 5-10
5-5. Cumulative frequency distributions of weight- power ratios for loaded commercial vehicles, 1963 brake test 5-11
5-6. Trend in weight-power ratios from 1949 to 1963 based on average data for all types of commercial vehicles 5-13
5-7. Cumulative frequency distributions of minimum brake system application and braking distances and decelerations 5-23
5-8. Percentile levels of brake system application and braking distances for vehicles by year $5-24$
5-10. Brake system application and braking distances by vehicle axle weights, by test years 5-29
5-11. Brake system application and braking distances by tandem axle weights for $2-52$ and $3-52$ vehicles 5-31
CHAPTER 66-3. Truck involvement and direct-cost rates forintersectional and non-intersectional accidentsoccurring on the Federal-aid primary system andon all other highway systems$6-10$

List of figures (continued)

Page
CEAPTER 7
7-1. Distribution of axle weight by vehicle class in California 7-3
7-2. Distribution of axle weight by vehicle class in Maryland 7-4
7-3. Distribution of gross weight by vehicle class in California. 7-12
7-4. Distribution of grose weight by vehicle class in Maryland 7-13
7-5. Total number of axles per 1,000 trucks on all main rural highways; average of 20 States 7-31
7-6. Average gross weight of 3 A and larger trucks on all min rurel highways; average of 20 States 7-32
7-7. Average daily traffic on main rural roads for 3A and larger trucks, 1952 to 1963 7-33
CHAPTER 9
9-1. Operating cost per vehicle-mile by cost element for gasoline and diesel-engine-powered trailer combintions 9-4
9-2. Operating cost per vehicle-mile for gasoline-and diesel-engine-powered trailer combinations by subtotals of the six basic cost elements $9-5$
9-3. Line-haul motor vehicle operating cont per vehicle-mile and per payload ton-mile as related to loaded gross vehicle weight 9-9
CHAPTER 10
10-1. Axle arrangements and code designationsfor typical vehicles and vehicle combinations 10-6

List of figures (continued)

Page

10-2. Distribution of axle weights of the 3-S2
vehicle class on the primary rural systemas
summarized from the 1962 truck weight study........ $10-15$
10-3. Equivalent 18-kip axle applications for
highway system 3, for 8-inch rigid pavement. 10-9
10-4. Geometric cross section of roadways used
in the axle-weight economy analyses 10-35
10-5. Design rigid parement slab depth related to daily E l8-kip axle applications resulting from Methods 1, 2, and 3 plotted for use with Method 1-M 10-67

10-6. Design depth of Plexible pavement surface
course related to daily E 18-kip axle applications
resulting from Methods 1, 2, and 3 plotted for use
with Method l-M 10-70
10-9. Average weight of payload per vehicle weighed in the 1962 truck weight study for each vehicle class as related to practical maximum gross vehicle weight for the primary rural system 10-81

10-12. Equivalent 18-kip axles for 8-inch rigid
pavement for the six vehicle classes and the
1962 truck weight study, as related to practical
maximum gross vehicle weight $10-83$
10-13. Equivalent 18-kip axles for flexible pavement
($\mathrm{SN}=3$) for the six vehicle classes and the 1962 truck weight study as related to practical maximum gross vehicle weight 10-84

10-14. Curves to show the interrelationship of E 18-kip axle applications, rigid pavement design depth, and cost of pevement per cubic year for highnay system 3, primary rural, and the east north central census division10-113

List of figures (continued)

CHAPTER 11

ll-1. Accumulated percentage of the ADT of vehiclecombinations based upon increasing practical grossvehicle weights of 2-Sl and larger classes ofcombinations; highway system 3, primary rural,based on 1962 truck weight study 11-9
ll-2. Accumulated percentage of the ADT of vehicle combinations arranged by increasing practical maximum gross weights vs. the accumulated percentage of total payload carried by the ADT 11-10
ll-3. Sample set of curves for the primary rural system to illustrate how the number of E l8-kip axles per vehicle by vehicle class was determined from plotting the data of Method 1 for two axle weight limits for each census division 11-12
CHAPTER 14
14-1. Incremental benefit-cost ratios related to the axle-weight maximum limits as calculated for the transport of 2,000 tons of payload on the primary rural system of the East North Central census division; rigid pavement and a 20-year analysis period 14-35
14-2. Motor vehicle operating cost per payload ton-mile versus practical maximum gross weight. 14-39
CHAPTER 16
16-1. The left-modal type survivor curves 16-11
16-2. The symmetrical type survivor curves 16-12
16-3. The right-modal type survivor curves 16-13
16-4
16-5. Total annual capital outlays, 1965 to 1984for each increased axle-weight limit expressed asa percentage of the base axle-weight limit (18/32)for the Interstate and Federal-aid primary ruralsystems, census division 5, East North Central16-41
16-6. Percentage of total yearly capital outlaysrequired for new construction, reconstruction, andresurfacing, 1965 to 1985, on the Interstate ruralsystem, census division 5, East North Central$16-45$

List of figures (continued)

Page
16-7. Percentage of total yearly capital outlays
required for new construction, reconstruction,
and resurfacing, 1965 to 1985, on the Interstate
rural system, census division 5, East North Central. . $16-46$
16-8. Percentage of total yearly cepital outlays required for new construction, reconstruction, and resurfacing, 1965 to 1985, on the Federal-aid primary rural system, census division 5, East North Central $16-47$

16-9. Percentage of total yearly capital outlays required for new construction, reconstruction, and resurfacing, 1965 to 1985, on the Federal-aid primary urban system, census division 5, East North Central16-48

DEFINITIONS

Vehicle - An assembly of wheels and axles with connecting frame and with or without a body for containjing goods or people, which may be towed or moved under its own power over the highway. A passenger car, a bus, a truck, a trailer, a tractor are separate individual vehicles. Also, the word vehicle as used generally includes any combination of two or more separate vehicles such as a tractor and semitrailer or a truck and full trailer.

Vehicle Combination - Two or more vehicles combined so as to move over the highway as one train of connected vehicles.

Unit - A single vehicle; one of the vehicles within a vehicle combination.

Truck or motor truck - A single self-propelled commercial motor vehicle carrying its load on its own wheels and primarily designed for the transportation of property or coumodities. When used as a general term, "truck" may refer to any type of commercial motor freight vehicle or combination of vehicles.

Single-unit motor truck - A self-propelled motor truck constructed to carry only its own cargo and not equipped to pull a trailer.

Power unit or power vehicle - A general term referring to any vehicle equipped with an engine for propulsion and arranged to pull a trailer.

Tractor - A self-propelled motor vehicle designed primarily for pulling semitrailers and constructed so as to carry part of the weight and load of a semitrailer. (A tractor is basically a motor truck with a short wheelbase and no cargo body.)

Tractive truck - A motor truck constructed to carry a cargo body and to pull a trailer. (A trailer pulled may be either a semitrailer or a full trailer depending on whether the tractive truck is equipped with a semitrailer fifth wheel or a full trailer piatle hook.)

Trailer - A comercial motor vehicle designed to carry cargo and to be pulled by a tractive truck or a tractor. When used as a general term it may mean either a semitrailer, a full trailer, or a pole trailer, and may be equipped with any one of the various types of cargo bodies. (Trailers built as mobile living quarters are known as trailer coaches and mobile homes, but frequently are called house trailers.)

Semitrailer - A trailer equipped with one or more axles and constructed so that a substantial part of its wejght ard load is carrled by the tractor or tractive truck which pulls the semitrailer. A semitrailer may have one or more loadcarrying axles located under the rear half of the vehicle.

A semitrailer with two axles grouped under the rear balf of the vehicle frequently is known as a tandem-axle semitrailer.

Full trailer - A trailer constructed so that its weight and load rests on its own wheels. It may have two or more load-carrying axles.

Trailer converter dolly - A short chassis assembly cousisting of axle and wheel assembly, tires, springs, frame for lower fifth wheel, drawbar, and other parts designed to slip under the front end of a semitrailer to convert it to a full trailer.

Trailer combination or combination - A general term used to describe two or more vehicles, one of which is a power vehicle, that are connected together for operation on the road. In general, the name of each combination indicates the types of venicles that are connected together in the combination.

Double-trailer or tandem-trailer combination - A
tractor, semitrailer, and full trailer. This combination frequently is called a "double bottom" because it has two cargo bodies.

Line-haul service - also called over-the-road service--
A general term designating truck operations over intercity and rural highways. Such operations may include some minor auxiliary off-hignway operations, especially where the payload is picked up from a loading area off the public highway.

Tandem axle - Axle groups having two or more axies spaced more than 40 inches apart and no more than 96 inches apart. More generally, tandem axies are two axles spaced about 48 inches apart.

Cargo, payload, and freight - The material contents, commodities, or goods in the truck body which are being hauled and upon which the freight tariff is paid in common or contract carriage.

Enpty weight - The weight of the entire vehicle or vehicle combination with driver on the road without any cargo, or payload, but with any packing material, racks and tools usually hauled for convenience and not for revenue. Vehicles carrying empty drums, pallets, crates, and other cargo containers or leveling devices are classed as with load.

Tare weight - The weight of the entire vehicle or vehicle combination, exclusive of driver, passengers, paeking material, cargo containers, cargo handling devices, and all objects not a fixed part of the vehicle.

ADT - The average daily traffic expressed in numbers of vehicles of all classes unless specifically stated differently. The daily average is for the year unless stated otherwise.

Benelit-cost ratio or B. C. ratio - An index of the relative economy of one alternative as compared to another, expressed as the quotient resulting from dividing the equivalent uniform annual benefit in dollars by the equivalent uniform annual cost in dollars required to obtain the benefit.

E 18-kip axles - The number of single axles weighing 18,000 pounds which would be equivalent to another number of axles weighing more or less than 18,000 pounds, as measured by their effect on the pavement structure. A kip is 1,000 pounds.

Motor vehicle operating cost - The total cost of operating the vehicle in road service, including costs of repairs and servicing, tires and tubes, fuel, driver, overhead, depreciation, and interest, but excluding terminal costs of handling cargo, and road-user taxes.

Key Words: economy of truck transport; trucking cost; truck dimensions; truck axle weights; legal limits of vehicle dimensions and weights; economic vehicle dimensions and weights; bighways and truck limits

Determining the desirable maximum limits of dimensions and weights of motor vehicles is approached on the basis of the highway cost and the operating cost of motor trucks, so far as the factors of economy are concerned. Vehicle operations on the highway are concerned with the factors of gross vehicle weight per net horsepower, braking distance, traffic accident frequency and severity, and highway capacity. The placement of the vehicle on the roadway so far as the highway geometrics are concerned is a factor considered. Earthwork, the pavement and shoulder structure, and individual structures are the three 1 tems of construction cost affected by any change in vehicle axle weight or grosg weight. Other items of the total highway, such as right-of-way, engineering, and traffic facilities, are considered to be unaffected by the maximum legal limits of dimension and weight.

In the economy studies, axle weight, gross vehicle weight, and vehicle length are analyzed on the basis of $s 1 \times$ highway systems consisting of the rural and urban systems within the Interstate, primary and secondary highway systems. The work
is further divided by the ten census divisions, which approximates a grouping of the States having the same limitations of dimensions and weights, even though these limits vary considerably among all States.

The main basis of the analysis is the 1962 data on the truck weight studies conducted in 46 States. The axle weights, gross weights, frequency distribution by class of vehicle, number of empty vehicles, and the payload carried per vehicle are the main data utilized in these studies.

Considering all the factors involved in determining the desirable limits of maximum veincle dimensions and weights, the following general conclusions were reached:

1. From the standpoint of economy of transportation, there are no major benefits to be gained by a vehicle height In excess of 13.5 feet, so that any higher limit than 13.5 feet does not need to be seriously investigated at this time.
2. A vehicle width of 102 inches as a maximum is desirable for the reasons that it would improve the loading facilities for certain modular-dimension products, and that it would provide additional desirable space at the rear axle for improvement of the differential and the braking system.
3. Existing highways will accomodate vehicle combination leagths up to 65 feet including two trailers. On
the Interstate system with full access control, combinations 100 feet long are feasible utilizing two 40-foot trailers.
4. There is considerable economy in overall transportation to be gained by axle-weight limits up to at least 26,000 pounds single and 44,000 pounds tandem. The benefit-cost ratio of such increases is sigaificantly large-say, somewhere between 3.0 and 20.0--depending upon the highway system, the census division, and the character of the traffic involved.
5. Increasing the maximum length of vehicles up to 65 feet and permitting the combination of tractor, semitrailer, and full trailer results in a decrease in truck operating cost up to 30 percent with no measurable increase in highway costs.
6. Gross vehicle weight for combination vehicles is economical up to 25,000 pounds.
7. During the 20-year period from 1965 to 1984 , for the 22/38-kip designs, highway construction on the Interstate and Federal-aid primary systems would cost 0.5 to 1.9 percent more than the estimated totals under existing axle-weight limits. The above percentages amount to $\$ 95,537,000$ and $\$ 348,370,000$, respectively, for the 20-year period.
8. On all highways, the use of the $22 / 38-k i p$ axleweight limits would result in a truck operating cost decrease of $\$ 36$ billion for the 20-year period, 1965 to 1984.

A FEW FINDINGS IN BRIEF

The desirable linits of dimensions and weights
were found to be the following:

1. A vehicle height of 13.5 feet
2. A vehicle width of 102 inches
3. Maximum lengths on all highways of 40 feet for singleunit trucks and trailers, 55 feet for tractor and semitrailer, and 65 feet for any other combination of vehicles
4. Axle-weight limits of $22 / 38 \mathrm{kips}$, single/tandem axles for universal use
5. A gross weight limit of at least 120,000 pounds, or better yet, no gross weight limit at all with control of axle weight and axle spacing.

ECONOMY OF MAXIMM AXLE-WEIGHT LTMITS

In determining the economy of axle-weight limits, two basic factors must be considered: (1) the cost of operating motor vehicles at various levels of maximum axle-weicht limit and (2) the cost of constructing and maintaining the highways for the use of the vehicles operating at these ievels of axle-weight limit. The key to the analysis governing both the motor vehicle running cost and the pavement desjen is the composition of the trucking fleet (traffic) by axle classification of the vehicles comprising it and the weight distribution of single and tandem vehicles.

1. CONCEPTUAL, APPROACH

The economy of transportation as related to maximum legal
limits of vehicle axle weights is dependent upon the following factors: (a) the limits, (b) the highway costs incurred, (o) transport requirements, and (d) the sharacter and use of transport. For the purpose of this study of the economy of axle-weight limits: the basic data available consisted of the results of the truck weight studies by the several. States, the AASHO guides for mement design, and highway construction costs from Federal-aid project records.

The procedures involved a forecast of truck usage of the highwas to 1985, a forecast of the distribution of axle weights by vehicle class, an estimate of the payload to be ha:ded, and choice of specific axle-weight limits to be studied. A critical factor involved in this procedure is the method of determining the axle-weight distribution under axle-weight limits higher than now exist.
2. BASIC PROCEDIJRES AND METHODS

In the general study of the economy of maximum axle-weight limits. the basic procedure used was to estimate the axle-weight distribution for the assumed traffic composition, to design the pavement for these conditions, and to calculate the resulting highway and motor vehicle costs. It should be noted that upgrading of existing construction is not included in the highway cost on the ground that, if there is general transport economy in constructing new highways for increased axle weights, logically there would be economy in upgrading the structural quality of existing highways.
A. Levels of Axle-Weight Limits

To Be Considered
The selection of the levels of axle-weight limits to be used is the fundamental first step in the study of the economy of maximum axle-weight limits, by whatever method it is to be accomplished. As shown in Chapter 3, the laws of the several

States usually set forth maximum limits for the axle weights of motor vehicies and also for their gross welghts.

For this analysis of the economy of axle-weight linds. 18,000/32,000 pounds were selected as the lower weicht limits for single and tandem axles. respectivelv, on the basis that they were the lowest. in effect. Axle weights of $26,000 / 44,000$ pounds were selected as practical upper limits that are above those now existing, with the single exception of the $44,000-$ pound limit in Florida. Still higher limits were usfd in the special. study to determine the upper axle-weight limits beyond Which no further satns in trapsportation economy can be expected (Chspter 14).

The five levels of maximum axle-weight limits shown below cover the current leggl levels and two levels above. These five

Single axle weight, pounds	Trandem axle weisht, pounds
18,000	32,000
20,000	35,000
22,000	38,000
24,000	41,000
26,000	44,000

levels were used throughout this study of the economy of limits of vehicle dimensiors and weights.
B. Highway Systems and

Census Divisions
In order to provide a measure of any effects on the economy of axle-weight limits that could be due to geographical location, existing State laws, and regional trucking practices, the study was applied separately to six highway systems in each of the ten U. S. census divisions. The highway systems are the following:

Code
System name
1 Interstate, rural
2 Interstate, urban
3 Primary, rural
Primary, urban
$5 \mid \overline{5} \quad$ Federal-aid secondary, rural, State jurisdiction
1 Federal-aid secondary, rural, local jurisdiction
$6 \mid \overline{6} \quad$ Federal-aid secondary, urban, State jurisdiction Federal-aid secondary, urban, local jurisdiction

The ten census divisions and the States included in each are as follows:

No. Abbreviation	Census division	States included	
1	NE	New England	Connecticut, Maine Massachusetts, New Hampshire, Rhode Island and Vermont
2	MA	Middle Atlantic	New Jersey, New York, and Pennsylvania
3	SAN	South Atlantic (North)	Delaware, Maryland, Virginia, West Virginia, and District of Columbia

No.	Abbreviation	Census division	States included
4	SAS	South Atlantic (South)	Florida, Georgia, North Carolina, and South Carolina
5	ENC	East North Central	Illinois, Indiana, Michigan Ohio, and Wisconsin
6	WNC	West North Central	Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota
7	ESC	East South Central	Alabama, Kentucky, Mississippi, and Tennessee
8	WSC	West South Central	Arkansas, Louisiana, Oklahoma, and Texas
9	M	Mountain	Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming
10	P	Pacific	California, Oregon, and Washington

C. Vehicle Classes

Figure lo-1 shows by axle arrangement 18 classes of cargo-hauling vehicles and vehicle combinations representing the more common types found on the public highways. Other classes found in traffic classifications do not appear in significant numbers.

The following vehicle types were used throughout the analysis as those vehicles that would be affected by an increase in legal dimensions and/or veights:

Figure 10-1. Axle arrangements and code designations for typical vehicles and vehicle combinations

Single-unit trucks

2D 3A

Tractorsemitrailers

$$
\begin{aligned}
& \text { 2-S1 (3 axles) } \\
& 2-S 2 \text { (4 axles) } \\
& 3-S 2 \text { (5 axles) }
\end{aligned}
$$

Other combinations

2-3, 3-2 (5-axle truck-trailers)
2-Sl-2 (5-axle tractor= semitrailer-full-trailer)
D. Adjustment for Increase in Average Payload Per Vehicle and for a Transition Period
owing to the increase in average payload per vehicle in past years, an increase in typical payload per vehicle of 29 percent from 1962 to 1990 (28 years) was included in the forecast of traffic. The 29-percent figure was arrived at by studying the trends of truck weights and loading practices over the last several years.

In all of the analyses for the economy of increased dimensions or weights of vehicles, the total tonnage of payload to be transported was increased from the base tonnage in 1962 and forecasted to 1990 on the basis of a straight-line increase. Frie 1962 tonnage is that tonnage determined from the truck weight studies. The 1990 tonnage is based on the projected population and the share of total intercity freight to be carried by the motor vehicle. The period of analysis was the 20 years beginning January 1, 1965 and ending December 31, 1984.

The 29-percent payload increase per vehicle merely controlled the number of vehicles required to transport the total tonnage, fewer vehicles being required to haul a specific number of tons in 1990 than in 1962. In all of the analyses of
the economy of axle-weight limits, the same number of payload tons was used at each axle-weight limit. Therefore, as the axle-weight limits were increased, fewer vehicle trips were required to transport the given number of tons of payload.

Because it is not reasonable to expect that the truck traffic would adjust to the higher limits overnight, if the laws should be changed to permit higher weights, a 5-year transition period from 1965 to 1969 was included. Figure 10-3 shows how this transition period was applied to each axle-weicht limit. To show the effect of the 29-percent increase in payload per vehicle and the transition period, complete studies were made with and without these two factors. Each factor noticeably reduces the indicated gain in economy with increased axle-weight limits. Because these two factors are logical and because they do affect the calculated economy, both of them were always included in subsequent calculations and, unless specificall.v stated, sre included in all results given in this report.

3. METHOD OF ANALYSIS

Three basic methods were used in determining the distribution of axle weights and the number of equivalent 18,000pound axle applications to the pavement under each of the five levels of axle-weight limits. Method 1 transferred the axleweight distribution found in the 1962 truck weight studies in those States having the 20,000 - and 24,000 -pound axle limits to

the other States having lower limits and vice versa. Then, with axle-weight distribution for each vehicle class detemmined for the 18-, 20-, and 22-kip limits, these distribution curves were extrapolated to the $24-k i p$ and $26-k i p$ limits.

Method l-M was a repeat of Method 1 , except minimum pavement depths were imposed. For the lighter traffic volumes, it was found that Method 1 resulted in design pavement depths much less than the States were currently using. These differences resulted not from Method 1 but from the inherent character of the AASHO design formula. Method l-M was revised, therefore, to produce a pavement depth equal to current designs at current axle-weight limits.

Jn Method 2 the first step was to plot the 1962 truck weight data by States to show the coordinate relation hetween the practical maximum gross vehicle weight and the average payload per vehicle by vehicle class. The second step was to plot, by State, the coordinate relation between the 1962 E 18-kip axles by vehicle class and the practical maximum gross vehicle weight. These two curves were extrapolated when necessary.

The data from these two curves were available for calculating the total number of vehicles required to haul the required number of tons of payload, and the number of $f, 18-k i p$ axle applications applied by each class of vehicle.

Method 8 was the work by the A. T. Kearney Company for the Bureau of Public Roads adapted to the general concept of Method 1 so that equivalent benefit/cost ratios could be compared.

The final benefit-cost ratios produced by Methods l-M, 2, and 8 were in acceptable agreement with the results obtained by Method 1. But since Method l-M more nearly reflects current design practices, the 1-M results are preferred to the others. The work by Method 2 is not given in this condensed report.
4. MEITHOD 1 -- CENSUS DIVISION-TO-CENSUS-DIVISION TRANSFERENCE OF AXLE-WEIGHT DISTRIBUTIONS

Testing the economy of increasing the legal maximum axle weights of comercial motor vehicles resolves itself into the problem of estimating one basic critical factox: the composition of commercial vehicles (number and type) in the traffic stream under increased axle-weight limits as compared to the composition of traffic at existing limits. Within this factor are two subfactors: (1) axle-weight distributions by single and tandem axles and (2) the gross weight of each vehicle class.

The axle-weight distribution is the necessary factor in calculating the number of equivalent $18,000-$ pound ($\pi, 18-\mathrm{kip}$) axles, the factor influencing the design of the pavement structure. Gross weight is the key factor in determining the motor vehicle operating cost. The number of vehicles in each vehicle class is required, of course, to compute the total E 18-kip axles and the total operating cost for the ADT (average daily traffic) considered.

A. Basic Concept

Since there is no known procedure by which to estimate the composition of traffic under increased permitted axle-weight limits, logic must be applied to what is now known about existing traffic in order to obtain an estimate. Since there is a range of legal maximum axle weights among the several States, one method of arriving at the traffic composition under increased axleweight limits is to transfer transport practice in States having high limits to those having lower limits. This procedure of transference was used for axle weights from 18,000 pounds for a single axle and 23,000 pounds for a tandem axle to 22,000 and 38,000 pounds, respectively. By extrapolation the traffic composition and axle-weight distribution were extended to $26 / 44-\mathrm{kip}$ limits.
B. Axle-Weight Distribution by State Maximum Weight Limits

The axle-weight distributions for each vehicle axle-weight group were assembled by States from the 1962 truck weight study. Based on the legal maximum single-axle weight limit, including tolerances, the States may be grouped as follows:

Single-axle weight groups, pounds	Weight range, pounds	Number of States
18,000	18,000	
19,000	$18,500-19,000$	10
20,000	$19,500-20,340$	5
22,000	$21,600-22,400$	7 and D. C.
23,000	$22,840-23,520$	4

```
Grouping of States by Approximgt.e
    Single-Axle Weight Limits y
    (*with enforcement tolerance;
    18.000 pounds (20 States)
```

Arizona
California
Idaho
Illinois
Kansas
Louisiana
Michigan

Minnesota
Mississippi
Missouri
Montana
North Dakota
Oklahoma Oregon

South Dekotr Tennessen
Virginia Wasiningtion Utah Wyoming

> 19,000 nounds (10 States)

Arkansas $(18,500 *)$	Kentucky	$(18,900 *)$	Ohio	$(19,000)$
Iowa	$(18,540 *)$	Nebrasika	$(18,900 *)$	Texas
Indiana $(19,000 *)$	Nevada	$(18,900 *)$	West Virginia $(18,900 *)$	
		(18,90*)		

20.000 pounds (5 states)
$\begin{array}{lllll}\text { Alabama }(19,800 *) & \text { Georgia } & (20,340 *) \\ \text { Delaware }(20,000) & \text { South Carolina }(20,000)\end{array}$

$$
22,000 \text { pounds (} 7 \text { States and D. C.) }
$$

District oü Columbia	$(22,000)$	Massachusetts $(22,400)$	
Florida	$(22,000 *)$	Mew Mexico	$(21,600)$
Maine	$(22,000)$	New York	$(22,400)$
Maryland	$(22,400)$	Rhode Island $(22,400)$	

23.(000 pounds (4 states)

Connecticut $\quad\left(22,848^{*}\right) \quad$ Pennsylvania $\left(23,072^{*}\right)$
New Jersey (23.520*) Vermont (23.520*)

It was decined to use three major weight groups instead of the five mentioned above. The 19,000- and 23.000-nound groups did not supply sufficient axle-weight data consistent enorigh to

11962 data for Colorado (19,000) and New Hampshire (22,400) was not available.
warrant making them separate groups. The three major weight groups selected were made up in the following manner:

18,000 pounds -- The 20 states tabulated above.
20,000 pounds -- 15 States - combining the 19,000pound and 20,000-pound groups listed above.

22,000 pounds -- 11 States and the District of Columbia - combining the 22,000pound and 23,000-pound groups listed above.

The axle-weight distribution curves for the single-axle weight groupings of $18,000,20,000,24,000$, and 26,000 pounds are given in figure 10-2 for the 3-S2 combination for the primary rural highway system (System 3). This set of curves is representative of those for other classes of vehicles and highway systems. The curves for the 24,000 - and 26,000 - pound axle groups are extrapolated from the three curves for the lower limits. These curves were prepared for each of the seven classes of vehicles and the six highway systems.
C. Distribution of ADT by Vehicle Class, by Census Division, and by Highway System

Since the economy of maximum axle weights depends upon the number of vehicles in the traffic stream and the number of each class of vehicle, it becomes necessary to make the analysis for specific ADT's and for the vehicle-class distribution within

the ADP. The truck weight studies report the classification of the vehicle stream (vehicles counted) at each weigh station, which may not give the overage ADT and vehicle distribution for a specific higtway system withtn a State. For the purposes of this study, the average ADI by highway system was developed for each census division for 1962 , as shown in table 10-4.
D. Distribution of Axle Weights

For the most part, computations were based on whole vehicles and whole axles. However, fractional vehicles were used in many instances to compute the number of axles, average payload, sind number of vehtcles.

As previously stated, the procedure of Method 1 was to adjust the axle-weight distribution for each vehicle class in a census division having a lower maximum limit--such as $38 / 32 \mathrm{kips}--$ to the distribution found in a census division with a higher limit--such as $20 / 35 \mathrm{kips}$. The number of vehicles in each class was then adjusted so that the same total tons of payload were carried by a particular class of vehicle at the limits (base condition) prevailing during the period for which the 1.962 truck weight studies were done.
E. Adjustment of the 1.962 Rase Distribution of Axle Weights to Higher Axle-Weight Level.s

The next step was to determine for 1962 the number of vehicles necessary to carry the 1962 total payload at
Table 10-4.--Number of each class of vehicle in the ADT for 1962 and 1990

$\begin{gathered} \text { Census } \\ \text { division } \end{gathered}$	Year	Pass. cas	Buses	Panel and pickup	28	${ }^{20}$	3A	2-S1	2-s2	3-s2	$\text { Comb. } 5$ axle	$\begin{gathered} \text { 2-trailer } \\ 5 \text {-axle } \end{gathered}$	Total
1. Interstate rural													
1. NE	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{array}{r} 6,001 \\ 14,057 \end{array}$	32 49	131 344	52 137	226	21.0 48.0	126.0 201.0	320.0 804.0	8.5 22.0	-	-	$\begin{array}{r} 6,907.5 \\ 16,085.0 \end{array}$
2. MA	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{array}{r} 6,876 \\ 16,101 \end{array}$	$\begin{array}{r} 77 \\ 120 \end{array}$	183 478	32 84 84	$\begin{aligned} & 271 \\ & 530 \end{aligned}$	$\begin{aligned} & 32.0 \\ & 75.0 \end{aligned}$	$\begin{aligned} & 189.0 \\ & 300.0 \end{aligned}$	$\begin{array}{r} 764.0 \\ 1,919.0 \end{array}$	$\begin{array}{r} 67.0 \\ 177: 0 \end{array}$	-	-	$\begin{array}{r} 8,491.0 \\ 19,784.0 \end{array}$
3. SAN	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{array}{r} 7,634 \\ 18,591 \end{array}$	178	$\begin{array}{r} 369 \\ 1,005 \end{array}$	$\begin{array}{r} 68 \\ 186 \end{array}$	338 688	53.0 128.0	202.0 336.0	1,034.0	23.0 61.0	$:$	-	$\begin{array}{r} 9,798.0 \\ 23,825.0 \end{array}$
4. SAS	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{array}{r} 5,2899 \\ 14,557 \end{array}$	$\begin{aligned} & 20 \\ & 35 \end{aligned}$	$\begin{aligned} & 374 \\ & 1,154 \end{aligned}$	$\begin{array}{r} 48 \\ 149 \end{array}$	267 616	53.0 146.0	87.0 164.0	319.0 940.0	40.0 10.0	-	-	$\begin{array}{r} 6,497.0 \\ 17,872.0 \end{array}$
5. ENC	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{array}{r} 6,763 \\ 15,823 \end{array}$	$\begin{aligned} & 31 \\ & 48 \end{aligned}$	$\begin{aligned} & 286 \\ & 751 \end{aligned}$	$\begin{array}{r} 48 \\ 126 \end{array}$	307	62.0 146.0	197.0 318.0	601.0 $1,511.0$	316.0 954.0	$\begin{aligned} & 15 \\ & 30 \end{aligned}$	35 81	$\begin{array}{r} 8,661.0 \\ 20,393.0 \end{array}$
6. Wic	$\begin{aligned} & 1962 \\ & \\ & 1990 \end{aligned}$	$\begin{aligned} & 3,315 \\ & 7,214 \end{aligned}$	$\begin{aligned} & 24 \\ & 34 \end{aligned}$	$\begin{aligned} & 262 \\ & 399 \end{aligned}$	$\begin{aligned} & 34 \\ & 83 \end{aligned}$	$\begin{aligned} & 139 \\ & 254 \end{aligned}$	$\begin{aligned} & 25.0 \\ & 55.0 \end{aligned}$	44.0 67.0	131.0	$\begin{aligned} & 192.0 \\ & 532.0 \end{aligned}$	-	-	$\begin{aligned} & 4,066.0 \\ & 8,941.0 \end{aligned}$
7. ESC	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{aligned} & 4,638 \\ & 9,733 \end{aligned}$	$\begin{aligned} & 34 \\ & 47 \end{aligned}$	$\begin{aligned} & 407 \\ & 960 \end{aligned}$	$\begin{gathered} 44 \\ 104 \end{gathered}$	$\begin{aligned} & 301 \\ & 531 \end{aligned}$	$\begin{aligned} & 38.0 \\ & 79.0 \end{aligned}$	81.0 116.0	$\begin{array}{r} 472.0 \\ 1,064.0 \end{array}$	49.0 131.0	-	-	$\begin{array}{r} 6,064.0 \\ 12,765.0 \end{array}$
8. usc	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	$\begin{aligned} & 4,265 \\ & 9,959 \end{aligned}$	$\begin{aligned} & 32 \\ & 51 \end{aligned}$	$\begin{array}{r} 485 \\ 1,271 \end{array}$	$\begin{aligned} & 35 \\ & 91 \end{aligned}$	$\begin{aligned} & 224 \\ & 439 \end{aligned}$	25.0 59.0	129.0	330.0 829.0	424.0 $1,273.0$	$:$	-	$5,949.0$ $14,180.0$
9. M	$\begin{aligned} & 1962 \\ & 1990 \end{aligned}$	3,207	$\begin{aligned} & 22 \\ & 39 \end{aligned}$	$\begin{aligned} & 289 \\ & 890 \end{aligned}$	$\begin{aligned} & 26 \\ & 81 \end{aligned}$	$\frac{112}{259}$	$\begin{aligned} & 19.0 \\ & 53.0 \end{aligned}$	$\begin{aligned} & 30.0 \\ & 56.0 \end{aligned}$	$\begin{aligned} & 26.0 \\ & 77.0 \end{aligned}$	$\begin{aligned} & 135.0 \\ & 478.0 \end{aligned}$	31 87	$\begin{aligned} & 18 \\ & 51 \end{aligned}$	$\begin{array}{r} 3,915.0 \\ 10,865.0 \end{array}$
10. P	$\begin{aligned} & 1962 \\ & 1990 \\ & \hline \end{aligned}$	7,884 24,059	$\begin{array}{r} 61 \\ 123 \\ \hline \end{array}$	$\begin{array}{r} 917 \\ 3,142 \end{array}$	$\begin{array}{r} 36 \\ 124 \end{array}$	$\begin{array}{r} 348 \\ 892 \end{array}$	$\begin{array}{r} 62.0 \\ 190.0 \\ \hline \end{array}$	104.0 219.0	$\begin{array}{r} 70.0 \\ 228.0 \\ \hline \end{array}$	$\begin{array}{r} 278.0 \\ 1,099.0 \\ \hline \end{array}$	$\begin{aligned} & 225 \\ & 720 \end{aligned}$	$\begin{aligned} & 320 \\ & 978 \\ & \hline \end{aligned}$	$\begin{aligned} & 10,305.0 \\ & 31,774.0 \end{aligned}$

10-18
Tablel0-4 .--Number of each class of vehicle in the ADT for 1962 and 1990

Census division	Year	Pass. car	Buses	Panel and pickup	25	2 D	3A	2-Sl	2-S2	3-52	Comb. 5 axle	$\begin{aligned} & \text { 2-trailer } \\ & \text { 5-axle } \end{aligned}$	Total
2. Interstate urban													
1. NE	1962	14,006	114	938	289	811	79.0	109.0	158.0	5.2	-	-	16,509.0
	1990	45,148	244	3,386	1,046	2,192	254.0	238.0	546.0	15.0	-	-	53,069,0
2. MA	1962	20,767	118	1,256	402	1,284	140.0	168.0	475.0	27.0	-	-	24,63\% ${ }^{\text {a }}$
	1990	66,985	253	4,548	1,452	3,471	451.0	364.0	1,640.0	86.0	-	-	79,250
3. SAN	1962	19,436	185	1,038	389	881	84.0	175.0	558.0	23.0	-	-	22,769,0
	1990	65,367	412	3,912	1,469	2,491	282.0	405.0	2,002.0	84.0	-	-	76,424,0
4. SAS	1962	12,439	55	991	114	516	83.0	57.0	212.0	29.0	-	-	14,496,0
	1990	47,134	137	4,221	485	1,646	323.0	143.0	858.0	115.0	-	-	55,052,0
5. ENC	1962	22,652	114	1,121	293	867	132.0	176.0	295.0	217.0	10	8	25,885.0
	1990	73,558	243	4,082	1,066	2,363	429.0	386.0	1,026.0	908.0	25	25	84,111.0
6. WNC	1962	9,501	33	643	156	431	77.0	50.0	100.0	132.0	-	-	11,123.0
	1990	28,738	67	2,183	529	1,097	233.0	104.0	324.0	498.0	-	-	33,773;0
7. ESC	1962	12,357	56	997	953	921	105.0	202.0	661.0	70.0	-	-	16,322.0
	1990	35,733	104	3,238	3,098	2,238	303.0	403.0	2,053.0	260.0	-	-	47,430.0
8. wsc	1962	14,538	59	1,499	243	546	54.0	97.0	179.0	169.0	-	-	17,384.0
	1990	47,481	125	5,505	889	1,498	171.0	217.0	629.0	685.0	-	-	57,200.0
9. M	1962	10,091	31	1,652	245	478	118.0	71.0	35.0	257.0	65	12	13,055.0
	1990	38,083	80	7,001	1,037	1,520	445.0	185.0	140.0	1,187.0	240	45	50,026.0
10. P	1962	22,573	125	2,776	173	1,205	198.0	181.0	114.0	218.0	142	190	27,895.0
	1990	95,571	356	13,194	827	4,285	842.0	522.0	510.0	1,187.0	627	807	118,728.0

$\begin{aligned} & \text { Cemsus } \\ & \text { division } \end{aligned}$	Year	Pass. car	Buses	Panel and pickup	2 S	21	3A	2-S1	2-82	3-s2	Comb. 5 axle	$\begin{gathered} \text { 2-trailer } \\ \text { 5-axle } \end{gathered}$	Total
3. Primary rural													
1. NE	1962	3,024	13	146	38	150	18.0	52.0	117.0	4.0	-	-	3,562.0
	1990	3,732	11	201	52	156	23.0	45.0	156.0	6.0	-	-	4,382.0
2. MA	1962	3,269	16	184	61	180	29.0	64.0	275.0	6.0	-	-	4,084.0
	1990	4,026	13	253	85	187	36.0	54.0	364.0	9.0	-	-	5,027.0
3. SAN	1962	3,274	18	247	42	215	35.0	52.0	270.0	9.0	-	$=$	4,162.0
	1990	4,206	15	356	60	233	45.0	46.0	373.0	13.0	-	-	5,347.0
4. SAS	1962	2,156	9	217	26	156	23.0	30.0	175.0	11.0	-	-	2,803.0
	1990	3,123	9	352	43	190	34.0	30.0	273.0	18.0	-	-	4,072.0
5. ENC	1962	2,596.	9	143	35	142	22.0	46.0	135.0	85.0	3	5	3,221.0
	1990	3,211	7	198	49	148	27.0	40.0	180.0	136.0	4	6	4,006.0
6. WNC	1962	1,273.	5	95	14	65	15.0	13.0	33.0	50.0	-	-	1,563.0
	'1990	1,466	4	123	18	63	17.0	10.0	41.0	73.0	-	-	1,815.0
7. ESC	1962	1,620	12	114	103	136	14.0	33.0	145.0	19.0	-	-	2,196.0
	1990	1,795	8	142	128	127	16.0	26.0	173.0	26.0	-	-	2,441.0
8. WSC	1962	1,735	11	227	26	101	13.0	36.0	92.0	87.0	-	-	2,328.0
	1990	2,154	9	317	36	105	16.0	31.0	123.0	139.0	-	-	2,930.0
9. M	1962	1,019	5	141	8	45	5.0	8.0	8.0	32.0	7	2	1,280.0
	1990	1,473	5	229	13	54	7.0	8.0	13.0	60.0	11	3	1,876.0
10. P	1962	2,575	16		12	111	24.0	25.0	16.0		42		3,286.0
	1990	4,130	17	553	22	150	39.0	27.0	29.0	263.0	7	50	5,350.0

10-20

											Sheet 5 of 6		
Census division	Year	Pass. car	Buses	$\begin{aligned} & \text { Panel } \\ & \text { and } \\ & \text { pickup } \end{aligned}$	2 S	2 D	3A	2-Sl	2-S2	3-52	Comb.5axle	$\left\lvert\, \begin{gathered} \text { 2-trailer } \\ 5-\mathrm{axle} \end{gathered}\right.$	Total
$5 \& 7$. Secondary rural													
$1 \% 2$	1962	933	7	94	16	64	7.5	13.3	20.0	--	--	--	1,154.8
	1990	1,291	6	146	25	75	8.7	12.1	30.2	--	--	--	1,594.0
$3 \& 4$	1962	418	3	71	6	37	4.5 5.6	4.5 4.5	11.9	--	--	--	555.9 850.6
	1990	637	3	123	9	49	5.6	4.5	19.5	--	--	--	850.6
5 to 10	1962 1990	509 898	4 5	107 220	6	33 47	3.0 7.0	4.0 4.0	4.0 5.0	3 8	4 10	4 8	681.0 $1,221.0$
	1990		5		9				5.0				1,221.0

10-22
 Sbeet 6 or 6

$\begin{gathered} \text { Census } \\ \text { detrision } \end{gathered}$	Year	Pass. car	Buses	Panel and pickup	2S	20	3A	2-Sl	2-52	3-82	Comb. 5 axle	$\begin{gathered} \text { 2-trailer } \\ \text { 5-axle } \end{gathered}$	Total
6\&8. Secondary urban													
1. NE	1962	3,464	34	212	97	151	14.0	20.0	25.0	-	-	-	4,017.6
	1990	4,573	29	314	143	166	18.0	18.0	34.2	-	-	-	5,295.2
2. MA	1962	2,873	19	159	73	134	13.0	18.0	41.0	2.5	-	-	3,334.5
	1990	3,796	17	235	111	147	17.0	15.0	57.0	$4 \cdot 3$	-	-	4,399.3
3. SAN	1962	3,813	44	186	103	130	11.0	26.0	68.0	2.7	-	-	4,383.7
	1990	5,258	40	289	159	150	15.0	24.0	99.0	4.6	-	-	6,038.6
4. SAS	1962	3,195	17	232	40	100	15.0	13.0	34.0	4.0	-	-	3,650.0
	1990	4,966	17	405	70	130	22.0	13.0	55.0	5.0	-	-	5,683.0
5. ENC	1962	2,841	17	128	50	82	12.0	17.0	23.0	6.0	1	-	3,177.0
	1990	3,790	15	191	75	91	15.0	15.0	32.0	10.0	1	-	4,235.0
6. WNC	1962			89	32	49	8.0	6.0	9.0	6.0	-	-	1,644.0
	1990	$1,796$	4	124	45	51	10.0	4.0	12.0	7.0	-	-	2,053.0
7. ESC	1962	1,543	8	114	161	87	9.0	19.0	51.0	2.0	-	-	1,944.0
	1990	1,777	6	147	208	83	10.0	15.0	63.0	2.0	-	-	2,311.0
8. WSC	1962	2,942	15	277	67	83	8.0	15.0	22.0	10.0	-	-	3,439.0
	1990	3,946	13	417	101	94	10.0	13.0	32.0	14.0	-	-	4,640.0
9. M	1962	4,192	16	627	138	150	34.0	22.0	9.0	24.0		4	5,246.0
	1990	6,511	16	1,095	240	195	52.0	23.0	14.0	48.0	46	6	8,246.0
10. P	1962	4,760	32	534	50	192	29.0	29.0	15.0	10.0	34		5,723.0
	1990	8,272	36	1,043	98	280	49.0	34.0	26.0	22.0	60	65	9,985.0

respectively higher axle-weight limits, keeping in mind that heavier empty weights will be employed at these higher weight limits.

The average payload per vehicle computed at this bigher weight level was adjusted upward or downward slightly to provide for the same number of tons of payload carried at the base condition. This adjustment was made by arbitrarily shifting axles in the weight distribution from one weight level to another to arrive at the total base payload. Average payloads per vehicle for the various vehicle classes are shown in table 10-4A.

The total payload carried by all vehicles of the class was then divided by the average payload per vehicle to arrive at the number of vehicles at the higher weight level.

This same procedure was continued for each vehicle type, census division, weight level, and highway system.
F. Calculation of the Axle-Weight Distribution and Number of Vehicles for 1990

The procedure for computing the payload and gross weights carried in the year 1.990 was similar to that used for the 1962 computation but with a slightly different methor for adjusting the payload. First of all, the tables in the series on average payloads expected in 1990 for all vehicle classes show a papercent increase in average payload per vehicle. This payload. increase was used throughout the analysis for all computations to 1990.
Table 10-4A.--Average payload, mpty, and erose velecte of each clase of vebiele in method 1

Vahicle	Weight Pounde	Mathod 1 (yoar 1982)					Mathod 1 (yoer 1990)				
		Singlo/tanden maximua axie-velight 11mite, xips					Slogle/tandon meximum exle-volght 11alts, E1pa				
		18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	28/44
20	Payloned Bapty velght Grose velcht	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	$\begin{array}{r} 3,986 \\ 9,510 \\ 13,496 \end{array}$	$\begin{array}{r} 3,855 \\ 9,800 \\ 13,65 \end{array}$	$\begin{aligned} & 3,735 \\ & 10,990 \\ & 13,825 \end{aligned}$	$\begin{aligned} & 3,594 \\ & 10,390 \\ & 13,984 \end{aligned}$	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	4,003 9,510 13,513	$\begin{array}{r} 3,873 \\ 9,800 \\ 13,673 \end{array}$	$\begin{array}{r} 3,753 \\ 10,090 \\ 13,843 \end{array}$	$\begin{gathered} 3,612 \\ 10,390 \\ 14,002 \end{gathered}$
3 A	Payloed Empty velght Grose woight	$\begin{array}{r} 9,227 \\ 15,635 \\ 24,862 \end{array}$	$\begin{aligned} & 10,155 \\ & 17,795 \\ & 27,950 \end{aligned}$	$\begin{aligned} & 11,328 \\ & 19,950 \\ & 31,278 \end{aligned}$	$\begin{aligned} & 11,953 \\ & 22,105 \\ & 34,058 \end{aligned}$	$\begin{aligned} & 12,675 \\ & 24,260 \\ & 36,935 \end{aligned}$	$\begin{aligned} & 111,903 \\ & 15,835 \\ & 27,538 \end{aligned}$	$\begin{aligned} & 12,856 \\ & 17,795 \\ & 30,651 \end{aligned}$	$\begin{aligned} & 13,974 \\ & 19,950 \\ & 33,924 \end{aligned}$	$\begin{aligned} & 15,305 \\ & 22,105 \\ & 37,410 \end{aligned}$	$\begin{aligned} & 16,070 \\ & 24,260 \\ & 40,339 \end{aligned}$
2-81	Payload Epty welght Orose welct	$\begin{array}{r} 8,365 \\ 18,950 \\ 27,315 \end{array}$	$\begin{array}{r} 8,951 \\ 20,200 \\ 29,151 \end{array}$	9,390 21, 30,450 30,840	$\begin{aligned} & 10,118 \\ & 22,700 \\ & 32,816 \end{aligned}$	$\begin{aligned} & 10,675 \\ & 23,950 \\ & 34,625 \end{aligned}$	10,791 18,950 29,741	11,685 20,20 31,865	12,331 21,450 33,781	$\begin{aligned} & 13,079 \\ & 22,700 \\ & 35,79 \end{aligned}$	13,923 23,950 37,873
2-32	Payload Pepty wolght arose welght	$\begin{aligned} & 16,020 \\ & 23,550 \\ & 39,570 \end{aligned}$	$\begin{aligned} & 16,505 \\ & 24,800 \\ & 41,305 \end{aligned}$	$\begin{aligned} & 17,298 \\ & 26,050 \\ & 43,348 \end{aligned}$	$\begin{aligned} & 18,482 \\ & 27,300 \\ & 45,782 \end{aligned}$	19,659 28,550 48,209	20,668 23,550 44,216	21,257 24,800 46,057	22,275 26,050 48,325	23,846 27,300 51,146	$\begin{aligned} & 25,305 \\ & 28,550 \\ & 53,855 \end{aligned}$
3-82	Payloed Eapty veleht Orose wisht	$\begin{aligned} & 22,027 \\ & 28,190 \\ & 50,217 \end{aligned}$	$\begin{aligned} & 23,399 \\ & 30,570 \\ & 53,969 \end{aligned}$	$\begin{aligned} & 25,300 \\ & 32,950 \\ & 58,250 \end{aligned}$	$\begin{array}{r} 27,939 \\ 35,30 \\ 63,289 \end{array}$	30,703 37,710 68,413	28,415 28,19 56,805	30,191 30,57 60,781	32,749 32,950 65,699	36,118 35,38 71,446	39,433 37,710 77,143
3-2	Payloed Bupty velacht Orose wight	$\begin{aligned} & 32,167 \\ & 26,000 \\ & 58,167 \end{aligned}$	$\begin{aligned} & 31,467 \\ & 26,700 \\ & 58,16 \end{aligned}$	32,100 27,400 59,500	$\begin{aligned} & 32,067 \\ & 28,100 \\ & 60,167 \end{aligned} .$	$\begin{aligned} & 47,950 \\ & 28,800 \\ & 76,750 \end{aligned}$	$\begin{aligned} & 41,495 \\ & 26,000 \\ & 77,499 \end{aligned}$	41,500 26,700 68,200	41,500 27,400 68,900	41,500 28,100 69,600	$\begin{aligned} & 55,333 \\ & 28,800 \\ & 84,133 \end{aligned}$
3-4	Payload apty weight Grose weight	-- --	-- --	--	-- --	$-\square$ --	-- --	-- --	--	$-\square$ $-\square$	--
2-81-2	Payloed Ppty, weight Groes' welght	$\begin{aligned} & 26,000 \\ & 28,500 \\ & 54,500 \end{aligned}$	$\begin{aligned} & 25,900 \\ & 29,400 \\ & 55,300 \end{aligned}$	26,000 30,300 56,300	$\begin{aligned} & 32,450 \\ & 30,800 \\ & 63,250 \end{aligned}$	32,325 31,300 63,625	33,540 28,500 62,040	33,533 29,500 62,933	33,533 30,300 63,833	40,240 30,800 71,040	$\begin{aligned} & 40,240 \\ & 31,300 \\ & 71,540 \end{aligned}$
3-52-3	Paylond Eapty velght Groes viledt	--	--	--	--	--	-- --	$-\square$ $-=$	--	-- --	--
3-32-4	Paylond Epty wight Oross velght	--	--	--	--	$-\square$ $-=$	$-=$ $-=$	- -	--	$-\square$ $-=$	--

The base 1990 ADT for each vehicle class was available for each hichway system. Therefore, the base ADT's for 1962 and 1990 and the 1962 ADT for each higher axle-welght limit were availabje. The 1900 ADT's for each vehicle class at higher axle-weight limits were computed from the following relationship: the ADI at 1962 base condition is to the ADr at 1990 hase condition as the $196 ?$ ADT at ach higher weight level is to the 1990 ADT at the same weight level.

5. DESICN OF PAVEMENT STRICTURE,

For analysis of the economy of chanzes both in maximum axle-weight limits and in the maximum limits on vehicle dimensions, the design of the pavement structure was hased upon the "AASPO Interim Guide for the Design of Flexible Pavement Stmuctures" (Oetober 12; 1961) and "Rigid Pavement Stmuctures" (April 3.96?). The pavement design cuines were developed from the AASHO Road Test results. The design procedure and selectinn of the factors involved are desnribed as earin was epplied to the 10 census divisions and the highway systems. The main factors in the design formulas ere as follows:
(1) Mumber of applications to the pavement of equivalent lo, OOO-nount axles (E lB-kipaxles)
(2) Mexminal value of the fresent serviceability index (PSI or P_{t})
(3) Soll support values

The pavement was desicned for a period of 20 -years, January 1, 1.965 to December 31, 1984. The terminal PSI of 2.0 was used for all highway systems, all ADT's, and both types of pavements. Although a PSI value of 2.5 might be more suitable for the high-volume Interstate routes, the 2.0 figure was used to keep all design factors constant, because jit was desixable to obtain comparable results between systems and ADT's.

For 2-lane, bi-directional highways, the traffic was assumed to be equally divided between the lanes. For 4-lane divided highways, the total ADT was assumed to be 50 persent in each direction, but with 80 percent of the total Fi l.8-kip axle applications in each direction on the right-hand lane of each pair of lanes. See tables 10-5 and 100-6.
B. Soil Support for Rigid and Flexible Pavements

A representative soil support, value was assiened to each census division (table $1.0-7$) by judging relatively the general. soil condition in one division against enother.
C. Rigid Pavement Design

New rigid pevements were designed using the following assumptions:
(1) The initial serviceability index of the pavement is 4.5 , the value obtained in the AASHO Road Test.
(2) The terminal serviceability index of the pavement is $P=2.0$.

Table 10-5. -- Average daily traffic-volune guide to number of lanes

Number of lanes	$\begin{aligned} & \mathrm{ADT} \\ & \text { range } \end{aligned}$	Nominal maximum ADT	
		Interstate system	Primary system
		Rural freeways	Rural highways
2	$0-6,000$	4,500	3,000
4	up to 27,000	21,000	18,000
6	up to 40,000	31,000	26,000
8	up to 54,000	42,000	--
		Urban freeways	Urban highways
4	up to 56,000	40.000	10,000
6	up to 84,000	60,000	15,000
8	up to 112,000	80,000	20,000
10	up to 140,000	100,000	-

Trble 10-6.--Sumary of nurber of lanes for each highway system and censui division

Cancus division	1. Interstate rurol	$\text { 2. Intar- } \begin{aligned} & \text { state } \\ & \text { uriona } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 3. Pri- } \\ & \text { mry } \\ & \text { rurel } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 4. Prim } \\ & \text { Enry } \\ & \text { woun } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 5. Secon- } \\ & \text { dary } \\ & \text { rural } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 6. Secon- } \\ & \text { dary } \\ & \text { urban } \\ & \hline \end{aligned}$
1. INE	4	4	4	4	2	2
2. 1:A	4	4	4	4	2	2
3. SAI	4	4	4	4	2	2
4. ens	4	4	4	4	2	2
5. E\%	4	4	4	4	2	2
6. Wit	4	;	2	2	2	2
7. 15S	4	4	2	2	2	2
8. WSC	4	4	2	2	2	2
9. M	4	4	2	2	2	2
10. P	4	4	4.	4	2	2

Table 10-7. -- Representative aversfe soil support values used for the desicn or pavenents

Census division	Ricid povement modulus of subgrade reaction (k)	Flexible pavement soil support values
1. New England	150	5.0
2. Midale Atlantic	150	5.0
3. South Atlantic North	100	3.7
4. South Atlantic South	200	6.0
5. East Morth Central	100	3.7
6. East South Central	150	5.0
7. West Morth Central	100	3.7
8. West South Central	100	3.7
9. Mountain	250	7.3
10. Pacific	200	6.0

(3) The modulus of subgrade reaction (k) was chosen for each census division as given in table 10-7.
(4) The modulus of elasticity of concrete is 4,200,000 PSI.
(5) The modulus of rupture of the concrete is 650 PSI and the working stress is $3 / 4 \times 650=$ 487.5 PSI.
(6) The pavements have jointed slabs with adequate load transfer devices.
D. Base Design for Rigid Pavements

A study of State practice indicates that the thickness and qualities of base materials currently being used on Interstate and primary highways are about as shown in table 10-8, in which the values represent practices within each census division. The AASHO Road Test shows that rigid pavements with granular bases performed better than those without, but no significant differences were observed for 3,6 , or 9 inches of such base material. This and the fact that granular bases are used for insulation indicate that increase in base thicknesses in the future is doubtful. However, a trend toward better quality of granular base material through stabilization is currently raising the cost of bases for rigid pavements.
E. Flexible Pavement Design

New flexible pavements were designed using the "AASHO Interim guide for the Design of Flexible Pavement Structures" (October 12, 1961) with the following assumptions:

Table 10-8. -- Granular base thickness and material for rigid parement

Census division	Thickness of base	Type of raterial	Comment y	Matarial used in analysis for economy of axle weight 3
1. NE	inches 319	open-graded gravel	drained	clay-gravel
2. $M A$	11	open-graded gravel	drained	clay-gravel
3. SANT	8	dense-graded granular		clay-gravel
4. SAS	6	stabilized granular		stone-macadam
5. EINC	8	open-graded granular	drained	stone-macadam
6. WITC	6	dense-graded sand-gravel	drained	stone-ma cadam
7. ESC	8	dense-graded crushed aggregate	drained	stone-ma cadam
8. WSC	10	```stabilized selected local material```		clay-gravel
9. M	6	$\begin{aligned} & \text { cement- } \\ & \text { stablilized } \\ & \text { granular } \end{aligned}$		clay-gravel
10. P	8	dense-graded	drained	stone-macadam

1 Drained full width in fill or underdrains in cut.
3 Clay-gravel or stone macadam used in the analysis because of availability of a priceecurve based on thickness. Clay-gravel or stone macadam selected on basis of total cost and on suitability and not on availability.
3 Ten inches added for. frost protection.
(1) The initial serviceability index of the pavement is 4.2 , the value obtained on the AASHO Road Text.
(2) The terminal serviceability index of the pavement is $P=2.0$.
(3) The soil support value for each census division is as given in table 10-7.
(4) The regional factor is 1.0 .
(5) The strength coefficients of the different courses are:
a. Surface $=0.44$
b. Granular base $=0.14$
c. Subbase = 0.11

The depth of each layer (base, subbase, and bituminous concrete surface) was computed in accordance with the design procedure by the use of an electronic computer.
F. Subbase for Flexible Pavements

All the flexible pavement designs in the present size and weight study are composed of layers of surfacing, base, and subbase material. The thicknesses of these components were derived from the AASHO equations and are adequate to carry the expected traffic over the next 20 years (1965 through 1984).
G. Computation of E 18-Kip Axle Applications

The "AASHO Interim Guide for Pavement Design" gives the factors for reducing axle loads to equivalent l8-kip single-axle
applications. These factors are given as extended to higher axle-weight limits in Appendix B.

For rigid pavements these equivalence factors vary by a minor amount with the slab thickness; and for flexible pavements, with the structural number (SN). The SN factor varies with the soil support value and the daily number of applications of equivalent $18-k i p$ single axles. For both types of pavements, the equivalence factors vary with the terminal PSI, or P_{t} value, the factors being slightly larger for a smaller value of P_{t}.

To simplify the many calculations for the economy of maximum axle weight, the E $18-k i p$ axles for rigid pavements were all calculated for a slab of 8 inches, regardless of the calculated final slab thickness. Also, for flexible pavements a structural number of 3 was used for all calculations of the E l8-kip axles. For the purpose of calculating the relative economy of the maximum axle-weight limits, these two departures from strict design procedure introduce no significant errors in the finally resulting relative pavement costs.
H. Calculation of the Pavement Structure Depths and Construction Cost

The depths of the pavement surface, base, and subbase and the construction cost were calculated using a computer program so written that it could produce the following items:
(1) The accumulated total of E l8-kip axle applications for the 20 years from 1965 through 1984.
(2) The thickness of the rigid pavement slab and the thickness of each of the three courses for the flexible pavement structure.
(3) The cubic yards of each type of material in one highway mile, including the shoulders.
(4) The price per cubic yard of the specific thicknesses of pavement courses from the equations of the price curves (See table 8-2, page 8-12.).
(5) The total dollar cost per highway mile, including the appropriate base material for rigid pavement.

See figure 10-3 (page 10-9) for the E 18-kip axle curves for the New England and East North Central census divisions.
6. CONSTRUCTION COST OF THE HIGHWAY AS AFFECIED BY AXLE-WEIGHT LIMITS

In the final analysis, the total highway cost at each of the five levels of axle-weight limit was compared with the operating cost of those vehicles whose costs would be affected by a change in legal axle-weight limits. The elements of highway construction cost affected by axle-weight limits are as follows: (1) pavement and shoulders, (2) bridges, and (3) earthwork and small drainage structures. These costs were computed for a mile of new highway, as explained in the following sections.
A. Pavement Geometric Design

Figure $10-4$ shows the standard designs of the highway cross section adopted for purposes of estimating the total cost of the pavement and shoulder structure for the series of axleweight increments considered in the analysis of the engineering economy of increased axle-weight limits.

B. Unit Price and Construction Cost
of the Pavement Structure
The unit prices of the paving materials given in table 8-2 were applied to the quantities (cubic yards per mile) as computed from the cross sections in figure 10-4.
C. Construction Cost of Bridges Related to Increments of Maximum Axle Weight

The approach to determining the cost of bridges to accommodate traffic at the five levels of maximum axle-weight limit considered only steel bridges designed for the standard H20-S16 loading, but was based upon each of the five levels of axle-weight limit.

Table 10-9 gives the critical vehicles for a range of bridge span length from 20 to 140 feet. From the loadings of these vehicles were developed the pounds of steel required for the five levels of maximum axle weight. Table 10-10 shows the required steel by span length of bridge.

The upper half of the table was developed on the basis of structural design for the indicated span lengths. Because of change in the geometrics of the bridges, the increase in the added increments of steel required per lineal foot of bridge is not smooth over the range of weight limits. In preliminary calculations it was found that the lack of uniform increments of steel resulted in undesirable roughness from one axle-weight level to another in the final highway cost increments and in the

Table 10-9. -- Gritical vehicles

Table 10-10. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axle-weight limits: increments of pounds of steel by span length of bridge required above the $\mathrm{H} 20-\mathrm{S} 16$ design loading

Span length	Single/tandem axle-weight limits, kips				
	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

Additional pounds per linear foot of bridge obtained from structural analysis

Feet	lb.	lb.	lb.	lb.	1 lb.
20	7.5	24.0	39.5	56.0	72.0
30	41.0	61.5	82.5	104.0	125.0
40	61.0	88.5	116.0	144.0	171.0
50	172.0	233.5	299.5	357.0	417.5
60	264.0	330.0	397.5	458.0	526.0
70	275.0	288.0	334.0	422.5	473.5
80	52.6	109.0	144.6	207.6	217.9
90	130.6	179.9	299.2	289.3	327.8
100	141.3	201.5	233.0	279.1	314.3
110	136.5	181.6	213.2	269.0	314.2
120	122.4	166.8	220.7	271.3	329.0
130	125.6	176.1	226.9	277.4	313.4
140	137.2	194.7	237.9	292.0	356.7

The above structural design smoothed to straight lines

20	7.5	23.6	39.8	55.9	72.0
30	41.0	62.0	83.0	104.0	125.0
40	61.0	88.5	116.0	143.5	171.0
50	172.0	233.4	294.8	356.1	417.5
60	264.0	329.5	395.0	460.5	526.0
70	226.2	288.0	350.0	411.7	473.5
80	72.7	109.0	145.3	181.6	217.9
90	130.6	179.9	229.2	278.5	327.8
100	141.3	187.2	233.0	278.8	324.7
110	133.4	178.6	223.8	269.0	314.2
120	119.5	170.1	220.7	271.3	321.9
130	125.6	176.2	226.8	277.4	328.0
140	146.0	194.7	243.4	292.0	340.6
140 and over	160.0	210.0	260.0	310.0	360.0
Total	$1,800.8$	$2,430.7$	$3,060.8$	$3,690.3$	$4,320.1$

final benefit-cost ratios. Because the final benefit-cost ratios were highly sensitive to several factors, including highway construction cost per mile, it was thought to be better procedure to remove the abrupt changes in bridge cost between some axle-weight levels by smoothing the pounds of steel required from one weight level to another.

The additional pounds of steel required for the increased axle-weight limits was determined by comparing the inventory of bridges by span length (see table 8-8) against the incremental steel requirement given in table 10-10 to produce the overall pounds of steel required per foot of length of bridge for a 2 lane roadway, using the standard H20-S16 basic design (see table 10-11). These pounds of steel per foot of bridge length for a 2-lane roadway were converted to pounds of structural steel per mile of highway by multiplying by the length of bridges per mile of 2-lane highway as given in table 10-12 and then multiplying by one-half of the number of lanes. For the five axle-weight levels, table 10-13 gives per mile of highway the final pounds of structural steel in excess of the pounds required for a standard H2O-SI6 design, by highway system and census division.

By analysis of Federal-aid construction contracts for 1962 and 1963, the average bid price per pound of structural steel was obtained for each census division. These prices are given in table 8-4, page 8-14. In table 10-14, the cost of constructing bridges in excess of the standard H20-S16 design was computed for

Table 10-11. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the $\mathrm{H} 20-\mathrm{Sl} 6$ design loading, weighted by span length and shown by highway system and census division

Sheet 1 of 3

Census						
division	Number of lanes	Maximum axle-weight limits, single/tandem, kips				
		$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

System 1. Interstate rural

1.	NE	4	137.920	183.761	229.601	275.442	321.282
2.	MA	4	137.937	183.647	229.358	275.068	320.778
3.	SAN	4	137.937	183.647	229.358	275.068	320.778
4.	SAS	4	123.179	166.628	210.076	253.525	296.973
5.	ENC	4	137.163	182.720	228.278	273.835	319.392
6.	WNC	4	123.161	165.332	207.502	249.673	291.843
7.	ESC	4	150.012	198.726	247.441	296.155	344.869
8.	WSC	4	74.737	105.555	136.373	167.191	198.009
9.	M	4	91.312	126.195	161.077	195.960	230.842
10.	P	4	138.502	184.916	231.330	277.743	324.157

System 2. Interstate urban

1.	NE	4	151.324	197.811	248.297	296.784	345.270
2.	MA	4	144.711	192.4 .49	240.187	287.925	335.663
3.	SAN	4	151.628	201.357	251.086	300.815	350.544
4.	SAS	4	143.450	190.400	237.351	284.301	331.251
5.	ENC	4	161.666	212.712	263.758	314.803	365.849
6.	WNC	4	162.216	213.984	265.751	317.519	369.286
7.	ESC	4	135.865	181.750	227.636	273.521	319.406
8.	WSC	4	117.210	157.945	190.679	239.414	280.148
9.	M	4	115.788	156.470	197.152	237.834	278.516
10.	P	4	145.659	192.771	239.382	286.994	334.105

Table 10-11. -- Structural steel required per linear foot of $2-l a n e$ bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the H20-S16 design loading, weighted by span length and shown by highway system and census division

Census division	Number of lanes	Maximum axle-weight limits, single/tandem, kips				
		18/32	20/35	22/38	24/41	26/44
System 3. Primary rural						
1. NE	4	112.434	152.194	191.955	231.715	271.475
2. MA	4	98.481	135.380	172.278	209.177	246.075
3. SAN	4	106.491	145.144	183.737	222.359	260.982
4. SAS	4	58.578	85.998	113.418	140.835	168.258
5. ENC	4	109.808	148.902	187.996	227.090	266.184
6. WNC	2	83.630	116.604	149.578	182.552	215.526
7. ESC	2	66.413	95.701	124.988	154.276	183.563
8. WSC	2	47.951	72.655	97.359	122.062	146.766
9. M	2	57.242	84.230	111.219	138.207	165.195
10. P	4	109.584	148.815	188.046	227.276	266.507
System 4. Prinam urban						
1. NE	4	94.510	130.513	166.516	202.519	238.522
2. MA	4	109.566	148.879	188.192	227.504	266.817
3. SAN	4	124.601	167.473	210.346	253.218	296.090
4. SAS	4	73.827	104.474	135.120	165.767	196.413
5. ENC	4	154.791	204.130	253.468	302.806	352.145
6. WNC	2	93.804	129.671	165.539	201.406	237.273
7. ESC	2	66.413	95.701	124.988	154.276	183.563
8. WSC	2	97.053	133.323	169.593	205.863	242.133
9. M	2	84.871	118.275	151.679	185.082	218.486
10. P	4	115.543	156.855	198.166	239.478	280.789

Table 10-11. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the $\mathrm{H} 20-\mathrm{Sl} 6$ design loading, weighted by span leagth and shown by highway system and census division

Sheet 3 of 3

Census division	Number of lanes	Maximum axle-weight limits, single/tandem, kips				
		18/32	20/35	22/38	24/41	26/44
System 5. Secondary rural						
1. NE	2	102.637	140.428	118.217	216.006	253.796
2. MA	2	101.764	139.501	177.238	214.975	252.712
3. SAN	2	118.597	159.859	201.121	242.382	283.644
4. SAS	2	80.685	113.332	145.978	178.625	211.271
5. ENC	2	122.324	164.578	206.832	249.086	291.340
6. WNC	2	60.625	88.069	115.513	142.957	170.401
7. ESC	2	80.142	112.354	144.566	176.777	208.989
8. WSC	2	34.259	55.977	77.694	99.412	121.129
9. M	2	35.201	57.577	79.954	102.330	124.706
10. P	2	80.916	113.567	146.218	178.869	211. 520

System 6. Seconda.'y urban

				86.685	120.802	154.920	189.037
1.	NE	2	223.154				
2.	MA	2	82.215	115.195	148.175	181.154	214.134
3.	SAN	2	116.355	157.174	197.993	238.811	279.630
4.	SAS	2	84.731	118.105	151.479	184.852	218.226
5.	ENC	2	138.609	184.510	230.411	276.312	322.213
6.	WNC	2	90.505	125.340	160.175	195.010	229.845
7.	ESC	2	69.801	99.358	128.916	158.473	188.030
8.	WSC	2	96.717	132.763	168.810	204.856	240.902
9.	M	2	70.601	100.649	130.693	160.746	190.794
10.	P	2	120.358	161.782	203.205	244.629	286.052

Table 10-12. -- Total length of bridges in feet per mile and construction cost in dollars per mile of highway, by highway system and census division

Highway system and census division	Total bridge length per mile of highway	Cost of bridges per mile of highway
I. Interstate rural		
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNTC 7. ESC 8. WSC 9. M 10. P	$\begin{array}{r} \text { Feet } \\ \\ 198 \\ 511 \\ 250 \\ 142 \\ 147 \\ 124 \\ 199 \\ 259 \\ 86 \\ 177 \end{array}$	$\begin{array}{r} \text { Dollars } \\ 256,750 \\ 320,856 \\ 275,157 \\ 128,254 \\ 219,336 \\ 109,681 \\ 142,701 \\ 169,197 \\ 83,272 \\ 175,141 \end{array}$
2. Interstate urban		
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNC 7. ESC 8. WSC 9. M 10. P	219 396 483 155 163 157 228 232 114 200	$\begin{array}{r} 1,876,665 \\ 2,212,649 \\ 1,974,658 \\ 493,561 \\ 1,473,526 \\ 990,702 \\ 1,162,574 \\ 641,727 \\ 417,723 \\ 1,545,987 \end{array}$

Table 10-12. -- Total length of bridges in feet per mile and construction cost in dollars per mile of highway, -by highway system and census division

Highway system and census division	Total bridge length per mile of highway	Cost of bridges per mile of highway
3. Primary rural		
	Feet	Dollars
1. NE	49	54,765
2. MA	36	43,955
3. SAN	61	27,791
4. SAS	70	21,651
5. ENC	30	25,368
6. WNC	45	15,724
7. ESC	73	31,230
8. WSC	68	20,909
9. M	26	13,172
10. P	50	41,024

4. Primary urban

1. NE	149	181,854
2. MA	98	172,434
3. SAN	148	122,082
4. SAS	120	108,301
5. ENC	93	136,938
6. WNC	48	35,639
7. ESC	103	42,934
8. WSC	99	53,870
9. M	34	36,602
10. P	208	259,935

Table 10-12. -- Total length of bridges in feet per mile and construction cost in dollars per mile of ijghway, by highway system and census division

Sheet 3 of 3

Highway system and census division	Total bridge length per mile of highway	Cost of bridges per mile of highway
5. Secondary rural		
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNTC 7. ESC 8. WSC 9. M 10. P	$\begin{array}{r} \text { Feet } \\ 13 \\ 15 \\ 14 \\ 37 \\ 13 \\ 19 \\ 50 \\ 39 \\ 14 \\ 17 \end{array}$	Dollars $\begin{array}{r} 19,946 \\ 15,357 \\ 6,368 \\ 4,741 \\ 5,863 \\ 4,393 \\ 11,687 \\ 6,392 \\ 6,464 \\ 7,478 \end{array}$
6. Secondary urban		
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNC 7. ESC 8. WSC 9. M 10. P	$\begin{aligned} & 378 \\ & 413 \\ & 327 \\ & 621 \\ & 411 \\ & 196 \\ & 719 \\ & 560 \\ & 179 \\ & 728 \end{aligned}$	$\begin{array}{r} 68,221 \\ 60,540 \\ 28,296 \\ 23,578 \\ 31,548 \\ 10,052 \\ 159,412 \\ 9,408 \\ 18,199 \\ 47,529 \end{array}$

Table 10-13. -- Pounds of structural steel per mile of highway, excess over standard H20-Sl6 design

Sheet 1 of 2

Census division	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$
System 1. Interstate rural					
1. NE	54,616	72,769	90,922	109,075	127,228
2. MA	140,972	187,687	234,404	281,119	327,835
3. SAN	68,969	91,824	114,679	137,534	160,389
4. SAS	34,983	47,322	59,662	72,001	84,340
5. ENC	40,326	53,720	67,114	80,507	93,901
6. WNC	30,544	41,002	51,460	61,919	72,377
7.	ESC	59,705	79,093	98,482	117,870
8. WSC	38,714	54,677	70,641	86,605	137,258
9. M	15,706	21,706	27,705	33,705	39,705
10. P	49,030	65,460	81,891	98,321	114,752

System 2. Interstate urban

1.	NE	66,280	87,517	108,754	129,971	151,228
2.	MA	114,611	152,420	190,228	228,037	265,845
3.	SAN	146,473	194,511	242,549	290,587	338,626
4.	SAS	44,470	59,024	73,579	88,133	102,688
5.	ENC	52,703	69,344	85,985	102,626	119,267
6. WNC	50,936	67,191	85,446	99,701	115,956	
7.	ESC	61,954	82,878	103,802	124,726	145,649
8.	WSC	54,385	73,286	92,187	111,088	129,989
9. M	26,400	35,675	44,951	54,226	63,502	
10.	P	58,264	77,108	95,953	114,798	133,642

System 3. Primary rural

1.	NE	11,019	14,915	18,812	22,708	26,605
2.	MA	7,091	9,747	12,404	15,061	17,717
3.	SAN	12,992	17,708	22,416	27,128	31,840
4. SAS	8,201	12,040	15,879	19,717	23,556	
5.	ENC	6,588	8,934	11,280	13,625	15,971
6. WNC	3,763	5,247	6,731	8,215	9,698	
7.	ESC	4,848	6,986	9,124	11,262	13,400
8.	WSC	3,260	4,940	6,620	8,300	9,980
9.	M	1,488	2,190	2,891	3,593	4,295
10.	P	10,958	14,882	18,805	22,728	26,651

Table 10-13. -- Pounds of structural steel per mile of highway, excess over standard H20-Sl6 design

Sheet 2 of 2

Census Qivision	$-18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

System 4. Primary urban

1.	NE	28,164	38,893	49,622	60,351	71,080
2.	MA	21,475	29,180	36,886	44,591	52,296
3.	SAN	36,882	49,572	62,262	74,953	87,643
4.	SAS	17,718	25,074	32,429	39,784	47,139
5.	ENC	28,791	37,968	47,145	56,322	65,499
6.	WNC	4,502	6,224	7,946	9,667	11,389
7.	ESC	6,840	9,857	12,874	15,890	18,907
8.	WSC	9,608	13,199	16,789	20,380	23,971
9.	M	2,885	4,021	5,157	6,293	7,428
10.	P	48,066	65,252	82,437	99,623	116,808

System 5. Secondary rural

1.	NE	1,334	1,826	2,317	2,808	3,299
2.	MA	1,526	2,093	2,659	3,225	3,791
3.	SAN	1,660	2,238	2,816	3,393	3,971
4.	SAS	2,985	4,193	5,401	6,609	7,817
5.	ENC	1,590	2,140	2,689	3,238	3,787
6.	WNC	1,152	1,673	2,195	2,716	3,238
7.	ESC	4,007	5,618	7,228	8,839	10,449
8.	WSC	1,336	2,183	3,030	3,877	4,724
9.	M	4,193	806	1,119	1,433	1,746
10.	P	1,376	1,931	2,486	3,041	3,596

System 6. Secondary urban

1.	NE	32,767	45,663	58,560	71,456	84,352
2.	MA	33,955	47,576	61,196	74,817	88,437
3. SAN	38,048	51,396	64,744	78,091	91,439	
4.	SAS	52,618	73,343	94,068	114,793	135,518
5.	ENC	56,968	75,834	94,699	113,564	132,430
6. WNC	17,739	24,567	31,394	38,222	45,050	
7.	ESC	50,187	71,438	92,691	113,942	135,194
8.	WSC	54,162	74,347	94,534	114,719	134,905
9. M	12,638	18,016	23,395	28,774	34,152	
10.	P	87,621	117,777	147,933	178,090	208,246

Table 10-14. -- Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H20-Sl6 design

Sheet 1 of 2

Census division	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

System 1. Interstate rural

1.	NE	9,240	12,312	15,384	18,455	21,527
2.	MA	25,897	34,478	43,060	51,642	60,223
3.	SAN	11,627	15,482	19,335	23,188	27,042
4.	SAS	4,884	6,606	8,329	10,051	11,774
5.	ENC	6,400	8,525	10,651	12,776	14,902
6.	WNC	6,176	8,291	10,405	12,520	14,635
7.	ESC	11,565	15,320	19,076	22,831	26,587
8.	WSC	6,206	8,765	11,324	13,883	16,442
9.	M	3,331	4,604	5,876	7,149	8,421
10.	P	11,787	15,737	19,687	23,636	27,586

System 2. Interstate urban

1.	NE	11,215	14,808	18,401	21,991	25,588
2.	MA	21,054	28,000	34,945	41,890	48,836
3.	SAN	24,695	32,795	40,894	48,993	57,091
4.	SAS	6,208	8,240	10,272	12,303	14,335
5.	ENC	8,364	11,005	13,646	16,287	18,928
6.	WNC	10,299	13,586	16,873	20,160	23,446
7.	ESC	12,000	16,053	20,106	24,159	28,212
8.	WSC	8,718	11,748	14,778	17,807	20,837
9.	M	5,599	7,567	9,534	11,501	13,469
10.	P	14,007	18,537	23,067	27,597	32,128

System 3. Primary rural

1.	NE	1,864	2,524	3,183	3,842	4,502
2.	MA	1,303	1,790	2,279	2,767	3,255
3.	SAN	2,190	2,986	3,779	4,574	5,368
4. SAS	1,145	1,681	2,217	2,752	3,288	
5.	ENC	1,046	1,418	1,790	2,162	2,535
6. WNC	761	1,061	1,361	1,661	1,961	
7.	ESC	939	1,353	1,767	2,181	2,596
8.	WSC	523	792	1,061	1,330	1,600
9.	M	316	464	613	762	611
10.	P	2,634	3,578	4,521	5,464	6,407

Table 10-14. -- Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H20-Sl6 design

Sheet 2 of 2

Census division	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$	
System 4. Primary urban						
1. NE	4,765	6,581	8,396	10,211	12,027	
2. MA	3,945	5,360	6,776	8,191	9,607	
3. SAN	6,218	8,358	10,497	12,637	14,777	
4. SAS	2,473	3,500	4,527	5,554	6,581	
5. ENC	4,569	6,026	7,482	8,938	10,395	
6. WNC		910	1,258	1,607	1,955	
7. ESC	1,325	1,909	2,494	3,078	3,303	
8. WSC	1,540	2,116	2,691	3,267	3,862	
9. M	612	853	1,094	1,335	1,575	
10. P	11,555	15,686	19,818	23,949	28,081	

System 5. Secondary rural

1.	NE	226	309	392	475	558
2.	MA	280	384	488	592	696
3.	SAN	280	377	475	572	670
4.	SAS	417	585	754	923	1,091
5.	ENC	252	340	427	514	601
6. WNC	233	338	444	549	655	
7.	ESC	776	1,088	1,400	1,712	2,024
8.	WSC	214	350	486	621	757
9.	M	104	171	237	304	370
10.	P	331	464	598	731	864

System 6. Secondary urban

1.	NE	5,544	7,726	9,908	12,090	14,272
2.	MA	6,238	8,740	11,242	13,744	16,246
3.	SAN	6,415	8,665	10,916	13,166	15,417
4.	SAS	7,345	10,239	13,132	16,025	18,918
5.	ENC	9,041	12,035	15,029	18,023	21,017
6. WNC	3,587	4,967	6,348	7,728	9,109	
7.	ESC	9,721	13,838	17,954	22,071	26,187
8.	WSC	8,682	11,918	15,154	18,389	21,625
9.	M	2,680	3,821	4,962	6,103	7,244
10.	P	21,064	28,314	35,563	42,813	50,062

each census division by multiplying the pounds in table 10-13 by the cost in cents per pound as given in table $8-4$ for each census division. It will be noted in table 10-13 that additional increments of steel are required for the basic $18 / 32-k i p$ axle loading, because the critical vehicle used in this design process required some additional steel over the present H20-Sl6 design normally used in Federal-aid work.

By adding the incremental costs in table 10-14 to the base costs given in table l0-12, the total costs of bridges per mile of highway were obtained for each of the five levels of axle. weight limits. These total costs are given in table 8-10, page 8-28, along with other costs of construction of the complete highway.
D. Cost of Construction of Earthwork and Small Drainage Structures

The only cost of earthwork and small drainage structures that is considered to increase with increased maximum axle-weight limits is that which would result from any additional depth of earthwork excavations necessitated by a greater total depth of pavement structure. Allowance was made for this by added construction cost computed for each highway system and census division on the basis of the computed total depth of the pevement (and shoulder) structure.

The cubic yards of extra excavation per mile were calculated for each of the axle-weight levels above the base condition on the basis that one-half of the mile was cut and the other half was fill. The increment of earthwork cost for the added axleweight limit was added to the base earthwork costs in table 8-9 to get the total cost given in table 10-28N (page 10-74) and similar ones.

7. COST OF HIGHWAY MAINTENANCE AS RELATED TO MAXIMUM AXLE-WEIGHT LIMITS

The relation between axle-weight limits and the cost of maintaining a highway would vary only on the items of pavement and shoulders and of bridges. The procedure for estimating the cost of these two items of maintenance is discussed below.
A. Pavement Maintenance Cost Attributable to
Increases in Maximum Axle-Weight Limits

Accepting the conclusion that the only maintenance operation affected by vehicle axle weight is the patching of pavements, where the surface must be cut through and the narrow strip of shoulder adjacent to the pavement edge must be patched, two further determinations are needed: (1) What is the maintenance cost per mile or per lane-mile of highway for a base condition such as that for the 18/32-kip axle-weight limit and (2) on what basis may this base cost be increased with increases in maximum limits of axle weight.

It was assumed that the annual cost of patching resulting from the effects of axle weight would be 20 percent of the total annual cost of maintaining the pavement and base course and the shoulders, as given in table $8-12$. The values in this table are National averages, and to reduce maintenance costs to a census division basis, maintenance-cost indexes based on the wage rate for common labor were used.

The incremental increase in the base cost of maintenance patching as the maximum axle-weight limit is increased was calculated in direct ratio to the increase in pavement depth. For rigid pavement, only the slab depth was used, but for flexible pavements the bituminous concrete depth plus the depth of base was used. The annual cost per mile of 2-lane highway of meintaining the pavement and shoulders for the base condition at the 18/32-kip axle-weight limit is given in table 10-16.
B. Bridge Maintenance Cost Attributable to Increases in Maximm Axle Weights

Painting every six to seven years is the major cost of maintenance of steel bridges. The annual maintenance cost of structures may be assumed to be proportional to the added pounds of steel required for the increased axle-weight limits.

Using a 6- to 7-year frequency and a $\$ 15$ to $\$ 20$ cost of painting a ton of steel, the average annual cost of bridge

Table 10-16. --Annual cost per highway mile of patching pavement and shoulders as a result of effects from axle weight applications

Cost in dollars per year per mile for a 2-lane readray for the $18 / 32 \mathrm{klp}$ arie level. Costs apply to both rigid and flexible pevements.

Census division	Maintenance cost ir lex $1 /$	Interstate system 2-1ane		$\begin{aligned} & \hline \text { Primary } \\ & \text { system } \\ & \text { 2-lane } \\ & \hline \end{aligned}$		Secondary system 2-1ane	
		rural	urban	sural	uriben	sural	urban
1. HE	1.023	\$286	\$443	\$224	\$338	\$ 97	\$173
2. MA	1.134	318	491	248	374	108	198
3. SAIS	0.804	225	348	176	265	76	136
4. SAS	0.730	204	316	160	241	69	123
5. EINC	1.156	324	501	253	381	110	195
6. WIJC	0.972	272	421	213	321	ge	164
7. ESC	0.759	212	329	166	250	72	128
8. WSC	0.745	209	323	163	246	71	126
9. M	1.171	328	507	256	386	111	198
10. P	1.479	414	640	324	488	141	250
National 2 ¢	$\begin{array}{r} 1.000 \\ 0.200 \\ \hline \end{array}$	$\begin{array}{r} 1,398 \\ 280 \\ \hline \end{array}$	$\begin{array}{r}2,165 \\ 433 \\ \hline\end{array}$	1,094 219	$\begin{array}{r}1,648 \\ 330 \\ \hline\end{array}$	$\begin{array}{r}477 \\ 95 \\ \hline\end{array}$	$\begin{aligned} & 847 \\ & 169 \\ & \hline \end{aligned}$

2/1
Based on wage rate for common labor.
Annual dollars cost is taken as 20 percent of the cost of maintaining surface, base and shoulders given in table 8-12.
maintenance, as it may be affected by vehicle axle-weight limits, was assumed to be $\$ 3$ per year per ton of steel in excess of the base tonnage.

The mantenance cost of $\$ 3$ a ton of steel is a National average, which was converted to a census division basis using the maintenance cost index given in table 10-17. The maintenance cost of bridges for the pounds of steel in excess of the standard H20-S16 design is given in table 10-18 for the six highway systems.
8. MOIOR VEHICIE OPERATING COST-PROCEDURE FOR CALCULATION

The important result of increasjng the legal limits on dimensions and weights of motor vehicles would be a reduction in the number of vehicles required to transport a given tonnage of goods over the highway. As the gross weight of trucks increases, their operating cost per vehicle-mile likewise increases but at a slower rate. The number of vehicles required to transport a given tonnage of goods, therefore, decreases with increased gross vehicle weights. Within some range of change, the reduced number of vehicles times their operating cost in cents per mile would result in a lower payload per ton-mile operating cost than would be the case if the total payload were transported in a greater number of vehicles having lower gross weights and lower operating costs per mile.

Table 10-17.-obitt cost par ton of structural steel of repainting steel bridges

Census division	Bridge maintenance cost index 1]	Equivalent anmal cost of repainting steel bridges	Equivalent annusi cost of repeinting steel bridges I/
		Dollars per ton	Dollars per pound
1. VITE	0.995	2.98	0.00149
2. MA	1.087	3.26	.00163
3. SAN	0.678	2.03	. 00101
4. SAS	0.772	2.32	.00116
5. ENC	1.108	3.32	. 00166
6. WISC	1.052	3.16	. 00158
7. ESC	1.121	3.36	. 00168
8. WSC	0.776	2.33	.00116
9. M	1.112	3.34	.00167
$10 . P$	1.388	4.16	0.00208
Hational	1.000	2/3.00	0.00150

I/ Based on wage rate of skilled labor. Based upon a repainting cost of $\$ 18$ a ton of structural steel and a repainting cycle of 6 years af $\$ 3$ per year per tom of steel.

Table 10-18. -- Annual higamay cost per mile of repainting sceel bridges: cxcess above the standard Нं20-s16 desiєn.

Sheet_1 of 2

Census division	Single/tandem exle veight limits, kips				
	18/32	20/35	22/38	24/41	26/44
1. Interstate sural					
1. NE:	\$ 58	\$ 78	\$ 97	\$117	\$136
2. MA	142	190	238	285	333
3. SAN	135	180	225	269	314
4. SAS	44	60	76	91	107
5. ENC	76	101	127	152	177
6. WNC	44	59	74	89	104
7. ESC	71	94	117	140	163
8. WSC	47	67	86	106	125
9. M	29	40	51	62	72
10. P	85	114	142	171	200
2. Interstate urban					
1. NE	377	498	619	739	860
2. MA	1,261	1,677	2,093	2,509	2,925
3. SAN	483	641	799	958	1,116
4. SAS	376	500	623	746	869
5. ENC	704	926	1,148	1,370	1,592
6. WNC	517	682	850	1,011	1,176
7. ESC	499	668	837	1,005	1,174
8. WSC	355	478	602	725	848
9. M	285	386	486	586	687
10. P	1,026	1,358	1,690	2,022	2,351
3. Primary rural					
1. NE	16	22	28	34	40
2. PA	12	16	20	25	29
3. SAN	13	18	23	27	32
4. SAS	!0	14	18	23	27
5. ENC	11	15	19	23	27
6. WNC	6	8	11	13	15
7. ESC	8	12	15	19	23
8. WSC	4	6	8	10	12
9. M	2	4	5	6	7
10. P	23	31	39	47	55

Table 10-13. -- Annual highway cost per mile of rerainting steel bridges: excess above the standard H20-S16 design.

Sheet? of 2

Census division	Single/tandem axle neight limits, kips				
	18/32	20/35	22/38	24/41	26/44
4. Primary urban					
1. NE	\$ 42	\$ 58	\$ 74	\$ 90	\$106
2. MA	35	46	60	73	85
3. SAN	37	50	63	76	89
4. SAS	20	29	38	46	55
5. ENC	48	63	78	93	109
6. WNC	7	10	13	15	18
7. ESC	11	17	22	27	32
8. WSC	11	15	19	24	28
9. M	5	7	9	11	12
10. P	100	137	171	207	243
5. Secondary zural					
1. NE	2	3	3	4	5
2. MA	2	3	4	5	6
3. SAN	2	2	3	3	4
4. SAS	3	5	6	8	9
5. ENC	3	4	4	5	6
6. WNC	2	3	3	4	5
7. ESC	6	9	12	15	17
8. WSC	2	3	4	4	5
9. M	1	1	2	2	3
10. P	3	4	5	6	7
6. Secondary urban					
1. NE	49	68	87	106	126
2. MA	55	78	100	122	144
3. SAN	38	52	65	78	92
4. SAS	61	85	109	133	157
5. ENC	95	126	157	189	220
6. WNC	28	39	50	60	71
7. ESC	84	120	156	191	227
8. WSC	63	86	110	133	156
9. M	21	30	39	48	57
10. P	182	245	308	370	433

Table 10-19 gives the practical maximum gross vehicle weights for 13 vehicle types for the five levels of maximum axle-weight limits. The steering-axle weights were based upon the 1.962 and 1.963 wej-ghings of trucks by the state highway departments.
9. CALCULATION OF THE BENEFIT-COST RATIO FOR THE ECONOMY OF AXLE-WEIGHT LIMITS

In the analysis of the economy of increased maximum axle-weight limits, the final comparison is based upon the ratio of the decreased annual cost of motor truck operation with each incremental increase in axle-weight limit (the benefits) to the incremental increase in the equivalent uniform annual highway costs (the costs).
A. Average Daily Traffic

Table 10-22 gives the number of each vehicle class in the total ADI for the primary rural system, census divisions 5 and 6 and axle-weight level. Note that the truck classes from 2D upward are the ones that decrease as the maximum axle-weight limit increases.
B. Computed Depths of Favement Structure and. Construction Cost

The pavement depths and the pavement costs for each of the six highway systems and the ten census divisions were calculated by the computer for both rigid and flexible pavements.

Table 10-19. -Practical maximum gross vehicle beight with a range of maximum axle weights

Sheet_1 of ㄹ

Vehicle and Exle	Single/tandem axle wejght limit, Kips				
	18/32	20/35	22/38	24/41	26/44
2D $\begin{aligned} & \text { Steering } \\ & \\ & \text { Drive single } \\ & \\ & \\ & \text { Total }\end{aligned}$					
	7.4	8.2	9.0	9.8	10.6
	18.0	20.0	22.0	24.0	26.0
	25.4	28.2	31.0	33.8	36.6
3A. Single unit truckSteering axleDrive tandemTotal					
	9.6 32.0	10.2	10.8	11.4	12.0
	32.0	35.0	38.0	41.0	44.0
	41.6	45.2	48.8	52.1	56.0
2-S1					
Steering	7.6	8.0	8.3	8.5	8.6
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-single	18.0	20.0	22.0	24.0	26.0
Total	43.6	48.0	52.3	56.5	60.6
2-52					
Steering	8.4	8.7	9.0	9.3	9.6
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Total	58.4	63.7	69.0	74.3	79.6
3-52					
Steering	9.7	10.0	10.3	10.5	10.9
Drive tandem	32.0	35.0	38.0	41.0	44.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Total	73.7	80.0	86.3	92.6	98.9
2-2					
Steering	8.6	8.8	9.0	9.2	9.11
Drive single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	25.0
Total	62.6	68.8	75.0	81.2	87.1
2-3					
Steering	8.6	8.8	9.0	9.2	9.4
Drive single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer tandem	32.0	35.0	38.0	41.0	Lill 0
Total	76.6	83.8	91.0	98.2	10504
3-2					
Steering	9.8	10.2	10.6	11.0	11.14
Drive tandem	32.0	35.0	38.0	41.0	4.4 .0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Total	77.8	85.2	92.6	100.0	107.4

Table 10-19: -Practical maximum gross vehicle weight with a range of maximum axle weights

Vehicle and axle	Sing $18 / 32$	le/tandem $20 / 35$	axle we $22 / 38$	hht limi	$\begin{aligned} & \mathrm{kips} \\ & 26 / 4 \\ & \hline \end{aligned}$
2-S1-2					
Steering	8.7	8.9	9.1	9.3	9.5
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Total	80.7	88.9	97.1	105.3	113.5
2-S2-2					
Steering	9.3	9.7	10.1	10.5	10.9
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Total	95.3	104.7	114.1	123.5	132.9
2-S2-3					
Steering	9.3	9.7	10.1	10.5	10.9
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer tandem	32.0	35.0	38.0	41.0	44.0
Total	$109 \cdot 3$	119.7	130.1	140.5	150.9
3-52-4					
Steering	10.0	10.3	10.6	10.9	11.2
Drive tandem	32.0	35.0	38.0	41.0	44.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Trailer tandem	32.0	35.0	38.0	41.0	44.0
Trailer tandem	32.0	35.0	38.0	Lil. 0	414.0
Total	138.0	150.3	162.6	174.9	187.2
3-4					
Steering	9.8	10.2	10.6	11.0	17.1
Drive tandem	32.0	35.0	38.0	41.0	144.0
Trailer tandem	32.0	35.0	38.0	41.0	44.0
Trailer tandem	32.0	35.0	38.0	41.0	1.15
Total	105.8	115.2	124.6	134.0	$143 \cdot 4$

THE ECONDMY CF AXLE WEIGHT

Table $10-23$. is a direct reproduction of the computer printout for the primsry mural system.
C. Cajculation of the Equivalent Unificmn Annusi Highway Cost

Table 10~28N (page 10-74) gives the National averages for highray construction costs and annual highway winintenance costs in the sir hichway systems as calculated by the procedure described in the preceding sections for Method l-M. The total construction cost for paving, bridges, and earthwork was reduced to an annual capital cost by multiplying it by the capital recovery factor 'of 0.037185 aamoning a 6 -percent annusl interest rate and an analysis period of 20 years. This factor reduces the construction costs to an equal annual cost equivalent to an annual depreciation charge plus an interest charge on the undepreciated cost.
D. Calculation of the Equivaleat Uniform Anmual Motor Vehicle Operating Cost

The annual motor vehicle operating costs at the five axle-weight levels are also given in table $10-28 \mathrm{~N}$. Operating costs are given only for those vehicles (the $2 D$ and upward) which would make some use of the increased axle-weight limits under a cange of the law. Whilc passenger buses would make some use of the increase, such use is not considered. The total costs have two components: (1) the operating cost for the first year of the 20-year analysis period (1965) and continued for 20 years, plus

Asalyeis mothod i-KP-Wh-ITB. With 29 percent increase in
Mryloed 1952 to 1970 end rith the 5-jear transition reviod.

$\begin{aligned} & \text { CENSU: } \\ & \text { OlV. } \\ & \text { 1. NE } \end{aligned}$		H6.	Eర YEAR	P0712	OEPTH PVMI	$\begin{aligned} & \text { PAVEME! } \\ & \text { COST/MILE } \end{aligned}$		EO	$\begin{gathered} \text { TOFL: } \\ E 18 \end{gathered}$		FLEX! IN IN	$\begin{aligned} & \text { EIE DAI } \\ & \text { CHES } \end{aligned}$		
	$\begin{aligned} & \text { AXLE } \\ & \text { LOM } \end{aligned}$	LHS	YEAR	E18	OEPTH PVMi INCHES	COST/MILE	$\begin{gathered} \text { COS } 7 \\ \text { CHANGE } \end{gathered}$	teAR	E18	$\begin{aligned} & \text { OEPTH } \\ & \text { PVAT } \end{aligned}$	$\begin{aligned} & \text { IN IN IN } \\ & \text { BASE } \end{aligned}$	$\begin{aligned} & \text { CHES } \\ & \text { SB } \end{aligned}$	COST/AILE	$\begin{aligned} & \cos \mathrm{C} \\ & \text { CHANGE } \end{aligned}$
	10	-		1301.7	0.19	203758.52	2558.46		1155.0	3.18	8.36	21.09	176501.30	1816.95
2. ma	20	4	82.9	1523.5	6.41	206316.56		-350 ${ }^{-1}$	1312.2	3.23	6.46	21.40	178318.55	
							2373.12							1810.36
	22	4	01.2	1756.6	8.61	208690.10		81.7	1484.7	3.28	6.36	21.70	180128.91	1731.47
	24	4	79.0	1992.4	8.79	210831.88	2147.78	dc. 4	1664.9	3.33	6.66	21.98	182860.31	
							1938.90							1641.70
	26	4	76.7	2227.4	0. 95	212116.78		79.4	1849.6	3.37	6.75	22.25	183502 .j8	
	10	4		3102.3	9.49	254842.64	2834.54		2704.9	3.34	7.08	13.25	248205.76	
														2918.00
	20	4	33.3	3sil.4	-. 69	257677.18		83.4	3043.8	3.39	7.19	13.57	231783.76	
	22	4	61.0	4071.8	9. 8 8	260434.64	2777.46	82.0	3411.6	3.64	7.29	13.8 8	$254678.4 \overline{8}$	2894.72
							2626.10							2717.94
	24	4	80.6	4564.4	10.07	263081.42		80.8	3728.6	3.69	7.39	14.18	257396.42	
				5063.0	10.24	265539.48	2458.06		4171.0					2528.68
3. sam	26	4	79.5	5063.0	10.24	265339.40			417.0			14.45	259925.10	
	18	4		1999.8	9.02	227520.60	2696.60		1672.6	3.79	7. $\overline{59}$	14.78	248079.06	
	20	4	03.2	2286.3	9.22	230217.20		83.1	1922.1	3.86	7.72	15.18	231900.30	3827.24
							2487.66							3395.72
	22	4	81.7	2580.0	9.40	232704.86		81.6	2170.8	3.82	7.84	15.54	255302.02	
	24	4		2880.3		235014.52	2309.66		2424.4			13.87	238423.14	3121.12
			00.5	2000.3		235014.32	2076.52	79.5	2672.9	4.02	7.93			2783.08
4.sas	26	4	79.5	3174.5	9.73	237091.04				4.02	8.05	16.16	261206.22	
	11	4		1097.3	7.83	211981.06			901.8	2.78	5.36	0.68	128637.91	
	20	4	83.0	1282.0	0.03	214816.76	2835.70	83.1	1043.9	2.83	5.66	8.98	130234.19	1396.28
							2671.72					$0 .{ }_{2}^{1}$		1491.16
	22	4	81.3	1478.9	0. 22	217488.48	2524.48	81.5	1193.6	2.87	5.73		131725.35	
														1398.75
	24	4	80.0	1687.2	8.40	220012.96		80.2	1350.2	2.92	5.84	9.53	133124.10	
5. enc	26	4	78.9	1899.2	8.56	222331.10^{-}		-19.2	1508.1	2.96	$\$.92$	9.78 ,	134400.70	1276.80.
	18	4		2125.4	9.11	221510.42	2723.46		1684.7	3.90	7.60	14.80	194220.12	
	20	4	83.1	2445.2	9.32	224233.88		83.2	1919.5	3.86	7.72	15.18		2743.86
							2305.72						196963.98	2532.57
	22	4	81.7	2713.9	9.51	226739.60		81.8	2161.8	3.92	7. 64	15.53	199496.55	
							2321.90							2355.83
	24	4	80.4	3110.5	9.69	229061.50	2068.62	$\begin{aligned} & 80.6 \\ & 79.7 \end{aligned}$	2411.6	3.97	7.95	15.85	201852.47	
	26	4	79.5	3438.3	9.85	231130.12			2637.1	4.02	8.04	16.14	203960.86	2108.46

	18	4		937.5	7. 76	220647.62			714.7	2.99	5.97	9.99	136143.99	
	20	-	33.2	1070.5	7.93	223175.64	2528.02	03. 3	807.8	3.04	6.09	10.27	157995.86	1351.07
							2423.80						15799506	1746.05
	22	4	d1.7	1212.3	8.10	225599.44°		82.0	904.3	3.08	6.17	10.52	159741.91	
							2322.10							1649.48
	24	4	80.5	1362.4	8.26	227921.54		80.8	1004.3	3.12	6.25	10.76	161391.39	
	26	4	79.5	1513.0	8.40	230048.00	2126.45	79.9	1101.9	3.16	6.32	10.98	162879.46	1488.05
7. Esc	18	4		2526.1	9.37	246214.26			2146.2	3.91	7.83	13.50	225410.52	
						2	2338.38						225410.32.	2664.80
	20	4	03.4	2837.2	9.55	248752.84		83.6	2383.6	3.97	7.94	13.82	228075.32	
	22	4	82.1	3170.3	9.72	251226.02	2473.10	82.4	2629.3	4.01	8.03	16.11	230590.48	2515.16
							2395.30							2380.66
	24	4	80.9	3924.0	9.89	2336?3.92		81.3	2883.1	-.0s	0.13	16.39	232971.14	
							2218.28							2147.62
8. usc	26	4	80.0	3879.4	10.05	255844.20		80.5	3131.2	4. 10	0.21	16.65	235118.76	
	18	4		1375.6	0.48	190529.51			1063.5	$3.59{ }^{-}$	7.18	13.54	17439.90	
	20	4	83.1	1385.6	8.68	192161.33	2232.02	33.2	1212.7	3.64	7.29	13.89	276909.36	2515.46
							2057.50							2364.91
	22	4	01.6	1002.2	0.86	194819.03		81.8	1369.0	3.70	7.40	14.22	179274.27	
	24	4	80.4	2024.7	9.03	196728.92	1909.39	80.6	1532.1	3.75	7.51	14.54	181502.45	2228.18
							1705.31							2013.47
9. ${ }^{\text {a }}$	26	4	79.4	2242.1	9.19	198434.23		79.6	1693.9	3.80	$7.60{ }^{\circ}$	14.82	183515.92	
	18	4		1887.2	0.44	169989.74			1396.8	2.55	5.10	7.30	99956.48	
	20	4	83.3	2155.5	8.62	172038.51	2068.83	03.5	1566.5	2.5\%	3.17		100988.05	1071.52
							1907.04						100986.05	993.13
	22	4	81.9	2430.3	0.79	173965.61		82.2	1746.1	2.62	5.24	7.73	101981.13	
	24	4	80.8	2710.7	8.95	175135.39	1769.98	81.1	1935.0	2.65				955.82
						175135.39	1586.71		1935.0	2.63	3.31	1.94	102936.75	883.78
10.	26	4	79.9	2984.5	9.10	177322.30		80.2	2124.7	2.68	5.37	0.13	103820.53	
	18	4		3591.3	9.31	201896.42			2843.8	3.21	6.42	11.27	160893.01	
	20	4	83.5	4020.2	9.68	203922.60	2026.18	83.2	3260.2	3.26				2483.79
							1939.28		3260.2	3.26	6.33	11.62	163376.8)	2286.58
	22	4	02.3	4469.7	9.45	205861.88		81.8	3585.5	3.32	0.64	11.92	16\%363. ${ }^{\text {8 }}$	
	24	4	8:. 2	4738.6	10.02	207718.74	1856.86							2121.10
							1709.86							1907.90
	26	4	80.3	5406.0	10.17	209428.60		79.8	4543.0	3.41	8.82	12.47	167692.39	

(2) the equivalent unjform annual cost for the increased ADT over the 20-year period. The increase in ADT was calculated as a uniform (gradient) increase for each of the 20 years. This gradient expressed in dollars per year was reduced to an equivalent uniform annual. amount by mitipl.ying the yearly uniform increase in operating cost by the gradient factor of 8.605 for a 6-percent interest rate and a period of 20 years. This procedure discounts the future increasing motor vehicle operating costs to an equivalent uniform annual cost.

The calculation of the motor vehicle operating cost in table $10-28 \mathrm{~N}$ was based upon the same transition period (1, 2, 3: or 5 years beginaing January 1, 1965) as was used in the calculation of the equivalent l8-kip axle applications. The equivalent decremental change in motor vehicle operating cost was obtained by successive subtraction of the onemating eostr at each axle-weight, level.
E. The Benefft-Cost Ratios

The last line of table $10-28 N$ gives the final ratios of the equivalent uniform annual incremental motor vehjcle benefits to the equivalent uniform annusl incremental highway costs. These benefit-cost ratios are shown for each level of upward change in maximum axle-weicht limits, beginning with the increment between the 18/32-kip and 20/35-kip axle-weicht levels.

10. CONSIDERATIONS RELATIVE TO THE AASHO INTERIM PAVEMENTI DESIGN FORMULAS

In the studies of the economy of the maximum axleweight limits using Methods 1, 2, and 3, the pavement designs were made by applying without modification the AASHO Interim Guides and the design depths as calculated. The following arrays give the rigid pavement designs for Method 1 for each highway system, arranged from high to low by slab depth for the ten census divisions.

These depths, with the possible exception of the top few for Interstate systems 1 and 2, are materially less than are being constructed by the States. It was concluded that the AASHO design formula for rigid pavements is not in agreement with practice at low traffic volumes, actually low numbers of E 18-kip axle applications. The explanation offered is that the AASHO Road Test did not cover sufficient calendar time to permit time, weathering, and other environmental factors to contribute their combined effects. Therefore, it is to be expected that good design practice under certain conditions would call for increasing the slab depth from that indicated by the AASHO design formula. Further, the applications herein of the AASHO design formula may have extrapolated the formula below its reliable range.

The question is raised, logically, as to whether the final benefit-cost ratios arrived at in Method 1 would be

METHOD 1-=RIGID PAVENENT
Depths of pavement slab, inches

System 1	System 2	System 3	System 4	System 5	System 6
9.25	9.51	7.10	8.37	5.17	6.57
9.24	9.49	7.06	7.57	5.17	6.11
9.15	9.37	6.97	7.38	5.17	6.05
9.04	9.11	6.95	7.26	5.04	5.76
8.96	9.02	6.94	7.16	5.01	5.56
8.16	8.48	6.69	7.16	5.01	5.50
7.81	8.44	6.49	7.13	4.95	5.48
7.81	8.19	6.30	6.69	4.88	5.43
7.58	7.83	5.99	6.58	4.76	5.29
7.21	7.76	5.51	6.49	4.56	4.75

materially greater or smaller if some minimum rigid pavement depth were imposed so that the analysis of economy of axleweight limits was made to start at the pavement design now generally accepted as adequate under existing axle-weight maximum limits. To answer this question, Metbod 1 was repeated as Method $1-M$, in which minimum limits of pavement depths for both rigid and ilexible pavements were used.

11. METHOD 1-M--ECONOMY OF AXLE-WEIGHT LIMIT WHEN USING A MINIMUM DEPTH OF PAVEMENI

By reference to summaries and spot information on parement design, State by State, found in the Structures and Applied Mechanics Research Division, table 10-26 was prepared, giving the general nominal thickness of rigid pavement slab and of the flexible bituminous surfacing most frequently

Table 10.36. - Minimum pavement depth most frequently used by the States in each census division for each of six highway systems

$\begin{gathered} \text { Census } \\ \text { alvicion } \\ \hline \end{gathered}$	3. ISR	2. ISU	Highway system				5. SR	6. SU
			3. PR		4. PU			
	4-Istize	4-1ane	4-1n	2-1n	4-1n	2-10	2-lane	2-lane

Inches of design depth for rigid slab

1. NE	9.0	9.0	9.0	--	9.0	--	8.0	8.0
2. MA	9.0	9.0	9.0	-	9.0	--	8.0	8.0
3. SAN	9.0	9.0	9.0	--	9.0	--	8.0	8.0
4. SAS	9.0	9.0	9.0	--	9.0	--	8.0	8.0
5. Enc	10.0	10.0	10.0	--	10.0	--	8.0	8.0
6. Wvic	9.0	9.0	--	9.0	--	9.0	8.0	8.0
7. ESC	10.0	10.0	--	10.0	--	10.0	8.0	8.0
8. WSC	9.0	9.0	--	9.0	--	9.0	8.0	8.0
9. H	8.0	8.0	--	8.0	--	8.0	8.0	8.0
10. P	9.0	9.0	9.0	--	9.0	--	8.0	8.0

Inches of design depth for flexible surface course

1. HE	3.50	3.75	3.25	--	3.25	--	3.00	3.00
2. M/	3.50	3.75	3.25	--	3.25	--	3.00	3.00
3. SAN	3.75	4.00	3.25	--	3.25	--	3.00	3.00
4. $\mathrm{S} s \mathrm{~S}$	3.50	3.50	3.50	--	3.50	--	3.00	3.00
5. Eitc	3.50	4.00	3.25	--	3.25	--	3.00	3.00
6. Wivc	3.50	3.75	--	3.25	--	3.25	3.00	3.00
7. ESC	3.50	4.00	--	3.25	--	3.25	3.00	3.00
8. WSC	3.50	4.00	--	3.25	--	3.25	3.00	3.00
9. K	3.00	3.00	--	2.75	--	2.75	2.50	2.50
10. P	3.00	3.50	2.75	--	2.75	--	2.50	250

specified by the States in each of the ten census divisions for each of the six highway systems. The number of lanes indicated corresponds to those used in this research on the desirable dimensions and weights of motor vehicles.

Because Method l-M was designed to be a direct comparison with Method 1 , in which a minimum depth was not used (except for the 2 inches for flexible pavement), recourse was had to the relationship in Method 1 of E 18-kip axles to design pavement depth. Because the pavement depth depends upon the number of E l8-kip axle applications and upon soil conditions rather than upon axle-weight limits, it was possible to plot a series of curves similar to figures 10-5 and 10-6 from which to read the number of daily E 18-kip axle applications required to produce the predetermined minimum surface depth in inches of design pavement.

From the series of curves of which figures $10-5$ and 10-6 are examples, the depth E-18 relationship was read for all minimum depths, as shown in table 10-27.

The basic difference between Methods 1 and $1-M$ is simply that of the starting base condition. For Method l the base conditions is the daily E l8-kip axle applications from the truck weight data for 1962 and the projected traffic to 1990 for the legal axle weights in 1962. For Method $1-M$ the base condition is the daily E 18-kip axle applications corresponding to the minimum design depth. Therefore, for

FIGURE 10-5. DESIGN RIGID PAVEMENT SLAB DEPTH RELATED TO DAILY E-18 KIP AXLE
APPLICATIONS RESULTING FROM METHODS 1,2 , AND 3 PLOTTED FOR USE WITH METHOD 1-M
Teble 10.27.--Daily E 18 kip axle applications corresponding to minimum design depth Sheet 1 of 2 of rigid and flexible pavement surfaces, for each census division.

Census division	4-Lane rigid pavement				2-Lane rigid pavement			
	Pavement slab dexth, Inches				Pavement slab depth, Inches			
	7	8	9	10	7	8	9	10
1. Now England	1499.5	13.35. 8	2308.0	4388.6	359.4	900.0	1816.4	3510.9
2. Nadie Atlentic	499.5	1136.8	2308.0	4388.6	399.4	900.0	1846.4	3510.9
3. Sonth Allantic North	427.5	963.0	1982.7	3757.4	342.0	773.6	1583.3	3000.0
4. South Atiantic Souich	558.0	1254.9	2569.6	4877.2	443.5	1003.9	2055.7	3901.8
5. Iast North Certral	427.5	963.0	1962.7	3757.4	342.0	773.6	1583.3	3000.0
6. West North Centrs	499.5	1136.8	2308.0	4388.6	399.4	900.0	1846.4	3510.9
7. East South Central	427.5	963.0	1982.7	3757.4	342.0	773.6	1583.3	3000.0
8. West South Central	427.5	963.0	1982.7	3757.4	342.0	773.6	1583.3	3200.0
9. Mountain	603.1	1366.5	2805.8	5340.0	489.2	1093.3	224:6	4272.0
10. Pacilic	558.0	1254.9	2569.6	4877.2	443.5	1003.9	2055.7	3901.8

	4-Lane flexible pavement							2-Lane flexible pavement				
\bar{N}	Bituminous surface course, depth, inches							Bituminous surface course, depth, inches				
	2.50	2.75	3.00	3.25	3.50	3.75	4.00	2.50	2.75	3.00	3.25	3.50
1. New Lidgland 2. Nadre Atlantic	157.3 157.3	$\begin{aligned} & 353.4 \\ & 353.4 \end{aligned}$	727.6 727.6	$\left\lvert\, \begin{aligned} & 1385.5 \\ & 1385.5\end{aligned}\right.$	2475.8 2475.8	4300.0 4300.0	---	125.8 125.8	286.0 286.0	582.1 582.1	$\left\lvert\, \begin{aligned} & 1108.4 \\ & 1108.4\end{aligned}\right.$	1980.6 1080.6

Table 10-27.--Daily E 18 kjp axle epplications corresponding to minimum design depth

Census division	4-Tane Plexible pavement							2-Lane flexible pavement				
	Bituminous surfiace course, Gepth, inches							Bituminous surface course, depth, inches				
	2.50	2.75	3.00	3.25	3.50	3.75	4.00	2.50	2.75	3.00	3.25	3.50
3. South Atlantic North	50.0	114.4	241.8	479.4	874.4	1535.1	2567.2	39.5	91.5	194.4	376.4	699.5
4. South AtIentic South	379.5	840.5	1683.4	3180.1	5609.3	---	---	303.8	672.4	1346.7	2544.1	4487.4
5. East North Centrol	50.0	114.4	241.8	479.4	874.4	1535.1	2567.2	39.5	91.5	194.4	376.4	699.5
6. West forth Central	157.3	353.4	727.6	1385.5	2475.8	4300.0	---	125.8	286.0	582.1	1208.4	1980.6
7. East Souti Centrol	50.0	214.4	241.8	479.4	874.4	1535.1	2567.2	39.5	91.5	194.4	376.4	699.5
8. West South Central	50.0	114.4	241.8	479.4	374.4	1535.1	2567.2	39.5	91.5	194.4	376.4	699.5
9. Mountain	1214.7	2600.0	4320.0	--	---	---	---	971.8	2080.0			
10. Pacific	379.5	840.5	1683.4	3180.1	5609.3	---	---	303.8	672.4	1346.7	2544.1	4487.4

higher axle-weight limits than prevailed at the base condition in 1962, the increase in E 18-kip axle applications would be the same for both Methods 1 and l-M. Consequently, the design E l8-kip axle applications for the axle-weight limits above the base limits were found for Method l-M by adding to the base E 18's the same increases calculated for Method 1. The one difference in the resulting designs is simply the starting level-aeither pavement depth or its corresponding E l8-kip axle applications.

Table 10-27 gives the final E 18-kip daily axle application used as computer input for the base condition for the minimum pavement depths for both rigid and flexible pavements. The computer printed out the pavement designs and the pavement costs for Method l-M in the same form as those obtained for Method 1. These results are shown on a national basis in table 10-28N. Since Method l-M assumed the same truck fleet and loads as for Method l, the truck operating costs were identical for the two methods.

The final highway costs were calculated using exactly the same procedure as followed for Method 1. The pavement costs were higher where the base pavement depth was greater, because of the higher minimum depth, but the increase in depth with increase in axle-weight limits was at a slower rate.
U.S. DEPARTMENT OF COMMERCE
Bureau of Public Roads
TablelC-28N.- Comparison of highway cost and motor vehicle operating cost for sive levels
of axle-veight hadmum limits, for the 20 -year period 1965 through 1984=- National average Wethod of Analysis I-M with transition
$\left.\begin{array}{l|l|l|l|l|l|l|l|l|}\hline 20 / 35 & 22 / 38 & 24 / 41 & 26 / 44 & \text { if } & 18 / 32 & 20 / 35 & 22 / 38 & 24 / 41\end{array}\right) 26 / 44$

MOTOR TRUCK OPERATING COST

4. Amual operating cost of vehicles affected by arle weight limits: a. For 1965 ADT.										
b. Total equivalent uniform annual operating cost	232,044	228,713	224,003	218,657	215,181	232,044	228,713	224,003	218,657	215,181
5. Incremental equivalent uniform decre ments in annual vehicle operating cost.	-	3,331	4,710	5,346	3.476	-	3,331	4,710	$5,3+6$	$3+7$

6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost	-	11.9	12.4	10.0	6.9	-	10.2	11.2	9.4	6.4

* Calculated at 6 percent interest rate per annum and 20 years.
Table10-AN N.- Comparison of highway cost and motor vehicle operating cost for five levels
of exle-veight maximum limits, for the 20 -year pariod 1965 through 1984 -- National average
Method of Analysis l-M with transition
Census urvision All

Cost item	Rigid Pavement					Fexible Pavement				
	Single/tandem axle veight maximu limits, kips					Single/tanden axle maximum weight limits, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
COST OF PROVIDING HIGHNAY FACILITIES										
1. Construction cost per mile: a. Pavenent and shoulders	222,792	223,852	225,279	227,088	228,761	196,957	197,728	178,779	200,113	201,361
b. Bridge structures.	14.294 .314	296,265	1,299,229	1,303,246	1,307,264	1,294,314	1,276,265	1,299,229	1,303,246	1,307,264
c. Barthwork and drainage	492,872	492,902	472,944	493,006	473,063	492.871	492,928	493,008	473,122	493.227
. Total construction cost	2,009,978	2,013,019	2,017,452	2,023,340.	2,029,088	1,984,142	1,986,9211	1.991 .016	11996,481	2,001,854
2. Bquifalent uniform annual capital cost	175,240	175,505	175,892	176,405	176,906	172,987	173,230	173,587	174.063	174,532
3. Ineremental emual cost a. Capital cost	-	265	387	513	501	-	243	357	476	469
b. Maintensance cost of perement and shoulders.	-	9	11	13	12	-	4	5	7	6
c. Maintenance cost of structures	-	111	139	193	193	-	111	139	173	193
d. Total equivalent unforil amual \qquad hicmpay cost	-	385	537	719	706	-	358	501	676	668

MOTOR TRUCK OPERATIIG COST

4. Annual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
operating cost b. Total equivalent uniform annual	368,086	357,380	346,460	332,350	323,250	368,086	357,380	346,460	332,350	323.250
5. Increnental equivalent uniform decrements in annual vehicle operating cost.	-	10,706	10,920	14,110	9,100	-	10,706	10,920	14,110	9,100
RATIS OF	Armual dec	Cribase in	OTOR TRUCK	OPERATITM	\cos T 70	NTUAL HIC	NAY COST			
6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent ampual highway cost.	-	27.8	20.3	19.6	12.9	-	29.9	21.8	20.7	13.6

* Calculated at 6 percent interest rate per annum and 20 years.
U.S. DEPARTMENT OF COMMRRCE
Bureau of Public Roads
reblela-2f V Comparison of highway cost and motor vehicle operating cost for five levels

Eighray Systex 3. PR	Wethod of Analysis l-M with transition						Census untision All			
Cost item			ald Pavemen				Fel	dole Paven	ment	
	Single/ta	ander axie	weight max	dmun 11mit	ts, kips	Single/	dem axle	maximum we	elght 11mit	s, kips
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
COST OF FROVIDING HIGEWAY PACIICIIES										
1. Construction cost per mile: a. Pavenent and shoulders	180.568	180,808	181212	181,775	182,301	143,781	144,424	145,456	146,656	147,757
b. Bridge structures.	31,194	31,439	31,816	32,308	32,801	31,194	31.4381	31,816	32,308	32,801
. Bartbwork and dratnage	86.710	86,717	86,730	86,751	86,767	86,710	86,755	86,831	86,929	$8 \%, 020$
	278,472	278,964	292758	300,834	301.871	261.685	262,617	264,1031	265,8931	267.578
2. Equivalent uniform annual capital cost	26,022	26,065	26,134	26,228	26,319	22.815	22,896	23,026	23,182	23,329
Incremental amual cost a. Capital cost	-	43	69	94.	91	-	81	130	156	147
b. Maintensence cost of parement and shoulders.	-	1	1	2	2	-	2	3	3	3
c. Maintenance cost of structures	-	2	3	4	4	-	2	3	4	4
d. Total equivalent uniform annual hichray cost	-	46	73	100	97	-	85	136	163	154
MOITR TRUCK OPERATING COST										
4. Ammal operating cost of vehicles affected by axle weight limits: a. For 1965 ADT b. Total equivalent uniform annual 5. Incremental equivalent uniform decrements in annual vehicle operating cost.										
	56,018	54,860	52,425	51,892	50,992	56,018	54,860	53,425	51,892	50,712
	-	1,158	1,435	1,533	900	-	1,158	1,435	1,533	900
6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highwey cost.	-	25.2	19.7	15.3	9.3	-	13.6	10.6	9.4	5.8

* Caleulated at 6 percent interest rate per annum and 20 years.
D. S. DEPARTMENT OF COMMRRCE
Bureau of Public Roads
Table/0-28 W.- Comparison of highway cost and motor vehicle operating cost for flve levels
of axle-veight maximum limits, for the 20 -year period 1965 through 1984 - - National average
Census invision All

MOTOR TRUCK OPERATING COST

4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent miform annual operating cost	134,610	128.190	121,647	115,221	112,063	134,610	128.190	121,647	115,221	112,063
5. Incremental equivalent uniform decrements in annual vehicle operating cost.	--	6,420	6.543	6,426	3,158	-	6,420	6,543	6,426	3,158

[^1]6. Retio of licremental reduchan
truck operating cost to increme
increase in equivalent emnual
6. Retio of incremental reduction in OF ARMUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANRLLAL HIGEWAY COST

10-77
n
U.S. DEPARTMENT OF COMMERCE
Bureau of Public Roads

Rigld Pavement					Flexble Paverent				
Single/tandem axle weight maximul limits, kips					Single/tandem axle maximum weight limits, kips				
18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

1. Constructicn cost per mile: a. Pavement and ahoulders	104.044	104,075	104,157	104,241	104,324	82.197	82,290	82,416	82,571	82,730
b. Bridge structures.	9,244	9,329	9,439	9.568	9,698	9,244	7,3,28	9,439	9,568	9.678
c. Barthork and dratnage	$34,24 ?$	34,251	34,253	34.255	34,258	34,250	34,255	34,266	34.278	34,290
	147.537	147,675	147,8491	148,064	148,280	125,691	125,873	126,121	126,417	126,718
2. Equivaient uniform annual capital cost	12,863	12,875	12,890	12,909	12,928	10,958	10,974	10,996	11,022	11,048
3. Incremental amual cost a. Capital cost	-	12	15	19	19	-	16	22	26	26
b. Maintenance cost of pavement and shoulders.	-	0	0	0	0	-	0	0	0	0
c. Maintenance cost of structures	-	1	1	1	1	-	1	1	1	1
d. Total equitalent unlform annual hichray cost.	-	13	16	20	20	-	17	23	27	27

motor truck operatimg cost										
4. Anmual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT operating cost b. Total equivalent umiform annual 5. Incremental equivalent uniform decre ments in amual vehicle operating cost.										
	10,068	9,777	9,451	9,048	8,816	10,068	9,777	9,451	9,048	8.816
	-	291	326	403	232	-	291	326	403	232
ATIO OF ATLTUAL DECCREASE IN MOTGR TRUCK OPERATING COST TO ANNUAL EIGENAY COST										
6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annul highey cost.	-	22.4	20.4	20.2	11.6	-	17.1	14.2	14.9	8.6

* Calculated at 6 percent interest rate per annum and 20 years.
U.S. DEPARTMENT OF COMMERCE
Bureau of Public Roads

Tablela-2 2 N. - Comparison of highway cost and motor vehicle operating cost for five levels
of axle veight maxdmun limfts, for the 20 -year perlod 1965 through 1984 -- National average Method of Analysis l-M With transition Census vivision All
Wethod of Analysis l-M with transition

64	104,338	104,548	104,752	82,177	82,427	82,784	83,185	83,571
26	45,352	48,346	51,341	40,814	42,826	45,352	48,346	51,341
6%	49,037	49,095	47,102	$47,0 \% 3$	49,096	47,125	49,159	47,191
72	198,777	201,989	205,175	172,087	174,349	177,261	180,690	184,103
25	$1 \%, 3,20$	17,610	17,870	15,004	5,201	15,454	15,753	16,050
177	235	280	280	-	197	253	299	297
0	1	1	1		1	1	1	1
7	21	25	25	-	17	21	25	25
4	257	306	306		215	275	325	323

4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
operating cost b. Total equivalent uniform annual	29.071	28,201	27,344	26,202	25,521	29,091	28,301	27,344	26,202	25,521
5. Incremental equivalent unform decrements in annual vehicle operating cost.	-	790	957	1,142	681	--	790	957	1,142	681
RATEO OR	armual dec	ASE 7 N	TOR TRUC	OPERATING	CosT To	NNUAL EIG	hay Cost			
6. Ratio of incremental reduction in truck operating cost to incremental increase in equitalent annual highwey cost.	-	3.7	3.7	3.7	2.2	-	3.7	3.5	3.5	2.1

* Calculated at 6 percent interest rate per annum and 20 years.

12. METHOD 2--EXTRAPOLATION BY PRACTICAL GROSS WEIGHT RELATIONSHIPS

By Method 1 for the analysis of the economy of maximum axle-weight limits, the axle-weight distribution for each vehicle class as found in the 1962 truck weight study was transferred from those States having highest limits to those States having lower limits. These axle-weight distributions were extrapolated to get distributions for the axle-weight levels of $22 / 41$ and $26 / 44$ kips. Method 2 uses a more direct approach, but it is also based on the 1962 truck weight study.

A. Payload Weight vs. Practical Maximum Gross Vehicle Weight

For each of 46 States and each class of vehicle, the average payload in pounds carried by all vehicles weighed in 1962 (including the empty vehicles) was plotted against the practical maximum gross weight limit as calculated from the legal maximum axle weight, making proper allowance for the steering axle. See table 10-19 (page 10-59) for these practical maximum gross vehicle weights.

Figure 10-9 gives the final set of these curves for each vehicle class. The curves are extrapolated to cover the practical maximum gross vehicle weight for axle-weight limits up to $26 / 44$ kips. By the application of these payload-gross-weight curves, the number of vehicles necessary to carry the same total tons of payload as carried in 1962, by class of vehicle, was readily computed.

FIGURE 10-9. AVERAGE WEIGHT OF PAYLOAD PER VEHICLE WEIGHED IN THE 1962 IRUCK WEIGIIT STUDY FOR EACH VEHICLE CLASS AS RELATED TO PRACTICAL
MAXIMUM GROSS VEHICLE WEIGHT FOR THE PRIMARY RURAL HIGHWAY SYSTEM
B. E 18-Kip Axles vs. Practical Maximum Gross Vehicle Weight

The foregoing procedure resulted in the estimate of the number of vehicles (or trips) required to haul the same total tons of payload at the five levels of axle-weight limits. The next step was to estimate the number of E 18-kip axles resulting from the number of vehicles of each class at each axle-weight level.

Again, the State-by-State variation in the maximum practical gross vehicle weight limit was used as the control. The E l8-kip axles were calculated for each vehicle class in each State from the axleweight distribution found in the 1962 truck weight study. These E l8-kip axles per vehicle were plotted for each vehicle class and each State. Final curves are given in figures 10-12 and 10-13 for rigid and flexible pavements.

The average payload weight per vehicle for each vehicle class for 1990 was increased 29 percent over that shown in figure $10-7$ for 1962, but the practical maximum gross weight was held the same in 1990 as in 1962.

The E l8-kip axles per vehicle were likewise increased in 1990 over 1962 to correspond to the payload increase, because such an increase in payload would increase the average gross weight per vehicle and the weight distribution of the loadocarrying axles. The increase was estimated by distributing the increased payload weight proportionally

equally to the load-carrying axles. The appropriate E l8-kip equivalence factor was then applied.

The 1990 practical maximum gross vehicle weight was held to the number of pounds used for 1962 for the respective maximum axle-weight limits. Since the practical maximum gross vehicle weight is a function of maximum legal axle weight, it is unaffected by transport practice. It is assumed, however, that any specific maximam legal gross weight would be equal to the sum of the axle-weight limits.
C. Results of Method 2

Method 2 was developed with and without the transition period, but the tables of results here given are for only the analysis with the transition period.

The results of Method 2 are not presented in detail because the results of Method l-M are superior for the purposes of this study. The Method 2 results are close enough to those of Method I and $l-M$ to prove the reliability of these other methods--the basic objective of Method 2. In table 10-37 (pages $10-98$ to 10-104) some results of Method 2 are given.
13. METHOD 3--REPEAT OF METHOD 2, BUT OMITTING THE 29-PERCENT INCREASE IN PAYIOAD PER VEHICLE 1962 TO 1990

Both Methods 1 and 2 for determining the economy of axle-weight maximum limits included the effects of a 29-percent increase in average payload per vehicle from 1962 to 1990.

Including this increase in payload has the effect of reducing the gain in payload per trip that could be attributed to any increase in maximum axle-weight limits. To determine the effects of this payload increase, Method 2 was repeated as Method 3, but without. the payload increase.
14. COMPARISON OF THE EGONOMY OF AXLE-WEIGBT LIMIIS AS DETERMINED BY ANALYSIS METHODS $1,1-M, 2$, AND 3

At this point in the discussion it will be helpful to summarize briefly the evolution or sequence of the methods for determining the economy of maximum axle-weight limits and the distinguishing features of these methods. The major difference in approach is between Methods 1 and 2, or between (1) transferring the axle-weight distributions of States with the highest limits to the States having lower limits and (2) plotting the maximum practical gross vehicle weight for each vehicle class against equivalent 18,000-pound axles.

Methods l, 2, and 3 were all done both with and without the 5-year transition period from 1965 to 1969. An evaluation of the results produced by all these methods indicated that the final benefit-cost ratios were lower when the transition period was included. This effect plus the fact that including such a period in the calculation is wholly logical led to the conclusion that the results with the transition period were superior to those without. Therefore, all the detailed results without the transition period are omitted from this report.

Comparing the results of Methods 1 and 2 revealed Method 1 as the preferred one. When it became clear that applying the AASHO design formulas in the three basic methods resulted in pavement depths less than the States are currently constructing, Method 1 was repeated as Method l-M. Table 10-35 presents the design depths for rigid pavement and the benefit-cost ratios developed froin Methods 1 and $1-M$ for the ten census divisions and the six highway systems.
A. Brief Summary of Table $10-35$

The variations in incremental benefit-cost ratios from about 1.0 to about 60.0 shown in table $10-35$ result from (1) the method of analysis, (2) the increment of increase in axle-weight limit, (3) the census division (variable in $A D I$, traffic composition, unit prices of construction cost, and soil character), and (4) highway system (variable in ADT and traffic composition).

The higher the axle-weight limit, the lower is the incremental benefit-cost ratio, but with the exception of eight entries in the secondary systems, all benefit-cost ratios for the increment of axle-weight limit from 24/41 to $26 / 44$ are above 2.0. The low truck ADT on the secondary systems contributes to low benefit-cost ratios.

In table 10-35, for the New England and Middle Atlantic census divisions, all entries for the 18/32- and 20/35-kip axle-weight limits are for comparative purposes only,
Table 10-35. -- Design rigid pevement slab depth and beaefit-cost ratios for five levels of maximum axle-weight limits With transition, by highway system, census division, and analysis method
ince the New England and Middle Atlantic census divisions in 1962 had axle-weight limits approximating the $22 / 38-k i p$ limits, the entries in this table for $10 / 32$ and co/ 5 kips are backward and dowarard. iney are included for comparison purposes only.

Headnote:
Table 10-35. -- Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits

Table 10-35. -- Design Figid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits

Table 10-35. -- Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits

Table 10-35. -- Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits

Table 10-35. -- Design Higid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits

because these two census divisions now have axle-weight limits approximately equal to $22 / 38 \mathrm{kips}$. The same is true for the 20/35-kip limits for the South Atlantic North and South Atlantic South divisions, which now have axleweight limits approximating 20/35 kips.
B. Results of Method 1-M Analysis

Where the minimum depth of pavement used in Method 1-M is equal to or less than that for Method 1 at the base condition, the pavement depth and the benefit-cost ratios are identical for the two methods. Where the minimum depth of pavement surface used in Method 1-M is greater than the depth at the base condition in Method 1, the pavement depths for Method 1-M and the resulting benefit-cost ratios are always greater than for Method 1.

This analysis (Method l-M) again brings out the following significant facts: (1) As the daily E l8-kip axle applications increase, the pavement design depth increases at a decreasing rate, and (2) as the design pavement depth increases, the cost of the pavement per cubic yard decreases, but the total pavement cost per mile increases at a decreasing rate. From these facts, logical reasoning leads to the conclusion that, as axle-weight limits are increased, the use of a minimum pavement depth above that resulting from the Method 1 design would lead to greater economy (benefit-cost ratio) than would result from Method 1. Table 10-35 proves the correctness of this reasoning.

The benefit-cost ratios of Method l-M vary from equality with those of Method 1 to as much as six times as great. For a given highway system now using the minimum pavement depth in Method l-M, the economy of higher axleweight limits as given in table 10-35 would be more nearly that of Method 1-M than of Method 1.

This analysis should allay all fears that, because Method 1 procedures result in pavement design of much less depth than is commonly used by some highway departments, the analysis unjustly favors higher axle-weight limits. The exact opposite is true.

C. The Transition Period

Should the laws of all States, or of any State, be changed to legally permit axle weights higher than are now permitted, the trucking industry would not make full use of the higher limits the first day or even the first year they were legally effective. Of course, the amount of increase in the limits would be a factor determining the rate of utilization of the higher limits. The change from $18 / 32$ kips to $20 / 34$ kips could be rather fully utilized within a year, but the change from $18 / 32$ to $26 / 44 \mathrm{kips}$ would require some years to be fully effective. The change in axle-weight limits would affect vehicle design, customer orders, commodity selection, terminal facilities, and practically
every aspect of the trucking industry. In the analyses of the economy of axle-weight limits the transition period was included as described under Method 1.

The use of the transition period has the effect of postponing the utilization of the increasing axle-weight limits, and therefore, for the 20-year analysis period used, the design pavement depth should be slightly less with the transition period than without. The E 18-kip axle applications in the 20-year period would be fewer because of the time delay in applying the axles of higher weight. The total motor vehicle operating cost reduction would be less with the transition period than without. Therefore, the overall economy of the higher axle weights within the 20 -year analysis period is less with the transition period than without it.

The effect of using the transition period for the axle-weight limits of $20 / 35$ to $24 / 41 \mathrm{kips}$ is minor, amounting to practically zero for the increment of $18 / 32$ to 20/35 kips, and increasing gradually to the axle limit of 24/41. Between $24 / 41$ and $26 / 44 \mathrm{kips}$ the effect of the 2-year differential is pronounced. For rigid pavement and the upper two weight-limit intervals, the following table gives the benefit-cost ratios with the transition period expressed as a percentage of the benefit-cost ratio without the transition period:

Axle-weight-limit interval
22/38 to
24/41 kips
24/41 to
26/44 kips

Minimum* Maximum* Minimum* Maximum*

1. Interstate ruxal	87.5	89.6	63.9	73.0
2. Interstate urban	87.7	90.9	66.7	73.9
3. Primary rural	86.1	80.9	59.5	66.7
4. Primary urban	85.2	88.9	54.1	62.9
5. Secondary rural	86.6	90.2	61.3	66.7
6. Secondary urban	82.4	89.5	54.0	63.6

* Consideriag all ten census divisions
D. Effect of the 29 -Percent Increase in Payload Per Vehicle, 1962 to 1990

From table 10-37 the effect of the increase in payload per vehicle from 1962 to 1990 may be determined by comparing the rigid pavement depths and benefit-cost ratios of Method 3 (without payload increase) with those of Method 2 (with payload increase).

Two sets of benefit-cost ratios are showa below:
Method 2 Method 3, with without
payload increase payload increase
System 1, New England
at $26 / 44$ axle-weight
limit

Rigid povement depth, inches	8.52	8.47
Benefit-cost ratio	9.4	12.8

System 3, East North Central
at 26/44 axle-weight limit
Rigid pavement depth, inches
7.40
8.0
7.29

Benefit-cost ratio
13.0
Teole 10-3/.--Deaferi rijid gavenent slab depta and benelit-cost catios for five levels of uaxinum axle-weight limits
in the entries
 eatries for Soutin Atlantic North and Soutb Atiantic Soutil Ior the 1k/32-kip ilinits are projectino backward because these divisions had approxinately 20/35-kip limits in 1962.

7

$\dot{i} \dot{\sim} \dot{\rightarrow} \dot{\sim} \div \dot{\circ}$

Sheet 2 of $]$	
t-cost ratio $18 / 32$ to $24 / 41$	$18 / 32 t_{0}$

syst

$i \quad \dot{G}$

5

Census division and analysis metiond				Design risid pevement depth - in ches					Incremertal benefit-cost ratio				Overall benefit-cost ratio			
				18/32	20/35	22/38	24/41	26/44	$\begin{gathered} 18 / 32 \mathrm{to} \\ 20 / 35 \end{gathered}$	$\begin{array}{r} 20735 \mathrm{ty} \\ 22238 \\ \hline \end{array}$	$\begin{array}{r} 22738 \text { to } \\ \hline 24 / 41 \\ \hline \end{array}$	${ }^{24 / 41} \mathrm{to}$	$\begin{gathered} 18 / 32 \mathrm{tc} \\ 20 / 35 \\ \hline \end{gathered}$	$18 / 32$ $22 / 38$	$\begin{gathered} 18 / 32 \text { to } \\ 24 / 41 \end{gathered}$	$\begin{gathered} 18 / 32 \mathrm{to} \\ 26 / 44 \end{gathered}$
System 2. Interstate urbsn--continued																
	WSC	$\begin{aligned} & \text { Metnod } \\ & \text { Method } \\ & \text { Method } \end{aligned}$		$\begin{aligned} & 8.43 \\ & 3.48 \\ & 3.4 \% \end{aligned}$	3.65 3.63 8.60	$\begin{array}{r} 8.86 \\ 3.78 \\ 8.70 \end{array}$	$\begin{aligned} & 9.03 \\ & 0.91 \\ & 0.79 \end{aligned}$	$\begin{aligned} & 9.1 .9 \\ & 9.04 \\ & 0.36 \end{aligned}$	17.15 20.6 26.9	15.3 16.4 21.9	12.8 13.6 19.2	8.8 9.5 13.2	17.3 20.6 26.9	16.6 13.5 24.5	15.4 16.9 22.8	$\begin{aligned} & 13.8 \\ & 15.1 \\ & 20.4 \end{aligned}$
	M	Method		3.44	8.62	3.74	8.95	9.10	22.3	18.6	15.7	8.9	22.1	20.4	18.7	16.3
		Meth.ad		8.44	8.64	3.82	0.99	9.14	26.6	21.4	17.9	12.7	26.6	24.0	22.1	19.9
		Method	3	0.44	$\bigcirc .60$	8.74	0.85	8.94	35.6	29.7	25.9	19.5	35.6	32.8	30.6	28.1
	F	Method		9.51	9.68	9.35	10.02	10.17	29.8	24.8	2.4	14.3	29.8	27.3	25.0 21.4	22.4
		Method Method		9.51 9.51	9.77 9.74	10.00 9.92	10.20 10.07	10.40 10.19	25.8 32.8	2.). 27.1	17.4 23.7	12.5 17.7	25.8 32.8	23.3 30.0	21.4 28.0	19.3 25.6
System 3. Primary rural																
	NE	Method		6.30	6.52	6.73	6.92	7.09	6.9	7.8	6.8	4.4	8.9	8.4	7.9	
		Method		6.60	6.66	6.73	6.80	6.86	20.5	15.2	11.8	6.6	20.5	17.8	15.8	13.5
		method		6.64	6.68	6.73	6.73	6.83	27.8	20.7	15.8	9.4	27.8	24.2	2.14	18.3
	M	Method		7.06	7.30	7.51	7.70	7.87 7	7.9	7.4	7.1	5.4	7.9	7.7	7.5	7.0
		Method		7.38 7 7	7.45	7.51	7.58	7.65	40.6	29.3	22.5	12.7	40.6	34.9	30.7	26.2
		Method		7.43	7.47	7.51	7.57	7.62	60.6	42.8	31.6	18.6	60.6	51.5	44.5	37.7
	SAR	Method		7.10 7				7.90	8.4	7.9	7.1	5.0	8.4	8.2	7.9	7.3
		Method		7.25	7.34 7	7.43	7.52	7.60	24.6	18.9	15.4	9.1	24.6	21.8	19.7	17.1
		Method		7.29	7.34	7.41	7.47	7.54	36.5	26.7	20.8	12.5	36.5	31.6	27.9	23.9
		Method Method			6.70 6.70	6.88	7.04 6.86	7.19 6.93	8.6	7.8	6.7 13 13		$\begin{array}{r}8.6 \\ 21.5 \\ \hline 18\end{array}$	8.2 18.9	7.8 17.0	7.1 14.9
		Method		6.61 6.64	6.70 6.70	6.78 6.75	6.86 6.61	6.93 6.87	21.5 32.5	16.3 24.0	13.2 19.0	8.0 11.8	21.5 32.5	18.9 28.2	17.0 25.1	14.9 21.7
				6.97	7.21	7.43	7.61	7.77	8.7	8.1	7.2	4.9	8.7	8.4	8.0	7.4
		Method		6.97	7.10	7.22	7.32	7.40	17.1	14.4	12.4	8.0	17.1	15.8	14.8	13.4
		Method		6.97	1.07	7.16	7.23	7.29	2.4 .2	20.5	18.7	13.0	24.2	22.5	21.4	19.7
	wro	Method		5.99	6.20	6.39	6.96	6.70	6.4				6.4	6.1 10.0	5.7	
		Method Method		5.99 5.99	6.11 6.09	6.21 6.17	6.30 6.23	6.38 6.28	10.9 14.5	8.9 12.5	7.7 11.4	5.0 8.1	10.9 14.5	10.0 13.5	9.3 12.9	8.4 12.0

Table 10-37.--Desien ricid pavement slab depti and benefit-cost ratios for five levels of maximum axle-weight limits

Taule 10-37.--Derica risid peveneut shab dept; and benefit-cost ratios for five levels of maximum axle-weight limits

diviston			Desicn rigid povement depti - inches					Incremental benefit-cost ratio				Overall benefit-cost ratio			
		lysis met	10/32	20/3	$22 / 30$	24/41	26/44	$\begin{gathered} 18 / 32 \text { to } \\ 20 / 35 \\ \hline \end{gathered}$	$\begin{gathered} 20 / 35 \text { to } \\ 22 / 30 \\ \hline \end{gathered}$	$\begin{gathered} 22 / 38 \mathrm{to} \\ 24 / 41 \end{gathered}$	$\left[\begin{array}{c} 24 / 41 \text { to } \\ 26 / 44 \end{array}\right.$	$\begin{gathered} 18 / 32 \text { to } \\ 20 / 35 \end{gathered}$	$\begin{gathered} 18 / 32 \text { to } \\ 22 / 38 \\ \hline \end{gathered}$	$\begin{gathered} 18 / 32 \mathrm{to} \\ 24 / 41 \\ \hline \end{gathered}$	$\begin{gathered} 18 / 32 \text { to } \\ 26 / 44 \\ \hline \end{gathered}$
System 4. Primary urben--continued															
6.	WNC	Method 1	6.54 6.58	6.81	7.01 6.83	7.20 6.94	7.36 7.04	26.9	21.9 17.4	16.2 14.6	7.3 9.5	26.9 21.2	24.6 19.4	22.0 17.9	18.9 16.0
		Method 2 Method 3	$\begin{aligned} & 6.58 \\ & 6.53 \end{aligned}$	6.71 6.70	6.83 6.80	$\begin{aligned} & 6.94 \\ & 6.89 \end{aligned}$	7.04 6.95	21.2 25.3	17.4 2.3 .0	14.6 20.9	9.5 15.6	21.2 25.3	19.4 24.2	17.9 23.3	16.0 21.7
7.	ESS	Method 1		7.82	8.04	0.24	8.40	59.4	45.4	30.6	13.1	59.4	52.7	46.0	39.0
		Method 2	7.57	7.70	7.02	7.93	8.03	40.4	32.6	27.1	17.5	40.4	36.6	33.6	29.8
		Method 3	7.57	7.68	7.78	7.87	7.95	50.4	42.0	36.4	24.5	50.4	46.4	$43 \cdot 3$	39.0
8	WSC	Method 1	7.16	7.38	7.57	7.75	7.90	43.3	33.9	24.4	12.0	43.3	38.8	34.3	29.4
		Method 2	7.16	7.29	7.41	7.52	7.62	30.8	24.9	20.2	13.2	30.8	27.9	25.4	22.6
		Method 3	7.16	7.20	7.31	7.45	7.52	38.1	32.7	27.6	20.0	38.1	35.6	33.1	30.2
9	M	Method 1	7.26	7.51	7.74	7.94	8.10	43.1	37.6	29.5	16.8	43.1	40.5	37.2	33.0
		Metnod 2	7.26	7.43	7.59	7.73	7.87	39.9	31.2	29.0	18.7	39.9	35.7	33.6	30.3
		Method 3	7.26	7.42	7.54	7.65	7.73	50.4	46.5	42.9	33.7	50.4	48.6	47.0	44.5
10.	P	Method 1	0.37	8.57	8.75	8.92	9.06	31.8	25.0	18.7	9.7	31.8	28.5	25.3	21.6
		Metinod 2	8.37	8.59	8.78	0.96	9.12	19.1	15.4	12.6	8.4	19.1	17.3	15.8	14.0
		Method	3.37	-. 57	8.73	6.35	8.95	23.2	19.8	16.8	12.1	23.2	21.6	20.1	18.3

∞ mo $\infty m m \infty \infty \sim \ldots \neq 0$.

ט.

નㅋㅋ નデ

Table 10－37．－－Design rigid pavement slab depth and benefit－cost matios for five levels of maximum axle－weight limits

 のm」 ヘココいい6

nin nox nipe

inini ininí 0 ó

国	ξ
－	$\dot{\sim}$

The effect of the transition period and of the increase in payload per vehicle is illustreted by the followiag benefit-cost ratios for highway systems 1 and 3, Interstate rural and primary rural, in the East North Central census division:

Analysis method	Single/tandem axle-welght limits, kips			
	$\begin{gathered} 18 / 32 \\ \text { to } \\ 20 / 35 \end{gathered}$	$\begin{gathered} 20 / 35 \\ \text { to } \\ 22 / 38 \end{gathered}$	$\begin{gathered} 22 / 38 \\ \text { to } \\ 24 / 41 \end{gathered}$	$\begin{gathered} 24 / 41 \\ \text { to } \\ 26 / 44 \end{gathered}$
Method 1				
Interstate mural with transition without transition	13.6	11.9	10.5	8.0
without transition	13.5	12.5	11.8	11.2
Primary rural with transition without transition	$\begin{aligned} & 8.7 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.1 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 7.2 \\ & 8.1 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 7.5 \end{aligned}$
Methods 2 and 3 with transition				
Interstate rural				
with increase in payload without increase in payload.	$\begin{aligned} & 39.8 \\ & 57.8 \end{aligned}$	$\begin{aligned} & 32.5 \\ & 46.7 \end{aligned}$	$\begin{aligned} & 27.2 \\ & 39.6 \end{aligned}$	$\begin{aligned} & 21.3 \\ & 32.0 \end{aligned}$
Primary rural				
with increase in payload	17.1	14.4	12.4	8.0
without increase in payload	24.2	20.5	18.7	13.0

E. Rigid and Flexible Pavement Comparisons

All methods of analysis produce benefit-cost ratios that are generally higher for flexible than for rigid pavement. There is some shifting by census division and by highway system. The construction cost is generally higher for rigid than for flexible pavement, and since the motor vehicle operating costs are assumed
to be the same for both types of pavement, it logically follows that the benefit-cost ratios would favor the flexible pavement. Table 10-38 gives the summary of the ratios for the New England and East North Central census divisions.

Because there is no pronounced difference in the final benefit-cost ratios, most of the summary tables and discussions pertain to rigid pavement. Rigid pavement is chosen because its single slab design offers a better basis of comparison of design depth than does flexible pavement with its three structural layers

F. Comparison of Methods 1 and 2 of Determining the Economy of AxleWeight Limits

The two critical factors in the analysis of the economy of axle-weight maximum limits are the forecasts of the vehicle class distribution in the ADP and the axle-weight distribution for each vehicle class that would use the highways under conditions of higher legal axle-weight limits. To compare the results of the analysis by Methods 1 and 2 is in order.

Such factors as legal gross weight limits, legal vehicle length limits, legal restrictions on the number of cargo units per vehicle combination vehicle, and enforcement of the applicable laws lead to certain transport practices in each State. Types of commodities, terrain, length of haul, and other transport factors also influence the composition and weight of the vehicles in the ADT. Thus, from one State to another,

Table 10-38. - Comprison of the benefit-cost ratios for rigid and flexible pavemenis for Method 1 with transition, New England and East North Central Census Divisions

Highway system and pavement type	Increment of increase in single/tanden axle weight limits, kips							
	18/32 to 20/35		20/35 to $22 / 38$		22/38 to 24/41		24/41 to $26 / 44$	
	New England	$\begin{gathered} \text { East } \\ \text { North } \\ \text { Central } \\ \hline \end{gathered}$	New England	$\begin{gathered} \text { East } \\ \text { North } \\ \text { Central } \\ \hline \end{gathered}$	New England	East North Central	$\begin{gathered} \text { New } \\ \text { England } \\ \hline \end{gathered}$	
1. Interstate rural Rigid Flexible	$\begin{aligned} & 13.6 \\ & 14.1 \end{aligned}$	$\begin{aligned} & 13.6 \\ & 11.8 \end{aligned}$	12.1 12.4	11.9 10.7	10.7 10.8	10.5 9.7	7.7 7.7	8.0 7.6
2. Interstate urban Rigid. Flexible	45.3 49.6	23.7 23.6	37.4 40.0	20.9 20.8	29.9 31.3	17.9 17.8	18.3 18.8	$\begin{aligned} & 12.9 \\ & 12.8 \end{aligned}$
3. Prefnary-mural Rigid Flexible	8.9 9.8	8.7 8.1	7.8 8.3	8.1 7.2	6.8 7.1	7.2 6.1	4.4 4.5	4.9 4.0
4. Primary-urban Rigid Flexible	30.2 29.9	22.4 21.0	26.0 26.0	17.7 16.7	21.9 21.9	13.1	13.4	$\begin{aligned} & 6.4 \\ & 6.0 \end{aligned}$
5. Secondary-mural Rigid Flexible	$\begin{aligned} & 15.6 \\ & 17.8 \end{aligned}$	$\begin{aligned} & 5.4 \\ & 6.4 \end{aligned}$	12.5 14.0	4.8 5.0	10.3	$\begin{aligned} & 3.8 \\ & 3.7 \end{aligned}$	6.7 7.1	2.2 2.0
6. Secondary-trban Pigid Flexible	$\begin{aligned} & 10.2 \\ & 10.6 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.6 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 8.4 \end{aligned}$	2.2 2.2	$\begin{aligned} & 6.4 \\ & 6.6 \end{aligned}$	1.9 1.9	3.7 3.8	1.3 1.3

there are factors other than the axle-weight limits that control the number of vehicles, the relative numbers of vehicles in each vehicle class, and the loading practice.

Method 1 does not take these factors into consideration. There is no known direct and positive way to do so. However, since there is ample evidence in the truck weight studies and in transport practice that motor freight carriers will utilize higher axle-weight limits whenever they are authorized, there is some basis for assuming that some of the traffic at lower axleweight limits will move to higher axle weights when they become legal.

Both methods 1 and 2 retain the effects of loading beyond legal limits. Analysis of the 1962 truck weight study indicates that, generally, overloaded axles will prevail regardiess of the maximum limits of legal axle weights.

Neither method considers the real possibility that if higher axle weights should be legally authorized, there is apt to be an increase in highway transport use. To a degree this factor is considered in the forecast to 1990 of a 29-percent increase in payload per vehicle and is reflected in some increase in the percentage of the total (all modes) of intercity freight movement to be handled by highway transport. It is not, however, of special importance in the present analysis. If increased axle-weight limits resulted in increased use of the highways,
it would only increase the benefits above those computed without considering such an increase.

There is a current shift in the use of vehicles from the 2-S1 to the 2-S2 and from the 2-S2 to the 3-S2. Neither Method 1 nor 2 accounts for this change but assumes that the same vehicle class will carry the same total tons of payload as before. This assumption is a weakness in the methods, but is on the conservative side. A shift to heavier vehicles results in transport economy, even at the same axle-weight limits. Therefore, the economy as calculated by Methods 1 and 2 is less than is likely to be experienced.

Method 2 results in the same average payload weight and the same E l8-kip axles per vehicle for a given vehicle class for all census divisions. This result is distinctly different from Method 1, where the step up to the next axle-weight level was accomplished by adjusting the 1962 axle-weight distribution separately for each census division. But Method 2 uses a National ratio of average payload weight and E $18-\mathrm{kip}$ axles to practical maximum gross vehicle weight, based on the values by States.

The 1962 truck weight study is not a perfect sample of transport highway use. However, from year to year this study has been consistent in its trends of transport practice. By using the data by census division rather than by States, many of the deficiencies of the sample are averaged out.

Neither Method 1 nor 2 considers the effects that vehicle limits in one State have on highway usage in other States. It is known that, Nationwide, vehicle weights and frequencies are held down in a liberal State by less liberal limits in nearby States.

From table 10-37 may be gained the correct impression that the benefit-cost ratio tends to increase as the traffic volume increases, but there are many exceptions when the comparisons are made between census divisions and highway systems.

If, for example, the economy of increasing from 18/32kip to $20 / 35-k i p$ limits were calculated for one census division and one highway system for a range of $A D T$, the results would be a consistent increase in economy with increases in ADT. The difference between this proposed calculation and the results in table 10-37 is that in table 10-37 the highway unit costs, highway total costs, the traffic mix, and highway designs (2 and 4 lanes) differ from system to system and from census division to census division. For instance, the cost of structures is not related to traffic volume, and this cost varies widely among highway systems and census divisions. The cost of paving is related to the ADI, because within the 20-year design period higher ADI's would apply a greater number of E l8-kip axles to to the pavement and thus require a thicker pavement. But this increase is not directly proportional to $A D P$ and, further, it is obtained at a decreasing rate of increasing cost. The result
is that it is correct logically to expect an increase in the economy of total costs of highway transport with increased ADT.

If all six highway systems and all ten census divisions are considered, the range in benefit-cost ratios in table $10-35$ for analysis Method 1 is from 59.4 (System 4, ESC, 18/32 to $20 / 35 \mathrm{klps}$) to 0.9 (System 6, ESC, 24/41 to $26 / 44 \mathrm{kips}$).

This ratio of 0.9 is the only one of the results using Method 1 that is less than 1.1. In fact, if Methods 1, 2, and 3 are all taken into account, only seven incremental B-C ratios (all at $24 / 41$ to $26 / 44$ kips) are less than 1.0 in a total of 720 ratios. In general, the incremental ratios are well above 2.0, indicating acceptable economy of highway transport for axle-weight limits up to a maximum of at least $26 / 44 \mathrm{kips}$.

From table 10-37 it will be observed that, for systems 1 and 3--the Interstate and primery rural systems--the B-C ratios are substantially less for Method 1 than for Method 2, but they are generally greater in the case of the two urban systems. For both secondary systems, the B-C ratios for Method 1 are, for the most part, slightly more than for Method 2.

In the Method 1 analysis, the axle-weight distributions from the 1962 truck weight study were calculated separately for each highway system and census division, except for some census divisions in systems 5 and 6 . In the Method 2 calculations, curves for the relationships that the E 18 -kip axles and average payload per vehicle bear to the practical maximum gross vehicle
weight were the same for all six highway systems and for all ten census divisions. One result of the Method 2 procedure was that the slope of the curve of increasing E 18-kip axles against the five levels of axle-weight limits was less than the slope for Method 1 in those instances where the B-C ratio for Method 1 was greater than for Method 2. In other words, the less the E 18-kip axle applications increase with increases in axleweight limits, the higher the B-C ratio.

15. COUNIERINIERACIING EFFFECIS ON PAVEMENI CONSIRUCIION COST OF INCREASING THE
 NUMBER OF E 18-KIP AXLE APPLICATIONS

As would be expected, the results of pavement designs for each series of increases in maximum axle-weight limits produce increases in pavement depth and consequent increases in the cost of pavement construction. The increases in pavement construction cost with each imcrement of maximum $9 x$ le-weight limit from 18/32 to $26 / 44$ kips is a decreasing rate of increase rather than an increasing rate, as might be expected since the E 18-kip axle equivalents increase exponentially with increasing axle weight.

Figure 10-14 is a set of curves to illustrate two principal factors and their interaction. First, the top set of curves shows that the design depth of rigid pavement increases more rapidly at low than at high daily E l8-kip axle applications. Second, the middle curve shows in dollars per cubic yard the decreasing cost of the pavement as the depth increases. When

FIG: $10-14$ JURVES TO SHOW THE INTERRELATIONSHIP OF E-I8 KIP AXLE APPLICATIONS, RIGIO PAVEMENT OESIGN DEPTH, AND COST OF PAVEMENT PER CUSIC YARD FOR HIGHWAY SYSTE', 3 , PRIMARY RURAL.AND THE EASTNORTH CENTRAL CENSUS UIVISION.
these two factors--one a dampening increase in design depth and the other a dampening decrease in pavement cost per cubic yard-are combined, the result is a slightly decreasing rate of increase in pavement cost as the maximum axle-weight limits are increased from single/tandem limits of $18 / 32 \mathrm{kips}$ to $26 / 44 \mathrm{kips}$.

ECONOMY OF VEHICLE LENGITH - MHITHOD 4

In general, the greater the weight of payload per vehicle the less it costs in cents per ton-mile to transport cargo. Additional pounds of cargo per vehicle trip may be obtained in one of two ways: (1) by increasing the maximum limit of axle weight and increasing the gross vehicle weight limit accordingly or (2) by increasing the number of axles on the vehicle so that higher gross weight may be obtained without increasing the legal limit of axle weight. More axles per vehicle may be obtained by operating longer vehicles and combinations--more particularly by using two and three cargo units per vehicle combination. Thus, it is desirable to determine the economy of vehicle leagth in addition to determining the economy of axleweight limit.

1. VEHICLE LENGIH AND ITS SIGNIFICANCE

Were it not for curvature on highways, street corners in urban areas, and ramps at interchanges, extremely long vehicles would be practical from the standpoint of highway design. On the other hand, the vehicle of a practical length for operation on the highway is restricted in its maneuverability at loading docks and at termini. Highways, both urban and rural, can accommodate vehicle combinations up to a limit of 65 or 70 feet without undue
interference to other vehicles in the traffic stream and without too much offtracking on horizontal curves and ramps.

To obtain the 65- or 70-foot length by using a tractorsemitrailer with full trailer achieves the maximum maneuverability with a minimum of offtracking. The trailers in such a combination would be 27 to 30 feet in length. The combination with two or three cargo bodies provides another advantage to the transport industry in allowing the line-haul-or intercity haul-to be made with a longer combination vehicle. The trailers can be used separately in urban areas, and they may be simultaneously loaded and unloaded at the freight dock.

The advantage to the transport industry of two or three cargo bodies per combination is significant. But there is greater advantage with the 27-10ot trailer than with the 40-foot trailer. The additional cube space of the 40 -foot trailer is of no advantage to the trucker when cargo is being hauled that weighs more than about 20 pounds per cubic foot loaded and when the axleweight limits are 18,000 and 32,000 pounds for single and tandem axles, respectively. Thus the haulers of light-density products are interested in more cargo space. The haulers of heavierdensity cargo could get along satisfactorily using body lengths of less than 40 feet.

Vehicle length should not be considered separately from gross weight limits. The significance of the use of higher gross weights with the double-cargo combination is indicated by the fact
that in 1963 about 15 States raised their gross weight limits to approximately 73,000 pounds, and in 1965 and 1966 eleven States increased their legal limits on length of combinations to 65 feet.

2. LIMITATIONS OF THE TRUCK WEIGHT STUDIES

The truck weight studies in a particular State are influenced not only by the law of that state but also by the laws of the surrounding States. A State permitting longer vehicles than do the surrounding States will not have the maximum use of the longer combination vehicle, because the interstate heavy truck traffic is governed by the minimum legal limits of either weight or dimension existing in the States where a vehicle on a specific trip is to travel.

It is to be remembered when examining the results of analysis of the economy of vehicle length that these results are prepared on the basis that there is no legal limit on gross vehicle weight. This is an important assumption, and its importance might be illustrated by considering the States in the West.

Several western States permit a gross weight of 76,000 pounds. They also permit 65 -foot double-cargo combinations. On the other hand, the double-cargo combination is not used as extensively in the West as it would be if the gross vehicle weight limit were higher than 76,000 pounds. The reason for this is that with the 3-s2 tractor-semitrailer and an 18,000/32,000pound axle-weight limit, the vehicle loaded to axle-weight capecity
will weigh about 73,000 pounds gross. Therefore, the dorble-cargo combination is not of much advantage, particularly in hauling high-density products, because it could add only 3,000 pounds gross above the maximum for the 3-S2. The extra tare weight on the double-cargo combination would take up more than the 3,000 -pound gross weight advantage gained. Therefore, in the western States, no payload advantage could come about by use of the double-cargo combination except when additional cubage is desired and when terminal functions are favorable.
3. PROCEDURE USED IN METHOD 4-ECONOMY OF VEHICLE LENGTH

The analysis of economy of the maximum length of vehicles and combinations may be made by setting up different fleets (mixes of various class of vehicles), each fleet being restricted by different maximum length of single-unit trucks, trailers, and trailer combinations. Each different fleet is assigned to haul the same total tons of payload for a unit of distance, say one mile. This approach was used in Method 4.
A. Selection of Length Limits

Five fleets were considered according to the length limits of individual vehicles and of vehicle combinations given in table ll-1. The selection of the length limits of the various vehicles was somewhat arbitrary. The lengths, however, are based upon what is practical, what the logical next steps in vehicular
Table 11-1. -- Combinations of vehicle lentibs used in Method 4,

$\begin{aligned} & \text { 炭 } \\ & \text { 首 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Identification		Vehicle maximum length, feet				
	Computer index no.	$\frac{\text { Table headiags }}{\text { Length } 11 \mathrm{mitas}}$	Trailer	Single unit truck (2D, 3A)	Tractor with semitraller (2-51, 2-52, 3-52)	Tractive truck and full trailer (2-3, 3-4)	$\begin{aligned} & \text { Tractor with } \\ & \text { semi and full } \\ & \text { trailer } \\ & (2-51-2, \text { ?-s2-3 } \\ & 3-52-4) \end{aligned}$
0	18	$\begin{aligned} & 1962 \\ & \text { law } \end{aligned}$	\leftarrow		\longrightarrow	$\begin{aligned} & 1552 \\ & 107 \end{aligned}$	
1	20	$\begin{aligned} & 35 / 50 \\ & 55 / 65 \end{aligned}$	27 to 40	35	50	55	65
2	22	$\begin{aligned} & 35 / 55 \\ & 60 / 65 \end{aligned}$	27 to 40	35	55	60	65
3	24	$\begin{aligned} & 40 / 55 \\ & 65 / 65 \end{aligned}$	27 to 40	40	55	65	65
4	26	$\begin{aligned} & 40 / 55 \\ & 70 / 70 \end{aligned}$	27 to 40	40	55	70	70
9) First length (35 feet) applies to single unit truciss; second length (50 feet) applies to tractor with semitrailer; thind length (55 feet) applies to a tractive truck witi full trailer; and fourth length (65 feet) applies to a tractor with semitrailer and full trail							

design would be from the standpoint of transport practice, and what the present law is.
B. Assignment of Payload Total Weight to Vehicle Classes

The assigament of pounds of payload to each vehicle class was done on the basis of the 1962 and 1963 truck weight studies-the data used in Method 1 on analysis of the economy of axle weights-and by judgment, applied to the State laws which affected the observed data in the truck weight studies. The average payload per vehicle for all trips (including empty cargo bodies), tare weights, and average gross vehicle weights are given in table 11-2 for the East North Central Census Division and the primery rural highway system.

Vehicle and vehicle-combination empty weights used are those in tables 14-1, 14-2, and 14-3.
C. Assignment of \&verage Payload Per Vehicle Within a Fleet and Determining the ADT of Each Vehicle Class

The average pounds of payload per vehicle, including empty vehicles, was established for each vehicle class by reference to the 1962 and 1963 truck weight data for each census division and highway system. See table ll-2 for these weights.

The number of vehicles in each vehicle class in the daily traffic stream and the average pounds of payload per vehicle were each determined in two steps. First, the vehicle classes were
 Eart Horth Central--primary, rurel

Pebiele class	Weight, pounds	Method 4 (year 1962)				Mathod 4 (year 1990)			
		$\begin{aligned} & \text { Step } 1 \\ & 35 / 50 \\ & 55 / 65 \end{aligned}$	$\begin{aligned} & \text { Step } 2 \\ & 35 / 55 \\ & 60 / 65 \end{aligned}$	$\begin{aligned} & \text { Step } 3 \\ & 40 / 55 \\ & 65 / 65 \end{aligned}$	Step 4 $40 / 55$ 70/70	Step 1 35/50 55/65	Step 2 35/55 60/65	Step 3 40/55 65/65	Step 4 $40 / 55$ $70 / 70$
2 D	Payloced Empty veight Oross velght	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	$\begin{array}{r} 4,837 \\ 9,895 \\ 14,732 \end{array}$	$\begin{array}{r} 4,837 \\ 9,895 \\ 14,732 \end{array}$	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	$\begin{array}{r} 4,235 \\ 9,220 \\ 13,455 \end{array}$	$\begin{array}{r} 4,837 \\ 9,895 \\ 14,732 \end{array}$	$\begin{array}{r} 4,837 \\ 9,895 \\ 14,732 \end{array}$
32	Paylcad Eapty veight Gross weight	$\begin{array}{r} 9,227 \\ 15,635 \\ 24,862 \end{array}$	9,227 15,635 24,805	$\begin{aligned} & 10,518 \\ & 16,585 \\ & 27,103 \end{aligned}$	10,518 16,585 27,103	$\begin{aligned} & 11,903 \\ & 15,635 \\ & 27,538 \end{aligned}$	$\begin{aligned} & 11,903 \\ & 15,635 \\ & 27,538 \end{aligned}$	13,619 16,585 20,204	$\begin{aligned} & 13,619 \\ & 16,585 \\ & 30,204 \end{aligned}$
2-S1	Payloed Expty woight Gross velght	6,064 18,950 25,014	6,667 19,625 26,292	6,667 19,625 26,292	6,667 19,625 26,292	7,823 18,950 26,773	$\begin{array}{r} 8,610 \\ 19,625 \\ 28,235 \end{array}$	$\begin{array}{r} 8,610 \\ 19,625 \\ 28,235 \end{array}$	$\begin{array}{r} 8,610 \\ 19,625 \\ 28,235 \end{array}$
2-52	Payload Eapty weight Gross weight	13,659 23,550 37,209	15,072 24,500 39,572	15,072 24,500 39,572	15,072 24,500 39,572	17,620 23,550 41,170	19,471 24,500 43,971	$\begin{aligned} & 19,471 \\ & 24,500 \\ & 43,971 \end{aligned}$	$\begin{aligned} & 19,471 \\ & 24,500 \\ & 43,971 \end{aligned}$
3-52	Paylosd Eapty weight Gross weight	13,159 28,190 49,192	23,099 29,140 52,239	$\begin{aligned} & 23,099 \\ & 29,140 \\ & 52,239 \end{aligned}$	$\begin{aligned} & 23,099 \\ & 29,140 \\ & 52,239 \end{aligned}$	$\begin{aligned} & 27,093 \\ & 28,190 \\ & 55,283 \end{aligned}$	29,804 29,140 58,944	$\begin{aligned} & 29,804 \\ & 29,140 \\ & 58,944 \end{aligned}$	$\begin{aligned} & 29,804 \\ & 29,140 \\ & 58,944 \end{aligned}$
3-2	Payload Erpty velght Gross weight	$\begin{aligned} & 22,542 \\ & 26,000 \\ & 48,542 \end{aligned}$	24,581 26,675 51,250	$\begin{aligned} & 26,625 \\ & 27,350 \\ & 52,975 \end{aligned}$	$\begin{aligned} & 28,688 \\ & 28,025 \\ & 56,713 \end{aligned}$	$\begin{aligned} & 29,079 \\ & 26,000 \\ & 55,079 \end{aligned}$	$\begin{aligned} & 31,717 \\ & 26,675 \\ & 58,392 \end{aligned}$	$\begin{aligned} & 34,368 \\ & 27,350 \\ & 61,718 \end{aligned}$	$\begin{aligned} & 36,984 \\ & 28,025 \\ & 65,009 \end{aligned}$
3-4	Payload Empty weight Gross welgbt	$\begin{aligned} & 27,575 \\ & 31,300 \\ & 58,375 \end{aligned}$	$\begin{aligned} & 29,989 \\ & 32,25 c \\ & 62,239 \end{aligned}$	$\begin{aligned} & 32,575 \\ & 33,200 \\ & 65,775 \end{aligned}$	$\begin{aligned} & 34,988 \\ & 34,150 \\ & 69,138 \end{aligned}$	$\begin{aligned} & 35,572 \\ & 31,300 \\ & 66,872 \end{aligned}$	$\begin{aligned} & 38,739 \\ & 32,250 \\ & 70,989 \end{aligned}$	$\begin{aligned} & 41,914 \\ & 33,200 \\ & 75,114 \end{aligned}$	$\begin{aligned} & 45,053 \\ & 34,150 \\ & 79,203 \end{aligned}$
2-Sl-2	Payload Empty weight Gross welght	21,575 28,500 50,075	21,575 28,500 50,075	$\begin{aligned} & 21,575 \\ & 28,500 \\ & 50,075 \end{aligned}$	$\begin{aligned} & 23,230 \\ & 29,040 \\ & 52,270 \end{aligned}$	$\begin{aligned} & 27,832 \\ & 28,500 \\ & 56,332 \end{aligned}$	27,832 28,500 56,332	27,832 56,332 28,500 56,332	$\begin{aligned} & 29,985 \\ & 29,040 \\ & 59,025 \end{aligned}$
2-52-3	Payload Empty veight Gross veight	$\begin{aligned} & 27,541 \\ & 35,400 \\ & 62,941 \end{aligned}$	$\begin{aligned} & 27,541 \\ & 35,400 \\ & 62,941 \end{aligned}$	$\begin{aligned} & 27,541 \\ & 35,400 \end{aligned}$ $62,941$	$\begin{aligned} & 29,721 \\ & 36,160 \\ & 65,881 \end{aligned}$	$\begin{aligned} & 35,528 \\ & 35,400 \\ & 70,928 \end{aligned}$	$\begin{aligned} & 35,528 \\ & 35,400 \\ & 70,928 \end{aligned}$	$\begin{aligned} & 35,528 \\ & 35,400 \\ & 70,928 \end{aligned}$	$\begin{aligned} & 38,154 \\ & 36,160 \\ & 74,314 \end{aligned}$
3-52-4	Payload Empty weight Gross weicht	$\begin{aligned} & 31,997 \\ & 40,400 \\ & 72,397 \end{aligned}$	$\begin{aligned} & 31,997 \\ & 40,400 \\ & 72,397 \end{aligned}$	$\begin{aligned} & 31,997 \\ & 40,400 \\ & 72,397 \end{aligned}$	34,380 41,160 75,540	41,276 40,400 81,676	41,276 40,400 81,676	41,276 40,400 81,676	44, 314 41,160 85,474

arrayed by increasing practical maximum gross vehicle weight. For each census division and each highway system, the percentage of each vehicle class in the truck ADP from 1962 truck weight study for combinations from the 2-Sl upward was plotted as a cumulative curve against the vehicle class shown in figure ll-1 for the primary rural highway system (System 3).

Because of the different legal limits in the ten census divisions, this plotting results in the family of curves in figure 11-1. The lowest solid curve represents the Pacific census division where the limit for combinations is 65 feet. The heavy dashed curve below the Pacific curve represents an estimate of the percentage distribution to be expected in all census divisions if all adopted the 65-foot maximum limit for two-cargo combinations.

The next step was to accumulate the pounds of payload per vehicle for each class from the $2-S 1$ upward and then to convert the pounds to the percentage of the total pounds carried by the total ADT.

Figure ll-2 is the result of this calculation. By using figures $11-1$ and 11-2 in combination, first the percentage of the total ADI represented by a given class of vehicle is read from figure ll-1, and then the percentage of the total payload transported by this class of vehicle is read from figure ll-2.

The total pounds of payload to be transported by the ADT for each highway system and each census division is the same for

fig. 11-1 accumulated percentage of the adt of vehicle combinations BASED UPON INCREASING PRACTICAL GROSS VEHICLE WEIGHTS OF ZSI AND LARGER CLASSES OF COMBINATIONS; HIGHWAY SYSTEM 3, PRIMARY RURAL, BASED ON 1962 TRUCK WEIGHT STUOY.

FIG. 11-2 ACCUMULATED PERCENTAGE OF THE ADT OF VEHICLE COMBINATIONS ARRANGED BY INCREASING PRACTICAL MAXIMUM GROSS WEIGHTS, VS. THE ACCUMULATED PERCENTAGE OF TOTAL PAYLOAD CARRIED BY THE ADT.

Method 4 as for Method 1 . This total poundage multiplied by the percentage to be carried by a specific class of vehicle gives the total pounds to be transported by that class of vehicle. This figure divided by the average pounds per vehicle gives the number of vehicles of that class to be found in the total ADI.

Because the $2 D$ and 3 A single-unit trucks were considered to be unaffected by the changes in length of vehicle combinations, the same payload per vehicle and the same percentage of the total payload hauled by the ADT was assigned to these trucks. However, for steps 3 and 4, in which a 40-foot maximum length of singleunit truck is included, additional payload per vehicle was assigned to the $2 D$ and $3 A$ trucks over that assigned for the 35 -foot maximum length.
D. Determining Number of E 18-kip Axle Applications

The E l8-kip axles for each class of vehicle for both rigid and flexible pavements were determined by reference to the results of Method 1. The average gross weight per vehicle by class for each highway system and census division was obtained by adding together the average tare weight and the average payload weight. Because of the different axle-weight and gross weight limits, there resulted ranges of average gross vehicle weights and corresponding E l8-kip axles per vehicle. See figure ll-3 for a plot of the curves for three vehicle classes.

FIGURE 11-3.- SAMPLE SET OF CURVES FOR THE PRIMARY RURAL SYSTEM TO ILLUSTRATE HOW
THE NUMBER OF E-18 KIP AXLES PER VEHICLE BY VEHICLE CLASS WAS DETERMINED FROM PLOTTING THE DATA OF METHOD I FOR TWO AXLE WEIGHT LIMITS FOR EACH CENSUS DIVISION
4. RESULTS OF THE ANALYSIS

BY MEIHOD 4
Three sets of tables are presented to show the results of the analysis of vehicle length. Table 11-3 gives the number of vehicles in the ADT, 1962 and 1990, for each step increase in vehicle and combination length for system 3, census divisions 5 and 6. On a National basis, table ll-4N gives for each highway system the highway cost and motor vehicle operating costs for each step increase in vehicle and combination length for the 20-year period from 1965 through 1984 and the increments of change between increases in length step.

The analysis of the data proceeded as in Methods 1 through 4 with the expectation that the end point would be a benefit-cost ratio. But as the calculations shown in table $11-4 \mathrm{~N}$ were made, it became evident that for many road systems in many census divisions, the construction costs decreased instead of increased with increased vehicle length. With a negative increment of investment outlay, the benefit-cost ratio would have no significance. The economy of increments of vehicle length must then be made by comparison of equivalent uniform annual costs. Table $11-4 \mathrm{~N}$ shows only the change in highway cost, the decrease in motor vehicle operating costs, and the sum of these two changes.

Table 11-6 (National basis) gives the ratio of the costs computed in Method 4 for steps 1, 2, 3, and 4 to the costs under the 1962 laws for the following factors at each of the four added vehicle length limits:
Table 11-3.--Number of each class of veitcle in the ADT for 1962

U.S. DEPARTMENT OF CCMEEACE
OfLlce of Research aad Develojpent

Highvay System 1. IR
4032 7500
census Division All

Cost Item	Rigld Pavement					vement					
	Maximum lensth of vehicles \& cambinations - feetli					Maximum lensth of vehicless \& coibinations - feet					
	$\begin{aligned} & 1962 \\ & 194 \end{aligned}$	$\begin{array}{r} 35 / 507 \\ 55 / 65 \\ \hline \end{array}$	$\begin{array}{r} 35 / 551 \\ 60 / 65 \\ \hline \end{array}$	$\begin{array}{r} 40 / 551 \\ 65 / 65 \end{array}$	$\begin{array}{r} 40 / 551 \\ 70 / 70 \\ \hline \end{array}$	$\begin{aligned} & 1962 \\ & \text { Law } \end{aligned}$	$\begin{array}{r} 35 / 507 \\ 55 / 65 \end{array}$	$\begin{array}{r} 35 / 551 \\ 60 / 65 \\ \hline \end{array}$	$\begin{array}{r} 40 / 551 \\ 65 / 65 \end{array}$	$\begin{array}{r} 10 / 551 \\ 70 / 70 \\ \hline \end{array}$	
1. Construction cost per mile: a. Pavenent and shoulders	$213,097$	208,979	[210,287]	211,784	[212,518]	179,1641	175,116	176,610	178,394	179,456	
1ege	200634	200,634	200.634	200.634	20c, 634	200,634	200,634	200,634	200,634	200,634	
c. Burthwork and dradnege	190,465	190,316	190,357	190,403	190,426	190.465	190,063	190,191	190,342	190,429	
d. Total construction cost.	604196	599,929	\|601.27á		1602,821	603,578	570,263	565,8131	15m7,435	,569,370	570,519
3. Equivalent uniform annual capital cost	52,677	52,305	52.422	52,557	52,623	49,718	47,330	49,472	48,641	49,741	
3. Lacremental exmual cost . Cepital cost	-	-372	$+117$	$+135$	$+66$	\cdots	-388	$+142$	$+167$	$+100$	
. Malntenence cost of parement ans Bhoulders.	-	-20	$+7$	$+8$	$+4$	-	-151	+ ic	+71	$+4$	
c. Malntenance cost of structures	-	0	- 0	0	0	-	c	\bigcirc	0	0	
d. Total equivelent viliorm ennual hlcerray cant	-	-392	$+124$	$+143$	± 70	-	-4.03	+148	$+176$	$+104$	motar mruck operation cost

4. Annual operatina costi of vehicles affected by lemith limits: a. For 1965 AJs										
b. Jotal equivelent iniform onnurl operatios cost *	231,907	207504	199,528	1190,946	188,497	231.907	207,504	197.528	190,946	188,497
5. Incremental squivalent mifons deerements in anoual vehicle operating cost.	\sim	-24,403	$-7,976$	$-8,582$	$-2,449$	\sim	$-24,403$	$-7,776$	$-8,582$	$-2,447$

 I/ First figure is maximum lengh. in feet of a siagie unit truck/second, tractor sealtrailer combination/third, tractive truck and full trailer combination/fourth, tractox, aemitrailer, and full trailer corbisation.
U.S. DEPARTMERT OF CC: RERCE
office of Research ard Development
Table $/ 1-4 \mathrm{~N}$ - Comparison of highway cost and notor vehicle operating cost for flve levels of madian
lengti of vehicles and cambinations, for the 20 year period 1965 thraugh 1984 - National average
Census Division All

 Method of Anslysis 4. With tmansition lengte of vehicles and \begin{tabular}{|l|l|}

\hline \multicolumn{4}{|c|}{| Maxtmum 1eng |
| :--- |
| 1962 |
| 184 |}

\hline
\end{tabular} $\frac{\text { Highuay System 2.IU }}{\text { Cost Item }}$

office of Research ard Development

Cost Item	Rigid Pavement					Flexible Pavement				
	Maxtmum	Sth of	cles 8	binatio	- feet	Kaxim	cth of	exicles	coibina	5 - Peet
	1962	35/50/	35/55/	$40 / 55 /$ $65 / 65$	40/55/	${ }_{1062}$	$35 / 5071$ $55 / 65$	$35 / 557$ $60 / 65$	$40 / 551$ $65 / 65$	$100 / 55 /$ $70 / 70$

1. Construction cost per mile: A. Pavenent and shoulderb	2	$214,963$	$215,841$	$217,563$	218,051	${ }^{1} 182,796$	181,381	182,548	184,824	185,416
b: Bridge etructures.	1,294	294,314	1,294,314	1274214	294, 214	1,294,314	1,294,314	1,294,314	1,294,314	294,314
c. Earthorts and dratnage	492,871	49.2.813	492.841	492,874	492,910	492,871	492,728	492,830	493,024	493,074
d. Total construction	,				005,275	1969,981	968,423	962,69	2)	1,972,804
2. Equivalent umiform annual capital \qquad cost	174,691	174.552	174,621	174,786	174,830	171.753	171,617	171,728	171,943	171,999
3. Incremental amual cost a. Cepital cost . . .	-	-139	+ 79	$+155$	+ 44	-	-136	$+111$	$+215$	$+56$
b. Maintenence cost of parement and shouleers.	-	- 10	+ 7	$+13$	$+4$	-	-6	$+7$	$+13$	$+3$
c. Maintenance cost of structures	-	0	0	0	\bigcirc	-	0	0	\bigcirc	0
d. Total equivalent wiform pnual hichray cost	-	-149	$+86$	$+168$	$+48$	-	-142	+118	$+228$	+59

U.S. DEPARTMEAT OF COANERCS
osfice of Research ard Development
Table/to4 No- Comparison of highway cost and motor vehicle operating cost for five levels of maximum
census Division All

MOTOR TRUCK OPERATAN COST

4. Annual operatine cost of vebicles affected by leugth limits: a. For 1965 ADT										
b. Total equivelent umiform annual operatins cost *	55,973	50,705	49,0641	46,478	46,438	55.973	50,705	49,064	46,478	46,438
5. Incremental squivalent mifons-decrements is annual vehicle operating cost.	-	-5,268	$-1,641$	-2,586	-40	-	$-5,268$	$-1,641$	-2,586	-40

 - Carculated at 6 percent interest rate per annum and 20 years.
1/ First figure is maximum length in feet of a single unit truck/second, tractor semitraller combination/tbira, tractive trucik and full trailer combination/fourth, tractor, bemitraller, and full trailer cambination.
U.S. DEPARTMERT OF CCIMCRCE
Oflle of Research ard Develogment

Cost Item	Rigid Pavement					Flexible Pavement				
	Maximum lensth of vehicles \& combinations - feet					Maxtmum lenfth of vericles \& cambinations - feet				
	$\begin{aligned} & 1962 \\ & 18 \mathrm{~L} \end{aligned}$	$\begin{aligned} & 35 / 50 / \\ & 55 / 65 \\ & \hline \end{aligned}$	$\begin{array}{r} 35 / 551 \\ 60 / 65 \\ \hline \end{array}$	$40 / 55 /$ $65 / 65$	$\begin{array}{r} 40 / 551 \\ 70 / 70 \\ \hline \end{array}$	$\begin{aligned} & 1962 \\ & 18 \mathrm{w} \end{aligned}$	$\begin{array}{r} 35 / 507 \\ 55 / 65 \end{array}$	$35 / 551$ $60 / 65$	$\begin{array}{r} 40 / 551 \\ 65 / 65 \end{array}$	$\begin{array}{r} +0 / 557 \\ 70 / 70 \\ \hline \end{array}$
COST OP PROVIDIN HECENAY PACIWITIES										
1. Construction cost per mile: a. Pavcnent and shoulders	$161,496$	160,006	160,767	164,074	164,473	136.081	124,103	134,923	1/39,208	139,668
ricge struc	119,813	119,813	119,813	119,813	117, 813	119,813	119,813	119,813	119,813	119,813
c. Barthwork and drainage	173,963	173,905	173.932	174,043	174,057	173,963	173.776	173.846	174,232	174,273
- Total construction cost.	455,272	453,724	454,512	457,930	458,343	429,857	4076692	428.582	433,253	433.754
2. Equivalent uaiform annual capital cost	39,693	39,558	39,627	39,925	39,961	37,477	37,288	37,366	37,773	37,817
3. Incremental amual cost a. Cepital cost	-	-135	$+69$	$+298$	$+36$	-	-189	$+78$	$+407$	+ 44
. Maintemance cost of pavement and shoulers.	-	-11	$+6$	$+23$	$+3$	-	-9	$+4$	$+22$	$+2$
- Maintenance cost of structures	-	0	- 0	0	0	-	0	0	0	0
d. Total equivelent unform ennual aichuray cost	-	-146	$+75$	$+321$	$+39$	-	-198	$+82$	± 429	± 46

motor truck operating cost

4. Anousl operatina cost of vehicles affected by length limits: a. For 1965 ADr										
b. Total equivelent uniform annual operatios cost *	134,415	117.984	115,938	1106,791	107,454	134,415	117,984	1/5,938	106, 791	107,454
5. Incremental squivaleut unifors decrements in annual vehicle operating cost.	-	-16,431	$-2,046$	$-9,147$	$+663$	-	-16,431	$-2,046$	$-9,147$	$+663$

F/ First figure is maximum lensth in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and ruil
trailer combination/fourth, tractor, semitrailer, and full trailer cambination.
U.S. DEPARTMEMT OF CCIMERCE
orfice of Research ard Development
Tablel/-4Nf Comparison of highray cost and motor vehicle operating cost for sive levels of maximumal average

1. Construction eost per rile: a. Pavenent and shoulders.	84,352	83,331	83, 6,37	84,741	84,839	68,808	67,793	\%88,067	69,238	69,328
b. Bridige structures.	9244	9,244	9.244	9,244	9,244	9.244	9,244	9,244	9,244	9,244
c. Barthwork and drainage	34,250	34.216	34,225	34,260	34,262	34,250	34,166	34,186	34,285	34,292
d. Total construction cost.	127,846	126,791	127,106	128,245	128,345	112,302	111,2031	111.497	112,767	112,864
2. Equivalent uniform mnnual capital cost	11,146	11,054	11,082	11,181	11.190	9.791	9,695	9,721	9,832	9,840
3. Incremental amual cost a. Cepital cost	-	-92	$+28$	+ 99	+ 9	-	-96	$+26$	$+111$	+88
b. Maintenance cost of parement and shoulders.	-	-3	$+1$	$+3$	0	-	-2	0	$+2$	0
c. Nainteannce cost of structures	-	0	- 0	0	0	-	0	0	0	0
d. Total equivalent unlform annual hichury cost	-	-95	$+29$	$+102$	+9	-	-98	$+26$	$+113$	$+8$

4. Annual operatina cost of vehicles affected bylength limits: a. For 1965 ADT				-						
b. Total equivelent uniform annual operating cost	10,051	10,114	9,876	9,105	9,105	10,051	10,114	9,876	9,105	9,105
5. Inoremental squivalent unifons decrements in anoual vehicle operating cost.	-	$+63$	-238	-771	0	-	$+63$	-238	- 771	0

If First fioure is paximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and rull
trailer combination/fourth, tractor, semitrailer, and full trailer carbination.
Table 11-6. -- Fational averages for Method 4, economy of vehicle length - rigid pavement

	Step 0	Step 1	Step 2	Step 3	Step 4	Fatio to Step 0				
						Step 0	Step 1	Step 2	Step 3	Step 4
1. Interstate rural										
EUAHC,	55,822	55,430	55,555	55,697	55,767	1.000	0.993	0.995	0.998	0.999
ETHMOC, \$	231,907	207,504	199,528	190,946	188,497	1.000	0.895	0.860	0.823	0.813
EUAHC + EUAMVOC, \$	287,729	262,934	255,083	240,643	244,264	1.000	0.914	0.886	0.857	0.849
Hiny. constr. cost, \$	604,196	599,929	601,273	602,821	603,578	1.000	0.993	0.995	0.998	0.999
1552 ADI	1,035	844	807	756	733	1.000	0.815	0.780	0.730	0.708
2. Interstate urian										
EUAHC,	180,060	179,912	179,997	180,165	180,213	1.000	0.999	0.999	1.000	1.001
EUATVOC, \$	355,271	333,022	325,784	299,718	299,102	1.000	0.909	0.839	0.818	0.817
EUAHC + EUAMVOC, \$	546,331	512,934	505,781	479,883	479,315	1.000	0.939	0.926	0.878	0.877
Hryy. constr. cost, \$	2,003,631	2,002,090	2,002,996	2,004,771	2,005,275	1.000	0.999	0.999	1.000	1.001
1962 ADI	1,466	1,288	1,261	1,136	1,121	1.000	0.879	0.860	0.775	0.765
3. Primary rural										
ETARC, \$	25,905	25,615	25,719	25,852	25,919	1.000	0.989	0.993	0.998	1.001
EUAIVOC, \$	55,973	50,705	49,064	46,478	46,438	1.000	0.906	0.877	0.830	0.830
EUARC + EUAMVOC, \$	81,879	76,320	74,783	72,330	72,357	1.000	0.932	0.913	0.883	0.884
Eiwy. constr. cost, \$	274,407	271,258	272,383	273,830	274,562	1.000	0.988	0.993	0.983	1.001
1962 ADT	364	312	301	279	273	1.000	0.857	0.827	0.766	0.750
4. Primary urban										
EUAHC, \$	43,008	42,863	42,937	43,258	43,297	1.000	0.997	0.998	1.006	1.007
ELIATIOC, \$	134,415	117,984	115,933	106,791	107,454	1.000	0.878	0.852	0.794	0.799
EUAHC + EUARVOC, \$	177,423	160,847	155,875	150,049	150,751	1.000	0.907	0.895	0.846	0.850
Firy. constr. cost, \$	455,272	453,724	454,512	457,930	453,343	1.000	0.996	0.998	1.005	1.007
1962 ADI	803	689	675	607	600	1.000	0.858	0.841	0.756	0.747

Table 11-6. -- National averages for Method 4, economy of vehicle length - rigid pavement

	Step 0	Step 1	Step 2	Step 3	Step 4	Ratio to Step 0				
						Step 0	Step 1	Step 2	Step 3	Step 4
5. Secondary rural										
EUTMC, \$	11,671	11,576	11,604	11,707	11,716	1.000	0.992	0.994	1.003	1.004
EUEMVOC, \$	10,051	10,114	9,876	9,105	9,105	1.000	1.006	0.983	0.906	0.906
EUAHC + EUAMVOC, \$	21,722	21,690	21,480	20,812	20,821	1.000	0.999	0.939	0.958	0.959
Hwy. constr. cost, \$	127,846	126,791	127,106	128,245	128,345	1.000	0.992	0.994	1.003	1.004
1962 ADT				55	54	1.000	0.969	0.953	0.859	0.844
6. Secondary urban										
		16,449	16,482	16,561	16,574	1.000	0.993	0.995	1.000	1.001
EUAPVOC, \$	28,999	26,913	26,436	24,264	24,395	1.000	0.928	0.912	0.837	0.841
EUAHC + EUAMVOC, $\$$	45,556	43,362	42,918	40,825	40,969	1.000	0.952	0.942	0.896	0.899
Fivy. constr. cost, \$ 1962 ADT	178,874	177,681	178,044	178,907	179,049	1.000	0.993	0.995	1.000	1.001
1962 ADT	197	178	174	157	155	1.000	0.904	0.883	0.797	0.787

[^2](1) Equivalent uniform annual highway cost (EUAHC) for construction and maintenance.
(2) Equivalent uniform annual motor vehicle operating cost (EUAMVOC).
(3) The total of (1) and (2) (EUATC).
(4) Total construction cost for pavement and shoulders, bridge structures, and earthwork and drainage.
(5) 1962 daily number of trucks.

5. DISCUSSION OF RESULIS OF MEIHOD 4

An examination of tables $11-3$ and $11-6$ shows that the increase in the limits of vehicle length from the 1962 law results in a significant reduction in the truck ADT. The percentage reduction varies with the highway system and census division.

An examination of table ll-6 discloses that the vehicle leagth increases from the 1962 legal limits to the $35 / 50 / 55 / 65$ foot limits (Step l) result in decreases in highway construction costs of from $\$ 1,055$ per mile (secondary rural system) to $\$ 4,267$ (Interstate rural system). These decreases in construction cost result from a decrease in the E 18-kip axle applications. The use of longer vehicles and combinations having a greater number of axles results in heavier gross vehicle weights per vehicle combination but fewer vehicles in total (see table ll-3) to haul the same tons of cargo. Also, for the double-cargo combinations, there is a greater ratio of payload weight to tare weight than for
two separate single-cargo vehicles having a combined cargo cubic capacity equal to that of the double-cargo-body combination.

Perhaps the most significant comparison of transportation costs can be made by comparing the costs under the 1962 law to those under the $40 / 55 / 65 / 65$-foot length limits (Step 3), which approach the limits indicated by changes in State laws since 1962. The changes are as follows for rigid pavement, all six highway systems, and 10 census divisions:

Percentage change

	Greatest
Greatest	increase (+)
decrease	or least
	decrease (-)

a. Equivalent uniform annual highway cost - $0.9+1.3$
b. Equivalent uniform annual motor vehicle operating cost
c. Combined EUAHC and EUAMVOC
d. Highway construction cost
-30.1

- 2.1
-25.3
- 1.4
- 0.9
$+1.3$
e. 1962 daily number of trucks
-39.2
- 6.8

On a straight dollar basis, the reductions from the 1962 base condition to Step 1 length limits in the National average (table ll-6) show a range of reduction of $\$ 95$ (secondary rural) to $\$ 392$ per mile (Interstate mural) in the equivalent annual uniform highway costs and a range of change in truck operating
cost per mile of highway from an increase of $\$ 63$ on the secondary fural system to a decrease of $\$ 33,249$ per year per mile on the Interstate urban system.

Overall highway transportation economy would be increased materially by Nationwide use of the three-unit combination=tractor, semitrailer, and full trailer--with a maximum length of 65 feet. These increased length limits would result in a 14 to 27 percent reduction in the truck $A D T$ from the $2 D$ upward.

> ECONOMY OF SIMULTANEOUS INCREASES IN THE LIMITS OF AXIE WEIGHT AND OF VEHICLE LENGTH

The spread in the range of State maximum limits for both axle weight and vehicle length gives reason to consider the economy of simultaneous increases in axle-weight and length limits. Chapters 10 and 11 develop separately the transportation economy for axle weight and for vehicle length limits, respectively. It remains, then, to combine Methods l-M (axleweight economy) and 4 (vehicle length economy) into one analysis, identified as Method 6.

1. PLAN OF METHOD 6

The bases for comparison are the results of Method I-M for axle-weight limits and a modification of Method 4, identified as Method 4-M, for the length limits prevailing in 1962. Thus, the economy of the combination of methods was tested for each of ten census divisions and six highway systems in a matrix of 25 cells--five axle-weight limits and five vehicle length limits, each including the 1962 legal status.

Method 4 was modified in one factor to become Method 4-M. Method 4 was based on the empty weights, horsepower, and tractor weights given in Chapter 14 and on the E $18-k i p$ axle applications of Method 1 at the base condition. Method $4-M$ is Method 4 with
the base E 18-kip axle applications adjusted upward to produce the minimum pavement depth used in Method I-M. Therefore, Methods I-M and $4 m$ are Identical at Step 0 and the base (1962 law) axle-weight limit.

How Methods $\operatorname{l-M}$ and $4-\mathrm{M}$ were combined is explained in detail in the section on procedure for Method 6, which follows: The combination of methods, like the methods from which it is derived, includes the 29-percent increase in payload per vehicle from 1962 to 1990 and the transition period. The Method 6 analysis was made for rigid pavement only.

2. FROCEDURE USED IN MEITHOD 6

The plan followed for determining the transportation economy of simultaneous increases in axle-weight limits and vehicle length limits was a merging of the procedures for Methods I-M and 4-M. The work involved in Method 6, therefore, was to compute the highway and vehicle costs for the interior cells of the matrix formed by four axle-weight levels above the minimum base of $18 / 32 \mathrm{kips}$ and four length steps above the bese of the 1962 legal limits.

In order to reduce the volume of detailed calculations and to hold assumptions to the minimum, a system of percentage relationships was developed, based upon Methods $1-M$ and $4-M$, by
which the ADT and the E 18-kip axle applications for each
vehicle class could be extended to the right from the vertical
and downward from the horizontal base cells to the interior
cells. The matrix below indicates the celis where the cost date. are supplied from Methods $1-M$ and $4-M$ and the blank cells to be filled in with costs developed by Method 6 .

Method 4-M factor length limit-Step No.	Method l-M factors				
	Single/tandem axle-weight limits, kips				
	18/32	20/35	22/38	24/41	26/44
$\begin{gathered} 0 \\ (1962 \text { law }) \end{gathered}$	$\begin{aligned} & \text { Method } 1-M \\ & \text { and } \\ & \text { Method } 4-M \end{aligned}$	Method $1-M$	Method $1-M$	Method $1-\mathrm{M}$	Method $I-M$
1	Method 4-M				
2	Method 4-M				
3	Method 4-M				
4	Method 4-M				

Note: The blank cells represent the combination of increases in axle weight and vehicle length for which highway and motor-vehicle cost data are to be supplied from Method 6.

3. RESULTS OF METHOD 6

To provide the basis for comparing the relative economy between any pair of the 25 cells, the base results for seven factors are summarized in table 12-1N for the six highway systems in the Nation as a whole.

Table 12-1N - Sunanry of hishway and truck operatime cost, truck ADT, nom prement depth under a rango

Note: Combination of Methode l-M and 4 with transition period and with payland increano. Entrica apply to one conterline-mile of new construction. Tons of maloud varics, but is held constant for the axle veight lioit level and vehicle length otcpa within n hishway oystcr and ccasua diviaion.

National sumary -- System 1, Interstate rural

Cost item, number of trucke and pavement depth

Single/tandan axle weight maximum linitg, kip3				
$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

Step $0=1962$ legal woifght and leusth limits

Highvay conotruction cost I/
Equivalent uniform annual highway capital coot 2/ Equivalent uniform annual highway cost 3/
Equivalent uniform annual truck operating cost 2/ Total equivalent unsform annual traneportation coet Daily number of trucks - 1962/1990 4/ Pavenent depth (inches)

613,115	616.111	620159	25	L, 31
53,454	53,716	54,069	54, 566	
56.592	56.880	57260	57.793	58.299
232.044	228.713	224.003	218.657	215,181
288. 643	285.593	281.263	216.450	273.1880
103512537	1005/2464	96312362	912124	866/2132
9.24	9.35	9.50	9.68	9.84

Step 1 - Maximum lensth of vehiclo nad combinationa - fcet 5/35/50/55/65

Highway construction coet 1/
Equivalent uniform annual highway capital cost $2 /$ Equivalent uniform annual highway cost $3 /$ Equivaleat uniform annual truck operating cost $2 /$ Total equivalent unform annual transportation cost Dally number of trucks - 1962/1990 4/
Parement depth (inches)

608,712	611,678	615,671	421.279	626
-53,071	53,329	53,677	54.166	54630
56.216	56,493	56.868	57.393	57.892
20\%.574	205.682	203,262	200.692	198,932
26.3 .190	262,175	260.130	258.085	256.82
844/2123	81812058	184/1973	74411876	70611785
8.90	9.01	9.16	9.33	9.48

Step 2 - Maximum leagth of vehicle and combinntions - fcet $5 / 35 / 55 / \mathcal{0} / \mathrm{ij}$
Highway construction cost I/
Equivalent uniform annual highvay capital cost $2 /$. Equivalent uniform andual highvay cost 3/
Equivalent uniform annual truck operating cont $2 /$ Total equivalent unifom annual tranaportation cost Dally number of trucks - 1962/1990 4/
Pavement depth (inches)

610,132	613,117	617,136	622,713	628,120
53,194	53,455	53,805	54.296	54,763
56,339	56.619	56,996	57,523	58,825
198,534	196.753	194,444	193,321	191,467
254,873	253,372	251.440	250,844	249.492
80712024	$182 / 1961$	75011880	71111785	67411697
9.01	9.12	9.27	9.45	9.60

Step 3 - Maximum length of vehicle nad combinations - feet 5/ 40/55/65/65
Eighvay construction cost I/
Equivalent uniform annual highway capital costin/ Equivalent uniform annual highvay cost $3 /$
Equivalent uniform annual truck operating cost $2 /$
Total equivalent uniform annual traneportation cost
Daily number of trucks - 1962/1990 4/
Pavement depth (inches)

611.718	614,783	618.830	624.497	629818
53.338	53.600	53.953	544.447	54.916
56.483	56.164	57,144	57.674	58.118
188.316	186.765	184.123	183.888	182.364
244.799	243.529	241.867	241.512	240.542
75611905	$133 / 1846$	7021187	66611682	$633 / 1601$
9.14	9.25	9.40	9.58	9.94

Step 4 - Maximum length of vehicle and combinations - feet 5/ 40/55/70/70
Highway construction cost $1 /$
Equivalent uniform annual bighvay capital cost 2/
Equivalent uniform annual highway cost 3/
Equivalent uniform anaual truck operating cost $2 /$
Total equivalent uniform annual transportation oost
Da11y number of trucks $=1962 / 19904 /$
Pavement depth (inches)

612.575	615.592	619.650	625.334	630.124
53.407	53.670	54.024	54.520	54.990
56.552	56.835	57.216	57.748	588.253
182.774	181.263	179.188	178.190	177.108
239.326	238.898	236.4104	236.438	235.361
13311844	71111787	68111713	64611628	11311548
9.20	9.32	9.46	9.64	9.80

1/ Includes cost of pavement and shoulders, bridge atructures, and earthwork and drainage.
2/ Calculated at 6 percent interest rate per annum and 20 years, 1965 through 1984.
3/ Includes annunl cost of maintenance on surface and base, shoulders, and structures.
4 Number includes only trucks from class 2D upward through two trailer combinations; otcp 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.
5/ Firot figure is maximum length in feet of a single unit truck/second, tractor simitrailer combination/timini, wactive truck and full combination/fourth, tractor, aemitrailer and full trailcr combination.

 to one ecntorlsnc-mile of now conotruction. Tons of mylond varics, but is held constant for the axle weifint lisit lovel and veliclo longth otepa within a highay gyaten and consus divinisa.

National summary -- System 2, Interstate urban

Cost item, number of trucks and juverucnt depth

18/32	20/35	22/38	24/41	$=1.4$

Step $0-1962$ legal woight and lanth limits

SLintuay construction cost $1 /$	2,009,978	2.013, 019	2.017,452	2.023,340	02
Situmient uniform annual highway capital cost $3 /$	175,240	175,505	175.892	$1 \% 6,405$	906
Equivalent undform annual highway cost $3 /$	180,609	180,994	181,531	182, $\times 50$	182,956
Equivalent unifora annual truck operating cost 3 /	368.086	357,380	346,460	332,350	323,250
tal equivalent uniform annual treneportation co	548,695	538.374	527,991	514.600	506,206
Daily number or trucks - 1962/1990 4	146614608	$1410 / 4436$	$1341 / 4226$	1248/3951	1169/3714
Paverent depth (Inches)	9.31	2.39	9.50	9.64	0.78

Step 1 - Maximm langth of vehicle nad combinations - rect 5/35/50/55/65 Highvay construction cost $1 /$
Equivalent uniform annual highway capital cost $2 /$
Equivalent uniform annual highway cost $3 /$
Equivalent uniform annual truck operating cost $2 /$ Total equivalent uniform annual transportation cost Daily number of trucks - 1962/1990 4/ Pavement depth (Inchee)

175,101	175, 256	175,151		176,76
180.470	180.955	181,390	12, 07	811
33,	525,503	316,357	$\therefore 03800$	
513, 2113	506, 358	497.747	485,90	47832
28814035	1239/3926	117913733	1097	2271325
9.19	9.27	9.38	7.52	9.65

Step 2 - Maximum leagth of vehicle and combinations - rect $5 / 35 / 55 / 60 / 65$ BLghway construction cost $1 /$
Bquivalent uaiform annual hiohway capital cost $3 /$ Equivalent uniform annual bighway cost 3/ Equivalent uniform annunl truck operating cost $2 /$ Total equivalent uniform annual tranaportation cost Daily number of trucks - 1962/1990 4/ Pavement depth (inches)

2009,293	$2,012,361$	$2,016,795$	$2,022,671$	2028,408
175,180	175,448	175,834	176,346	176,817
180,549	180,937	181,472	182,190	182,897
325,023	317,247	308,228	297,688	289,912
505572	498,184	489,700	1779,878	472,809
126113982	$1213 / 3827$	$1153 / 3638$	$1072133,871003 / 3173$	
9.26	9.35	9,46	9.60	9.73

Step 3 - Maximum leasth of vchicle and combliantions - 1cct 5/40/55/65/65
Bighway construction cost I/
Equivalent uniform annual highway capital cost*2/
Bquivalent uniform annual highway cost 3/
Equivalent undform annual truck operating cost $2 /$ Total equivalent uniform annual transportation cost Dally number of trucks - 1962/1990 4/ Pavement depth (Inches)

$2,011,144$	$2,014,209$	$2,018,668$	$2,024,570$	2030,333
175,042	175,609	175,998	176,512	177,015
180,711	181,098	181,636	182,357	183,066
296,294	289,164	281,547	272,637	265,747
477,005	470,562	163,183	1754,994	148,813
11361,1606	109313465	104013296	96813073	20612879
9,40	9,49	9,60	9,74	9,88

Step 4 - Maximum length of vehicle and combinations - rect 5/40/55/70/70
Highway conatruction cost 1/
Equivalent uniform annual highway capital cost $2 /$
Equivalont uniform annual highway cost 3/
Equivalont uniform annual truck operating coat $2 /$
Total equivalent uniform annual traneportation cost Dally number of trucks - 1962/1990 4/
Pavement depth (inches)

2011660	$2,014,731$	2019,196	2025,106	$203.7,878$
175,386	175,654	176,044	176,559	177,062
180,755	181,143	181,682	182,103	13.3111
291.723	284,944	277,025	268,328	261,399
472,478	466,087	458.707	450,731	$414 / 510$
112113549	107813410	102515212	95413022	89212830
9.44	9.53	9.64	9.79	9.92

1/ Includes cost of paverent and shoulders, bridge structures, and carthwork and drainage.
2/ Calculated at 6 percent interest rate per annum and 20 .years, 1965 through 1984.
3/ Includes annul cost of maintenance on surface and base, shoulders, and structurea.
4/ Number includes oniy trucks from clase 2D upward through two trailer combinations; atcp 0 through 2-trai:ce, 5 axle and other steps through 2-trailer, 9 acle.
5/ First figure is maximum length in reet of a single unit truck/becoad, tractor gimitrailer combioation/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

Table $12-1 N$ - Sumary of highway and truck operating cost, truck Nor, nind pnverent depth under a range
12-6
Note: Combination of Methods l-M and 4 with transition period and with payload increaso. Entrics apsly to one centerline-mile of new construction. Tons of paylond varies, but is held constant for the axie weight limit level and vehicle length stcps within n highway system and cenaus diviaion.

National summary -- System 3, primary rural

Cost 1tem, number of trucks and pavement dopth
Single/tandicin axle weight maximum limita, kin3

Step $0=1962$ legal woight and lcagth limits
Highway construction cost 1/
Equivalent uniform annusi highway capital cost $2 /$ Equivalent unfform annual highway cost 3/ Equivalent uniform annual truck operating cost $2 /$ Total equivalent uniform annual transportation cost Daily number of trucks - 1962/1990 4/ Pavesuent depth (inches)

248,472	298,964	299,758	300,834	301,871
26,022	26,065	26,134	26,228	26,319
28,002	28,048	28,121	28,221	28,318
56,018	54,860	53,425	51,822	50,992
84,020	82,908	81,546	80,113	29,310
3641460	3531446	3381426	3191403	$302 / 382$
9.10	9,13	9.17	9.22	9,27

Step 1 - Maximum length of vehicle and combinations - icet $5 / 35 / 50 / 55 / 65$
Highway construction cost 1/
Equivarent uniform annual highway capital cost 2/ Equivalent uniform annual highway cost 3/
Equivalent uniform annual truck operating cost $2 /$ Total equivalent uniform annual trensportation cost Daily number of trucks - 1962/1990 4/ Parement depth (inches)

294,419	294.903	295.680	246, 230	297.743.
25,669	25.711	25.779	25,870	25,959
27.649	27,694	27.766	27,863	27.958
50,823	49,810	48.178	46.942	15,925
78,482	77504	76, 2414	74805	73,883
3131403	3021389	287/370	2681347	1250/326
8.73	8.76	8.79	8.84	8.89

Step 2 - Maximum lensth of vehicle and combinations - rect $5 / 35 / 55 / 00 / \mathrm{s} 5$
H1ghway construction cost 1/
Equivalent uniform annual bighway capital cost 2/ Equivalent uniform annual highway cost 3/
Equivalent uniform anaual truck operating cost $2 /$ Total equivalent uniform annual tranoportation cost Daily number of trucke - 1962/1990 4/ Pavement depth (inches)

295,888	296,376	297,160	298,220	299.241
25,797	25,840	25,908	26,000	26,089
27,777	27823	2,895	27,994	28,089
48,816	47,847	46,567	45,306	44,314
76,543	75,670	74462	7,300	12,403
3011386	2911373	2761354	2581,332	2411,311
8,87	8,90	8.94	8,99	9.03

Step 3 - Maxinum lensth of vehicle and combinations - fect 5/40/55/65/65
H1ghway construction cost $1 /$
Equivalent uniform annual highway capital costre/ Bquivalent uniform annual highway cost $3 /$
Equivalent uniform annual truck operating cost $2 /$ Total equivalent uniform annual transportation cost Dailly number of trucks - 1962/1990 4/
Pavement depth (1nches)

297777	298,270	299,063	300,134	301,166
25,962	26,005	26,074	26,167	26,257
27,942	27988	28,061	28,160	28,256
45,710	44,822	43,651	42,532	11,620
73,652	72,810	71,712	70,692	69,876
2791359	$269 / 347$	2551330	2391309	2231290
9.05	9.08	9.12	9.17	9.22

Bighway construction cost $1 /$
Equivalent uniform annual bighway capital cost ?/ Equivalent uniform annual bighway cost 3/ Equivalent uniform anaual truck operating cost 2/ Total equivalent uniform ennual transportation cost Da11y number of trucks = 1962/1990 4/ Parement depth (1nches)

298,729	299,224	300,023	301,098	302,136
26,045	26,088	26,158	26,251	26,342
28,025	28,071	28,145	28,244	28,341
44,797	43,921	12,755	41,677	40,780
72,822	71,992	70,900	69,921	69,121
2731352	2641340	2501323	2341303	21912.74
9.14	9.17	9.21	9.26	9.31

1/ Inciudes cost of pavenent end shoulders, bridge structures, and cartbwork and drainage.
2/ Calculated at 6 percent intereat rate per annum and 20 years, 1965 through 1984.
3/ Includes anauni cost of maintenance on surface and base, shoulders, and structures.
4/ Number includes only trucks from class 2D upward through tro trailer combinations; step 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.
$5 /$ Firet ligure is maximum length in fect of single unit truck/eecond, tractor gemitrailer combination/third, exactive truck aod full combination/fourth, tractor, samitrailer and full trailer combiostion.

Table 12-iN- Sumarary of highway and truck operating cost, truck ADr, and pavement depth undicr a raibe of axlewncight limite and of vehicle length limita; ri,sid pavement.

Note: Combination of Methods 1-M and 4 with tranaition period and with payload increase. Entrics upily to one conterline-mile of new construction. Tons of payload varies, but 18 held constant for the axle veight limit level and vebicle length steps within a highway syatem and census division.

National Sumary -- System 4, primary urban

Cost itew, number of trucks and pavement depth

Single/tandan axie weight maximum 1191ts, $\mathrm{k} 1 \mathrm{p}_{3}$				
$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 42$

Step $0=1962$ legal woight and icugth 2 imits

Highvay construction cost $1 /$	$474 / 343$	475,540	477230	478417	481551
Equivaleat uniform annual highway capital cost $2 /$	41.556	41,460	41,607	41.798	41.984
Equivalent uniform annual bighvay cost $\sqrt[3]{ }$	$41 / 2,671$	44, 785	44.945	1/5,153.	415355
Equivalent uniform annual truck operatiog cost 2/	134.610	128,190	121.647	115.221	112,063
rotal equivaleat uniform annual treneportation cont	172281	112975	166,592	160,374	15\% 118
Daily number of trucke - 1962/1990 4/	80311292	$758 / 1217$	$707 / 1133$	650/1043	605/971
Pavenent depth (1nches)	9.10	9.15	9.22	9.30	9.37

Step 1 - Maximum length of vehicle and combinations - fcct 5/ 35/50/55/65
Bighvay construction cost $1 /$
Equivalent uniform annual highway capital cost 2/
Equivaleat uniform annual highway cost $3 /$
Equivalent uniform annual truck operating cost $\sqrt[3]{ }$ Total equivalent ualform anaual transportation cost Daily number of trucks - 1962/1990 4/ Pavement depth (1nches)

472,488	473,679	475,361	477532	479,650
41,194	41,298	41,444	$41,6,34$	41,818
44,509	41,623	44,782	441,989	45,189
118,152	114,052	109,873	105,297	102,828
162,661	158,675	154,655	150,286	148,017
$688 / 1116$	$657 / 1061$	$621 / 1000$	5771928	54181868
8.94	9,00	9.06	9.14	9,21

Step 2 - Maximum learth of vehicle and combinations - feet 5/35/55/60/os BLghvay construction cost $1 /$
Bquivalent uniform annual highway capital cost 2/ Equivalent uniform anaual bighvay cost 3/ Equivalent uniform annual truck operating cost $2 /$ Total uivaleat uniform anaual tranaportation cost Daily number of trucke - 1962/1990 4/ Pavement depth (10ches)

473,440	474,636	476,325	478,505	180,633
41,277	41,381	41,528	41,718	111,904
44,692	44,706	44866	45,073	45,276
115,425	111437	107,360	103,187	100,732
160,117	156,143	152,226	148,260	146,008
67511090	64411036	6091977	5651906	5291847
9.04	9.09	9.16	4.23	9.30

Step 3 - Mavimum lensth of vehicle and combinations - fcct 5/ 40/55/65/65

Eighvay construction cosis $1 /$

Equivalent uniform annual highway capital cost"?
Bquivalent uniform anousi bighway cost $3 /$
Equivalent uniform annual truck operatias cost $2 /$ Total equivalent uniform annual transportation cost Daily number of trucks $=1962 / 1990$ 4/
Pavement depth (1nches)

477,617	478,833	480,548	482,762	484,921
411,641	41,747	41,897	42,090	42,278
44,956	415,072	45,235	45,415	415,649
104,870	101,229	97,560	93,910	91,714
149,826	146,301	142,795	139,355	137,363
6071484	5791936	5471882	5081818	4761165
9,43	9,48	9,55	9,63	9.70

Step 4 - Maximum leagth of vehicle and combinations - feet 5/ 40/55/70/70
ELghway construction cost $1 /$
Equivalent uniform anoual bighway capital cost $\sqrt[2]{ }$
Equivalont uniform annual bighway cost 3/
Equivalent uniform annual truck operating cost $\sqrt[2]{ }$
Total equivalent uniform anaual transportation oost
Daily number of trucks - 1962/1990 4/
Pavement depth (1achcs)

478,116	479,335	481,055	48,273	485,436
41,634	41,791	41,941	42,134	42,323
44,999	45,116	45,279	45,489	45,694
103,440	99,827	96,167	92,569	90,574
148,4139	1441,943	141,446	138,058	136,068
6001971	5721922	5401869	5021806	4691753
9,48	9.5 .3	9.60	9,68	9.75

1 Includes cost of pavement and shoulders, bridge structures, and earthwork and drainage.
2/ Calculated at 6 percent intereat rate per annum and 20 years, 1965 through 1984.
3/ Includes annus cost of mintenance on surface and baso, shoulders, and structures.
4) Number includes only trucks from class 2 D upward through two trailer combinations; step 0 through 2-trailer, 5 axie and other steps through 2-trailer, 9 axle.
5/ Firet figure is maximum length in feet of a aingle unit truck/second, tractor acmitrailer combination/third, trective truck and full combination/fourth, tractor, semitraller and full trailer combination.

Table 12-1 N-Sumary of highway ond truck operating cost, truck ADr, and mearent depth undcr a range of axle-wcight limits and of vehicle lagth 11 mita ; risid pavemont.

Note: Combination or Methods l-M and 4 with transition period and with payiond increnen. Entrice apply to one centerline-mile of new construction. Tons of raylond varica, but is held conatant for the axle weight lirait level and vehicle leagth steps within a highway sybter and cenaus division.

National summary -- System 5, secondary rural

Cost 1 tem, number of trucke and pavement depth

Single/tanden axic weight rnximum limito, kipo				
$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$

Step $0=1962$ legal voight and lcagth limits

Highvay construction cost 1/

Equivalent uniform annual highway capital cost 2/ Equivalent uniform onnual bighway cost 3 /
Equivalent uniform annual truck operating cost $2 /$
Total equivalent unform annual transportation cost
Da1ly number of trucke - 2962/1990 4/ Paverent depth (inches)

147,537	1471675	147.849	148.064	148.280
12.863	12.875	12.890	12.909	12.928
13.387	13.400	13.416	13.436	13.456
10.068	9.777	9.451	9.048	8.816
23.455	23.177	22.867	22.484	22.272
64.92	61189	-59184	55179	51144
8.00	8.01	8.02	8.03	8.05

Step 1 - Maximm longth or vehicle and combinations - rect 5/35/50/55/65
Highway construction cost 1/
Equivalent unifors annual bighway capital cost $2 /$
Equivalcat uniform annual bighway cost 3/
Equivalent uniform annual truck operating cost 2/
Total equivalent uniform annual transportation cost
Daily number of trucks - 1962/1990 4/
Pavement depth (inches)

145.996	146.131	146.333	146.516	146.129
12.129	12.140	12.155	12.714	12.193
13.253	13.265	13.281	13.301	13.321
10.127	9.816	9.474	9.094	8.881
23.380	23.811	22.755	22.395	22.202
62194	59189	54184	53179	$49 / 74$
7.77	7.78	7.19	7.80	1.81

Step 2 - Maximum Icogth of vehicla and combinations - feet $5 / 35 / 55 / 60 / 65$
Bighway construction cost 1/
Equivalent uniforw annual bi(3hway capital cost 2/
Equivalent uniform annual bighway cost 3/
Equivalent uniform annual truck operating cost 2/
Totas quivalent uniform annual tranaportation cost
Daily number of trucks $=1962 / 19904 /$
Pavement depth (inches)

146.456	146.593	146.767	146.919	141,193
12.169	12.181	12.796	12.814	12.833
13.293	13.306	13.322	13.341	13,361
9.871	9.570	9236	8,887	8.683
23.170	22.876	22,558	22.228	22.0444
61191	58187	55182	51174	481721
1.84	7.85	7.86	7.87	7.88

Step 3 - Maximum lensth of vchicle and combinations - rect 5/40/55/65/65
Highway construction cost $1 /$
Equivalent uniform anoual highway capital cost"2/ Equivalent uniform annual bighway cost $3 /$
Equivalent uniforw annual truck operating cost $2 /$
Total equivalent uniform annual transportation cost
Daily number of trucks - 1962/1990 4/
Pavement depth (inches)

148,121	148,258	148.435	148.650	148867
12.914	12.926	12.941	12.960	12.979
13,438	13.451	13.467	13.487	13.507
9.032	8.747	8.453	8.136	7.961
22.470	22.198	21,920	21.623	21.468
55183	53179	50175	46170	44166
8.09	8.10	8.11	8.12	8.14

Step 4 - Maximum length or vehicle and combinations - reet $5 / 40 / 55 / 70 / 70$
HLehway construction cost $1 /$
Equivalent uniform annual bighway capital cost $2 /$
Equivalont unsform annual bighway cost 3/
Equivalent uniform annual truck operating cost $2 /$
Total equivalent uniform annual transportation cost
Daily number of trucks - 1962/1990 4/
Pavement depth (inches)

148.210	148.1107	148.583	148.799	149.016
12.927	12.939	12.954	12.913	12.992
13.451	13.464	13.480	13.500	13.520
8942	8.658	8.311	8.051	7.810
22.393	22.122	21.851	21.551	21.390
55182	52178	50144	46169	43165
8.11	8.12	8.13	8.15	8.16

[^3] of axleavelght 11 mita and of vehicle lensth $11 \mathrm{mita} ;$ ri,sid pavei.ent.

Note: Combination of Mcthode l-m and 4 with traneition period and with paylond iacreaso. Eatrica apily to one centerlsne-mile of new construction. Tono of payload varics, but 13 held conctant for tire axle weight limit level and vehicle length steps within n highway syatcm and census division.

National Summary -- System 6, secondary urban
Cost itew, number of trucks and
Single/tandcua nxle weight maximum linitg, ki,3 pavement depth

Step $0=1962$ lcgal woight and length 11 mita
Higbvay construction cost 1/
Equivalent uniform annuel highway capital cost $2 /$
Equivalent uniform annual highvay cost $3 /$
Equivalent uniform annual truck operating cost $\sqrt[2]{ }$
Total equivalent uniform annual transportation cost Da11y number of trucks - 1962/1990 4/ Pavonent depth (inches)

193.936	196.012	198.171	201.989	205.195
16.988	17.096	17.330	17.610	17.890
17.870	18.014	18.331	18.637	18.943
29.091	28.301	27.344	26.202	25.521
46.961	46.345	45.675	44.839	444646
1971250	1901230	1801228	1681213	1571199
8.00	8.02	8.05	8.08	8.12

8tep 1 - Maximum length of vehicle and combinations - fect 5/ 35/50/55/65
Highway construction cost 1/
Equivalent uniform annual highway capital cost $\sqrt[3]{ }$ Equivalent uniform annual highway cost 3/ Equivalent unfform annual truck operating cost $\sqrt[3]{ }$ Total equivalent uniform annual transportation cost Dally number or trucks - 1962/1990 4/ Pevement depth (1nches)

192.317	194.510	197.210	200,415	203.616
16.772	16.958	17.194	17.413	17.152
17.734	17.937	18.195	18.580	18.805
26.952	26.312	25.548	24.629	24.098
44.686	44.249	43.143	43.129	42.903
1781229	1711221	1631210	$152 / 196$	1431184
7.77	7.79	7.81	7.85	7.88

Step 2 - Maximum lcasth of vehicle and combinations - roct 5/ 35/55/60/65
Highvay construction cost $1 /$
Bquivalent uniform annual bighvay capital cost $2 /$
Equivalent uniform annual highway cost 3 /
Equivalent uniform annuni truck operating cost 2/
Total equivalent uniform annual transportation cost
Dally number of trucks - 1962/1990 4] Pavement depth (Inches)

192.841	194.916	197678	200.884	2041.186
16.813	16.999	17.235	17.514	17.193
17.775	17.978	18.256	18.541	18.846
26.361	25.123	24.911	24.115	23.593
44.136	43.701	43.201	42.656	42.439
1741224	1681216	1601205	1491192	1401180
1.84	1.86	7.89	7.92	7.95

Step 3 - raximum length of vebicle and combinations - rect 5/ 40/55/65/65
Highvay construction cost 1/
Equivalent uniform annual highway capital cost*? Equivalent uniform annual highway cost $3 /$
Equivalent uniform annual truck operating cost $2 /$ Total equivalent uniform annual transportation cost
Dolly number of trucks - 1962/1990 4/ Pavement depth (1nches)

193.992	196.129	198.835	202.047	205.252
16.913	17.180	17.335	17.615	17.895
17.875	18.079	18.336	18.642	18948
23.902	23.336	22.671	21.930	21.470
41.777	41.415	41.007	40.572	40.418
1671202	1511195	1441185	$134 / 173$	1261162
8.01	8.04	8.06	8.10	8.13

Step 4 - Maximum length of vabicle and combinations - feet 5/ 40/55/70/70
Highvay construction cost l/
Equivalent uniform annual bighway capital cost $\sqrt[2]{ }$ Equivalent uniform annual bighvay cost 3/
Equivalent uniform annual truck operating cost ?/
Total equivalent uniform annual transportation cost
Dally number of trucks - 1962/1990 4/
Pavement depth (inchcs)

194.179	196.317	199.024	202.236	205.444
16.929	17.116	17.352	17.632	17.912
17.891	18.095	18.353	18.659	18.765
23.628	23.064	22.395	21.656	21.190
44.519	41159	40.748	40.315	40.155
1551200	1501192	1421183	1331171	1241160
8.04	8.06	8.09	8.12	8.16

[^4]Actually, because table $12-1 \mathrm{~N}$ gives the results of Methods $1-\mathrm{M}, 4-\mathrm{M}$, and 6, it may be used in comparing the economy of increases in axle-weight limits, vehicle length, and of combined axle weight and length. The form of table 12-1N was chosen because (a) it adapts itself to presentation of the significant end products, (b) certain of the basic factors were previously presented in the results of Methods $1-M$ and $4-M$, and (c) the decreasing highway costs from one length step to another prevent calculation of a benefit-cost ratio.

In table $12-2 \mathrm{~N}$, a surmary and analysis of table $12-1 \mathrm{~N}$ shows the ratio to the base values of the corresponding values at increased axle-weight limits and vehicle length limits. The values presented are (a) highway construction costs, (b) truck $A D T$, (c) equivalent uniform annual truck operating cost, and (d) equivalent uniform annual highway cost.
4. DISCUSSION OF THE RESULTS OF METHOD 6

The results of the analysis of economy of increases in axle-weight limit indicate bigh probable economy, as shown by the benefit-cost ratios in the lower right-hand corner of table $12-2 N$. The increases in vehicle lengths likewise result in pronounced truck operationg economy, as shown by the index ratios in the lower left-hand corner of table 12-2N. When the increase in axle-weight limits is accompanied by an increase in the vehicle length limits, the economy gained is still more striking. ismite and io vehiele longlh limitn: riald pavemant.
notel All ooste are for one centerline-mile of hlahmy. Conntruction cost includee oot of parement and shousdere, bridge etruoturea,
 Btep 0 Inolutae trink from olaee $2 D$ upherd throuah two-tretler 5 axle Dhar otept throunh 2-trellerg exle.
Based on results from methods I-M and 4 as given in table 12-1.
National sumury - System 1, Interstate rural

8tep - Lensth	nimula/tandme oxia vaight itmite, kspe					Single/tandes axlo motiot limite, tipe				
	18/32	20/35	22/38	26/41	26/4h	18/32	20/35	22/30	24/41	26/4h
- (1962 1av)	Inoreese (4) or daereane (-) in conatruotion oont frow band									
	$613,115$	$+2,976$	+ 7,065	$+12,118$	$+18,150$	$\begin{aligned} & \text { Pana } \\ & 1.035^{\circ} \end{aligned}$	-30	-72	-123	-169
$1(35 / 50 / 55 / 65)^{1 /}$	$-4,403$	-1.437	$+2,556$	$+8,164$	$+13,427$	-191	$-2 / 7$	-251	-291	-329.
- (35/55/60/65) ${ }^{1 /}$	$-2,983$	$+2$	$+4,021$	$+9,658$	+15,005	-228	-253	-285	-324	-36L
3(40/55/65/65) ${ }^{1 /}$	$-1,337$	$1 \cdot 1,668$	$+5,715$	-111,382	+16, 163	-279	-302	-333	-369	-402
(40/55/70/70) ${ }^{1 /}$	-540	$+2,477$	$+6,535$	$+12,219$	+11, 207	-302	-324	-364	-389	-422
t										
0 (1962 Lev)	1.000	1.005	1.011	$1 \cdot 021$	11030	1.000	0.971	0.930	0.881	0837
$1(35 / 50 / 55 / 65)^{3 /}$	0.993	0.998	1004	1.013	1.022	0.815	0.720	0.757	0.719	0.682
$2(35 / 35 / 60 / 65)^{3}$	0.995	1.000	1.007	1.016	1.024	0.780	0.756	0.725	0.687	0.651
$3(40 / 35 / 65 / 65)^{1 /}$	0.998	1.003	1.009	1.019	1.027	0.730	0.708	0.678	0.643	1.612.
- (40/53/70/70)	0.999	1.004	1.011	1.020	1.029	0.108	0.687	0.658	0624	0.592
0 (1962 Lov)	ineremen (t) or deorease $(-)$ in equiveleat uniform annul truck operating cont frow bete					Inorsaea (+) or decrean (-) in aquivileat unifore adaunl hishmay coet from beat				
	Re					Baes				
	232044	$-3,331$	$-8,041$	$-13,387$	-16.863	56,592	$+281$	+661	+1,194	$+1.100^{\circ}$
$1(35 / 50 / 55 / 65) 1 /$	-24.470	-26,362	-28782	$-31,352$	-33/12	-383	-106	+2.69	$+794$	1.1273
$2(35 / 53 / 60 / 63){ }^{1 /}$	$-33,510$	$-35,291$	$-37,600$	$-38,723$	$-40,577$	-260	$+20$	$+397$	+ 92.4	+1,26
$3(40 / 55 / 65 / 65)^{1 /}$	-43.728	$-45,219$	$-47 .=21$	$-48,156$	$-49<80$	$-1 / 6$	± 16.5	+5\% 5	$+1.0 \% 5$	$+1,579$
(40/55/70/70) ${ }^{1 /}$	$-49,270$	- 50.7811	$-52,856$	-53.354	$-54,936$	-47	$+236$	$+617$	$\div 1,8 \therefore ?$	$+1.654$
	Ratio of equivalent unlform annul truck operating coet to bane					Ratio of decreabe in agulvileat uniform anaml truck operatiag cost to increase io equivelent unifore saomal blebevay oont				
- (1962 Lav)	1.000.	0.986	0.965	0.942	0.927	-	11.9	12,2	11.2	9.9
$2(35 / 50 / 55 / 65)^{1 /}$	0.894	0.886	0.876°	0.865	0.857	21	2)	$10 \% 0$	39.5	25.6
$2(33 / 55 / 60 / 65) 1 /$	0.855	0.848	0.838	0.833	$0,825^{\circ}$	21	1764.6	94.7	41.9	28.5
$3(40 / 55 / 65 / 65)^{2 /}$	0.811.	0.805	0.796°	$0 \cdot 12$	$0,786^{\circ}$	21	274.4	86.8	44.8	31.5
(40/55/70/70) ${ }^{1 /}$	10.788	0.781	0.772	0.770	0.763	$2)$	$2 / 5.2$	85.7	46.4	33.2

[^5]Wotes all coote ere for on contorlinemile of hiphwy. Conntruction cost included coet of pavement ind ohouldare, bridge etruotures,
 Btep 0 Inaludae truake from alase $2 D$ upnerd through two-treller 5 exle. othar etepe through 2-treiler 9 oxie.
Based on results from methods $1-M$ and 4 as given in table 12-1.
National sumary -- System 2, Interstate urban

8top - Lengeh	Finglo/tanden oxio voleter 11mite, kipo					S1nglo/tandea oxso molebt 11mite, Mpo				
	18/32	20/33	22/30	24/41	26/44	18/32	20/35	22/30	24/41	26/4
- (1962 Lev)										
	$2,009,978$	$+3,041$	$+7,474$	$+13,362$	$+19,110$	1.466	- 56	-125	$-2 / 8$	-297.
$1(33 / 50 / 53 / 63) 1$	-1,593	11.445	+5,866	$+11,726$	+17,450	-178	-227	-287	-369	-439
$2(33 / 35 / 60 / 63)$ y	- 685	+2,383	+6,817	$+12,693$	$+18,430$	-205	-253	$-3 / 3$	-394	-463
$3(40 / 35 / 65 / 63)$ y	+1/166	$+4,231$	$+8,690$	$+14,592$	120,355	-330	-373	-426	-498	-560.
- (10/35/70/70) ${ }^{1}$		$+4.753+4.218$		+15,128	+20,900	-34/5	-388	-441	-512	-574
0 (1962 dov)	ratio of conotruotion cost to baed					Failio of truak ADS to bave				
	1.000	1.001	1.004	1.007	1.089.	1.000	0.962	0.915	0.851	0.797
$1(33 / 50 / 53 / 63)$ y	0.999	1.001	1.003	1.006	1.009	0.879	0.845	0.804	0.748	0.701
$8(33 / 33 / 60 / 63)$	1.0	1.001	1.203	1.006	1.009.	0.860	0.827	0.786	0.731	0.684
$3(40 / 33 / 63 / 63)$	1.001	1.0021 .004		1.007	1.010	0.775	0.746	0.709	0.660	0.618
- (40/33/70/70)	1.001	1.002	1.0051 .008		1.010	0.7650 .735		0699	0.651	0.608
0 (1962 lav)	Inoreane ((t) or dearease (-) in equinliat unifora -amal truck operiting coat from bace					Inorocies (4) or decreace (-) in aguivaleat waiform -anual highway coat frow beac				
	Reab $11368,086$	$-10,706$	-21,626	-35,736	-44.836	Baen	+385	$+922$	$+1.641$	$+2,347$
$1(35 / 50 / 35 / 65)^{1 / 1}$	-34,683	-42,583	-51,729	-64,286	-71.573	-139	+ 24	$+781$	$+1,498$	$+2,202$
$2(35 / 53 / 60 / 65)$	$-43,063$	-50,837	$-59,858$	-70,398	-78,174	-60	$+328$	$+863$	$+1,581$	$+2.288$
$3(40 / 33 / 63 / 63)$	-71,792	-75,	-86,539	-95,4	-102,337	$+102$	+ $23 ?$	$+1.027$	$+1.748$	$+2,4=7^{\circ}$
- $40 / 55 / 70 / 70)^{1 / 2}$	-7	- 53	-91,061	$-99,7$	-106,687	$+146$	- 530	$+1073$	+1,794	+2,502
0 (1962 Lev)	Ratio of oquivalent unifora a onval truck operating cort to baod					Ratio of deorease 10 equiveleat unifore eanul truck operetios cost to increase in equivalent unifore eooun blehway ooot				
	1.000	0.971	0.941	0.903	0.878	-	27.8	23.5	21.8	19.1
3/50/55/63)	0.906	0.884	0.859	0.825	0.806°	2	173.1	66.2	42.9	32.5
35/35/60/65) ${ }^{1 /}$	0.883	0.862	0.837	0.809	0.788	$2)$	155.0	69.4	44.5	34.2
$3(40 / 35 / 63 / 63)^{1 /}$	0.805	0.786	0.165	0.741	0.722	703.8	160.8	84.3	54.6	41.7
- $(60 / 53 / 70 / 70)^{1 /}$	0.793	0.774	0.763	0.729	10.710	523.0	155.7	84.9	55.6	42.6

[^6] limite ond in vehiole length ifritm: rigid paremat.

Notel All coste ere for ons oanterilne-mila of highmy. Conitruction cost tacludee ooet of pavement end ehouldars, bride etruaturee
 Btep 0 inoluion truake frow olase $2 D$ upmerd through two-treller 5 exle, other atopethrough 2-traller 9 exle.
Based on results from methods $1-M$ and 4 as given in table 12-1.
National sumary -- System 3, primary rural

Btap-Longth										
	18/32	20/35	22/38	26/41	26/4	18/32	20/35	22/38	24/41	26/4
- (1962 100)	increase (t) or deoreane (-) in conctruotion cont froub bane									
	2000	$+472$	$+1,28 \%$	$+2,362$	$+3,399$	364	-11	-26	-45	-62
$1(35 / 50 / 55 / 65) 1$	$-4,053$	$-3,569$	-2,792	-1.742	-729	-51	-62	-77	-96	-114
$2(35 / 53 / 60 / 63)$	-2,584	-2,096	$-1,3 / 2$	-252	$+769$	-63	-73	-88	-106	-123.
$3(40 / 35 / 65 / 69){ }^{\text {y }}$	-695	-202	$+591$	+1,662	+2,694	-85	-95	-109	-125	-141
- $(40 / 55 / 70 / 70)^{1 /}$	-257	$+752$	$+1,551$	$+2,626$	+3,664	-91	- 100	-114	-130	-140
0 (2962 Lav)	of conotruotion cost to dayo					Patio of truak Nor to baeo				
	1.000	1.002	1004	1.008	1.011	1.000	0.970	0.929	0.876	0.830
$1(33 / 50 / 53 / 65)^{1 /}$	0.986	0.988	0.991	0.994	0.997	0.860	0.830	0.788	0.736	0.687
$2(33 / 53 / 60 / 65)^{2}$	0.991	0.993	0.996	0.999	1.002	0.827	0.199	0.758	0.709	0.662
3 (40/53/65/63)	0.998	0.999	1.002	1.005	1.009.	0.766	0.739	0.701	0.657	0.613
	1.001	$1.002 / .005$		1.009	1.012°	0.750	0.725	0.687	0.643	0.602
- (1962 Lav)	Inareane (+) or deoreane (-) in equivalent unifore -amal truck opereting cont fros beas					Inormaen (t) or decreaee (-) tia equivaleat unlform eagual hlehvay ooet from bate				
	Ban 56.018	-1,158	-2,593	-4.126	-502\%		$+46$	$+119$	$+219$	+316
$1(35 / 50 / 55 / 65)^{1 /}$	$-5,185$	-6,208	$-7,540$	-9.076	$-10,093$	-353	-308	-236	-139	-44^{\prime}
$2(35 / 55 / 60 / 65)$	-7,202	$-8,171$	-9.451	-10,712	-11.704	-225	-179	-107	-8	$+87$
$3(40 / 53 / 65 / 63)^{1 /}$	-	$-11,196$	-12.367	-13,486	-14,398	-60	-14	$+59$	+158	$+254$
- $(40 / 55 / 70 / 70)^{1 /}$	-11,221	-12,097	$-13,263$	$-14,341$	-15,238	$+23$	$+69$	$+143$	1242	$+339$
- (1962 Lav)	Ratio of equivalent unifors cenual truck opereting cost to base					Ratio of deoreses in equitelent unifore onnul truck operetine 				
	1.000	0.979	0.954	0.926	0.910	-	25.2	21.8	18.8	15.9
35/30/33/65) ${ }^{1 /}$	0.907	0.889	0.865	0.838	0.820	2)	21	21	2)	21
$2(35 / 35 / 60 / 65)$	0,871	0.854	0.831	0.809	0.791.	2)	2)	2)	2)	134.5
$3(40 / 55 / 65 / 65)^{1 /}$	0.816	0.800	0.779	0.759	0.743	$2)$	2)	209.6	85.4	56.7
- (40/55/70/70) ${ }^{1 /}$	10.800	0.784	0.763	0.744	0.728.	487.9	175.3	92.7	59.3	44.9

[^7]Notel All coste ore for onm centerline-nlle of highmy. Conntruction cont locluded coit of parement end ahoulders, bridge etrooturen,

Based on results from methods 1-M and 4 as given in table 12-1. National surmary -- System 4, primary urban

[^8] lifite end lo vehiole lencth limita: rigid persmant.
thet All coste ere for one centerilne-nile of highmy. Conntruction cout includee coet of pavement end ehouldare, bridse etruoturee,
 Btep 0 incluane truake from olee $2 D$ upverd througb two-traller soxe, other etep through 2-traller 9 axle.
Based on results from methods $1-M$ and 4 as given in table 12-1. National Bummary - - System 5 , secondary Mural

0 conbintion/fourth trator, caltraller ad full traller oombination.
2/ Motor vehicle operating cost increase, therefore, benefits are negative.
$3 /$ Highway construction cost decrease, therefore, the results are highly favorable.

 Btop 0 inoludee truake from olnea 20 upmard through tvo-troiler 5 exie, other etepe through 2-treller 9 evie.
Besed on mesults from methods 1-M and 4 as given 1n table 12-1. National sumary -- System 6, secondary urban

But the economy of the combined increases in leagth and axieweight limits is not the sum of the two individual economies, but usually less than the sum.

The extremely high benefit-cost ratios in the lower right-hand corner of table 12-2N are the result of just slight increases in the equivalent uniform annual highway costs. Any such slight increase in costs is somewhat lacking in precision, but when divided into the much larger sum of dollars of decrease in truck operating cost (benefit) produces a benefit-cost ratio too large to believe. Nevertheless, very high economy does exist, as indicated by footnote No. 2 on the table (table 12-2N) for those cells where the highway costs decrease with a combined increase in axle-weight limit and vehicle length limit.

The national figures (combined 10 census divisions) for each of the six highway systems offers a good picture of the overall consequences of combined increases in axle-weight limits and vehicle length limits. Table 12-4 is a national summary showing the results separately for each of the four length-limit steps. The benefit-cost ratios vary as follows:

System 1.	Interstate rural	0.9 to 7.3
System 2.	Interstate urban	9.7 to 24.9
System 3.	Primary Mural	9.2 to 21.6
System 4.	Primary urban	10.7 to 37.3
System 5.	Secondary mural	8.8 to 33.9
System 6.	Secondary urban	1.5 to 4.7

U.3. DEPARTNEIT CN CONERCZ
Off1ce of Research and Development
Table 12-4. - Comperison of blehway cost and motor veicle orergtinj cost for live levels of axle weight caximul limits

Elghay syste 1 . Interstate rural

Elghway Syste 1. Int	Method of Anelysis $6 \cdots-1$ th traneition					Census Mr1sioa All				
Cost Item	STEP 0:E (35/50/55/65) 11					STEP Tio ($35 / 55 / 60 / 65$) 4				
	R1gid Pavement					R1gid Frresent				
	Single/tandea axle welcht easinn limits, 510 s									
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

> COST OF PROVIDING HTGHAY FACIUTTIES

2. Construction cost per mile: a. Pavenent and shoulders . .	215.847	218.38	220.765	2,9	4.95	217.249	219821	222,2,2	224.488	226.469
	197.746	261.047	204,347	207648	2,10,948	197.746	201,047	,204,347	207648	210,948
	190.391	190,478	190,559	190,635	190.701	190.390	190.477	192,5\%0	190,637	190,703
	603,984	609912	615,671	1621.279	626,602	605,385	611345	617.136	622,773	628.120
2. Equivalent unform annual capital cost	52.658	53,175	53,677	54.166	54,630	52,780	53,300	53,805	54,29\%	54,763
3. Tocremental amual cost c. Capital cost	-	517	502	489	464	-	520	- 505	491	467
b. Mafntenance cost of parement and boulders.	-	13	12	11	10	-	13	12	11	10
C. Maintenance cost of structures	-	25	25	25	25	-	25	. 25	25	25
a. Total equivalent unirorm annual hiebrey cost.	-	555	539	525	499	-	558	542	527	502

4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivaleat uniform annual operatus cost *	210.599	206,567	203,262	200,692	198.932	201.476	197.614	194,444	193,321	191.467
3. Incremental equivalent uniform decrements in annual vehicle operating	-	4,032	3,305	2,570	1.760	-	3,862	3.170	1.123	1,854

 orfice of Research and Developwent
Dablel2-4. - Comparison of highway cost acd motor vehicle jperatioz cost for five levels of exle velizt eaxi-in linits

COST OF FROVIDIM HEMEAAY PACINTIES

1. Construction cost per alle: a. Paresat and shouldera .	218,873	221,480	223.921	226.210	228.217	219.659	222,284	224.741	227.046	227.063
	197,746	201.047	204,347	207.648	210.948	197.746	201,047	$2=4.347$	207,604	$210.94 ?$
	190.389	190.477	190,562	190,639	190,713	190,389	190.479	170.562	190,640	190.708
	607,008	613.004	618,830	624.497	629.878	1607,794	613,810	1617650	625, 3, 34	630.724
2. Equirelent unifora sanual capital cost	52022	53,445	53,953	54,447	54.916	52.991	53,515	54,024	54.520	54.990
Incremital eminal cost e. Capital cost	-	523	508	494	469	-	524	509	496	470
b. Maintenence cost of prrement and sboullers.	-	13	12	11	10	-	13	12	11	10
- Maintencnce cost of structures	-	25	25	25	25	-	25	25	2.5	25
d. sotal equivalent uniform annual highey cost	-	561	545	530	504	-	56.2	54́\%	532	505

4. Amual operating cost of vehicles arrected by axle welght limits: e. For 1965 ADI .										
b. Total equivalent unfom ennual operating cost	190.903	187.526	184,723	183.888	182,364	185.352	182,033	179.183	173.690	177.108
5. Incremental equivalent unform decrerionts in annual vehicle operating cost.	-	3,377	2,803	835	1.524	-	3.319	2,845	498	1.582

[^9]
\[

$$
\begin{aligned}
& \text { U.S. DEPAREMin CF CCIVERCZ } \\
& \text { Bureau of Public Roads }
\end{aligned}
$$
\]

Office of Research and Developsent
Tablel2-4: - Comparison of hichway cost and Eotor veifcle operatioz cost for five levels of axle welght peximu lealts

Cost item	STEP O:E (35/50/55/65) 3					STEP Tio (35/55/60/6j) y				
	Rigid Pavement					R1pld Pavemert				
	Single/tandea axle Yelzht cavinim limits, 5103					Sterle/tic: we caxioul \%elzit liats, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COST OF RROVIDING HIGENAY FACIITITES
Census Drvision_

1. Construction cost per mile: a. Pavement and shoulders . . .	219,873	221.807	223,670	225,453	227.103	220,772	222,7421	224.621	226.418	228081
b. Bridge etructures.	1,291.193	1,295,211	1.299.229	1.303 .246	1,307.264	1,291,193	1,275,2111	1,299.229	1.303 .246	1,307.264
	492,815	492.882	492,945	473.005	493,061	492,815	492,8821	492.945	493,007	493.063
	2,003,881	12,009,900	2,015,84,	2,021,704	2,027,42?	2,004,730	2,010,8351	2,016,795	2,022671	2,023,408
2. Equiraleat unform annual capital cost	174,708	175.233	175,751	176,262	176,761	174.787	175,315	175,834	176.347	176,847
3. Incresental amual cost B. Capital cost	-	525	518	511	499	-	528	519	513	500
b. Malntenance cost of parement and sboulders.	-	15	14	13	12	-	15	14	13	13
Q. Hadnteannce cost of structures	-	193	193	193	193	-	193	. 193	193	193
d. Total equivalent untrorm annual fichury cost	-	733	725	717	704	-	736	726	719	706

HOTCR TRLCK OPERATING COST

4. Amual operating cost of vehicles affected by axle veight linits: a. For 1955 ADT										
b. Potal equivaleat uniform anoual operating cost *	349.598	331.342	316,357	303.800	296513	341.140	323.052	1308,228	297,688	289.912
5. Incremental equivalent uniforn decrecost. Eents in annual vehicle operating	-	18,256	14.985	12,557	7,287	-	18,078	14.834	10,540	7,776
Batro or	ATMAL DE	EISE In	motca truc	OpEric	cost To	mimat Eig	HAY COST			
6. Ratio of increaental reduction in truck operating cost to incranental socresse in equivalent annual highray cost.	-	24.9	20.7	17.5	10.4	-	24.6	20.4	14.7	11.0

orfice of Research and Development
2nblel2-4. - Comparison of highwa cost acd eotor vehicle speratiog cost for five levels of axle velzht raxirum limits by eoch of four caximum learth of vehicles, for the 20 -year periot 1965 throuzh 1984: National average
 Cost Item
COST of EROVIDEM HMGEAY PACHITISS

MOLCR TRUCK OPEATSİ COST										
4. Apoual operating cost of vehicles afrected by axle weight lifits: e. Tos 1965 ADT										
b. Total equifalent uniform ansual operiting cost	310,391	294,549	281,547	272,637	265.747	305,812	290,035	277.025	268,328	261,399
5. Increnental equivalent uniform decre cost. gents is annual vehicle operating	-	15,842	13,002	8,910	6,890	-	15.777	13.010	8,697	6,929

[^10]U.S. DEPARTNEITI CF COMERCE
Buresu of Public Roads
Orfice of Research and Developent
Tablel2-4. - Comparisoa of highway cost and motor veicle operatior cost for five levels of axle velght maximu limits by each of four racimum length of vehicles, for the 20 -year period 1965 throuzh 19a4: National average

EIghway Syster 3. Primary rural	Metbod of Anelysis $6 \cdots$ - th tranestioa					Ceasus Division All				
Cost Item	STEP O:E ($35 / 50 / 55 / 65$) 4					STEP THO (35/55/60/65) y				
	R1fld Pavement					Rigid Paversat				
	Single/tandem axle weizht ca:imin limits, isios					Slegle/tanden axle miaximun welgat li=1ts, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COST OF FROVIDING GIGEHAY FACILITIES

1. Construction cost per mille: a. Pavement and sboulders .	176,036	176.586	177.135	177,673	178.176	177.498	178,058	178.615	179.162	179.672
b. bridgo structures. .	30.831	31,324	31,816	32,308	32,801	30,831	31.324	31.816	32,308	32.801
	86,690	86.710	86,729	86.749	86,766	86,690	86,710	35.729	86,750	86.763
	293,557	294,620	1295,680	296,730	297,743	295,019	296.092	277.160	298,220	299.241
cost -	25,594	25,686	25,779	25.870	25,959	25,721	25,815	25,908	26.000	26.089
3. Freremental amual cost a. Capital cost	-	92	93	91	89	-	94	93	92	89
b. Maintenance cost of parement and aboulders.	-	2	2	2	2	-	2	2	3	2
c. Maintenance cost of structures	-	4	4	4	4	-	4	. 4	4	4
d. Total equivalent uniform annual hlehray cost	-	98	99	97	95	-	100	99	99	95

4. Amual operating cost of vehicles aflected by axle veight limits: a. For 1965 ADT										
B. Total equivaleat uniform annual	52,387	50,266	48,478	46,942	45.925	50.325	48,285	46.567	L- 306	44,314
5. Increnental equivalent uniform decrements in annual vehicle operating cost.	-	2,121	1,788	1.536	1,017	-	2,040	1,718	1. $=1$	992

D.S. DEPARDEETT OR CCNAERGE
orpice of Research and Development
2able 12-4. Comparison of bighway cost and motor vehicle operating cost for five levels of axle welght raximum linits

y Systern 3. Primaxy rural Method of Anslysis 6 with transition						Census Divisior All				
Cost Iter	STEP ITREE ($40 / 55 / 65 / 65$) y					STEP POUR ($40 / 55 / 70 / 70$) y				
	Rigid Pavement					Risid Pavesot				
	Single/t	tander exle	weysht	xiorin 11:0	s, kios	Sin-1e	tande ax	e Eactur	w-1㱠t 11	1ts, kios
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
COST OF FROVIDIM HIGBuAY PACIHMPIES										
1. Construction cost per alle: a. Pareant and shoulders .	179.378	179.948	180.517	181075	181.596	180,325	180.901	181.476	182,040	182,566
b. Bridge etructures.	30,831	31,324	31.816	32,308	32.801	30.831	31.324	31.816	32,308	32,801
Barthrori ama dra	86,689	86,710	86.730	86.751	86,769	86.691	86.710	86.731	86,750	86,769
. rotal construction cost	296,898	297.982	299.063	300,134	301.166	297,847	298.935	300,023	1301,098	302,136
2. Equiralent uniform annual capital cost	25,885	25,980	26.074	26,167	26,257	25,968	26,063	26.158	26,251	26,342
3. Increnntal ennual cost 3. Capital cost	-	95	94	93	90	-	95	95	93	91
b. Yaintemance cost of pavement and aboulcers.	-	2	2	2	2	-	2	2	2	2
- Malntenence cost of structures	-	4	4	4	4	-	4	4	4	4
d. sotal equivalent uniform annual highoy cost	-	101	100	99	96	-	101	101	99	97

4. Amual operating cost of rehicles affected by oxle welght limits: 3. POF 1965 ADT . B. Total equivalent uniform annual operating cost	47,069	45,216	43,651	42,532	41,620	46.146	44.313	42,755	41,677	
										40.780
5. Incremental equivalent uniform decrecost. ments in annual vehicle operatins	-	1,853	1.565	1,119	912	-	1,833	1.558	1,078	897

trailer combination/fourth, tractor, semitraller, and full trailer combination.
U.S. DEPARDEETI CF COMARCE
Bureau of Publlc Roads
Orfice of Research and Develo
sablel2-4. - Comparision of bighway cost and fotor veicle operatioz cost for five levels of axie welght maximu limits by each of four caxdmum length of vehicles, for the 20 -year period 1965 throuzh 1984: National average

COST OP FROVIDING BIGHVAY PACITHIES

1. Construction cost per mile: a. Pevement and sboulders.	178,183	178,978	179.765	180.535	181.254	179.131	179,934	180.729	181.508	182.235
-	118,850	120.224	121.597	122,970	124.344	118.850	120.224	121.597	122.970	124.344
	173,941	173,970	173,999	174.027	174.052	173.941	173,970	173,999	174.027	174.054
	470.974	473,172	475,361	477,532	479,650	471.922	474.128	476,325	478,505	480,633
2. Equiralent uniform annual capital cost	41.062	41.254	41.444	41.634	41,818	41.145	41,337	41.528	41,718	41,904
3. Incremental amual cost a. Capital cost	-	192	190	190	184	-	192	191	190	186
B. Maintenance cost of perement and aboulders.	-	5	5	5	4	-	5	5	5	5
c. Maintenance cost of structures	-	12	12	12	12	-	12	$\because 12$	12	12
s. Total equivalent umlform annual hlehrey cost	-	209	207	207	200	-	209	208	207	203

4. Amual operating cost of vehicles afrected by axle weight limits: 2. Por 1965 ADT										
operating cost \# b. Total equivalent uniform annual	123,777	115,987	109873	105,297	102,828	121011	113,365	107,360	103.187	100.732
5. Incremental equivalent uniform decre ments in annual vehicle operating cost.	-	7,790	6.114	4.576	2,469	-	7.646	6,005	4,173	2,455

RATIO OF AMRUAL DECREASE IN MOTCA TRUCK OPERATITS COST TO AMMUAL BIGENAY COST

O.S. DEPARTNEAT OF CORAEKCE orpice of Research and Developreat
geble 12-4. - Comparison of bighway cost and motor vehicle operatioz cost for five levels of axie weight maxifoum 1 inits
COST OF ROVIDID HMESAY FACITMTIES

1. Construction cost per alle: a. Pareant and shoulders.	183,283	184.122	184.951	185,763	186,521	183.780	184.623	185.457	186,273	187.035
b. Bridge structures.	118,850	120.224	121.597	122,970	124,344	118.850	120.224	121,597	122,970	124.344
C. Eartbrost and drainage	173,939	173,970	174,000	174,029	174,056	173,939	173,970	174.001	174.030	174,057
	476,072	478.316	480,548	482,762	484,921	476.569	478,817	481.055	483,273	485.436
2. Equivalent umiform annual capital cont	41.506	41.702	41.897	42.090	42,278	41,550	41.746	41,941	42,134	42.323
3. Incrental amual cost a. Capital cost	-	196	195	193	188	-	196	195	193	189
b. Vainterance cost of parenent and shoulcers.	-	5	5	5	4	-	5	5	5	4
c. Maintenence cost of structures	-	12	12	12	12	-	12	12	12	12
d. Total equivalent uniform annual highusk cost	-	213	212	210	204	-	213	212	210	205

4. Amual operating cost of vehicles arfected by axle weight limits: a. Por 1965 ATI										
b. Sotal equivalent umiform annual operating cost *	109.791	102323	97.560	93.910	91.714	108.348	101.519	96,167	92,569	90,374
5. Incremental equivalent unfform decrements in annual vehicle operating cost.	-	6,868	5,363	3,650	2,196	-	6,829	5,352	3,598	2,195
6. Retio of increantal reduction in truck operatins cost to increnental increase in equifolent ennual Mighey cost.	Ardual dic	CRESE In !	ICa meuc	OFEUSL	cost to	ATHUL HIG	iAis cost			
	-	32.2	25.3	17.4	10.8	-	32.1	25.2	17.1	10.7

trander combination/fourth, tractor, semitraller, and full trailer combination.
U.S. DEPARTMENTH COM CMERCE
Osf1ce of Research and Development
Table 12.4, Comparison of highway cost and by each of four cadmum length of vehicles, for the 20 -year period 1965 through 1984: National average Elgbray Systee 5. Secondary rural

	Method of Anelysis 6 - 1 th traneltisa					Ceasua Division All				
	STEP ORE ($35 / 50 / 55 / 65$) y					STEP THO (35/55/60/65) y				
	R1gl Paverent					R1gid Pavemeat				
	Single/tander axle weivht coriour linits, kips					Sicsle/tandem axle maximun reight limits, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COST OF FROVIDING EIGHHAY FACITITIES

1. Construction cost per mile: a. Parement and shoulders.	102.465	102,536	102.612	102.693	102,774	102.925	102.988	103.075	103,15\%	103.238
b	9.180	9,310	9.439	9.568	9.698	9,180	9,310	2432	9.568	9.698
	34.248	34,250	34,252	34.255	34.257	34,247	34,250	34.253	34,255	34,257
	145,893	146,096	146,303	146,516	146.729	146,352	146,558	146.767	146.979	147193
Equivalent umiform annual capital cost	12,720	12,737	12,755	12,774	12,793	12.760	12,778	12,796	12,814	12.833
3. Docremental amual cost . Capital cost	-	17	18	19	19	-	18	18	18	19
b. Maintenence cost of paverent and abouldera.	-	0	0	0	0	-	0	0	0	0
C. Maintenance cost of structures	-	1	1	1	1	-	1	\cdots		1
s. Total equivaleot uriform annual highuay cost	-	18	19	20	20	-	19	19	19	20

$$
\begin{array}{c|c|c|c||c|c|c|c|c}
37 & 12,755 & 12,774 & 12,793 & 12,760 & 12,778 & 12,796 & 12,814 & 12,833 \\
\hline 7 & 18 & 19 & 19 & - & 18 & 18 & 18 & 19 \\
\hline 0 & 0 & 0 & 0 & - & 0 & 0 & 0 & 0 \\
\hline & 1 & 1 & 1 & - & 1 & 1 & 1 & 1 \\
\hline & 19 & 20 & 20 & - & 19 & 19 & 19 & 20 \\
\hline
\end{array}
$$

4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent uniforn annual operating cost *	10.571	9.961	9,474	9,094	8,881	10,316	9.721	9.236	8,887	8,683
5. Incremental equivalent uniform decrecost. ments in annual vehicle operating	-	610	487	380	213	-	595	485	349	204

inurease in equivalent annual

- Calculated at 6 percent interest rate per ennum end 20 years.
MOTOR TRUCX OPERATING COST

y First figure is ra;imum length in fect of a single unit trucis/second, tractor seaitrailer combloation/third, tractive truck and full
Cost 1tem

mble 12-4. - Comparison of bighway cost acd motor vehicle jperatiog cost for five levels of axle weljht caxirua limits by eoch of four caximum leath of vehicles, for the 20-year period 1965 throuth 1984: National average

Eighway System 5. Secondary rural	Method of Analysis 6 with treasition					Census Divisior. All				
Cost item	SEEP I:REE (40/55/65/65) y					STEP PCUR (40/55/70/70) y				
	Rigid Paverent					R1sid Pavereat				
	Sigrle/tanden exle welsit cexirum lioits, kios					Sinjle/tande axle caximuwelzht lionts, kios				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COST OF FROVIDES HMGELAY FACIUTIIES

1. Construction cost per rile: a. Parent and shoulders .	104.589	104,663	104,743	104.827	104.911	104.737	104,811	104.891	104.975	105,060
- bridge otruct	9180	9,310	9.437	9,568	9.698	9.180	9.310	9,439	9.568	9.698
c. Earthrosk and drainage	34,248	34,250	34,253	34.255	34,258	34.248	34,251	34,253	34.256	34, 258
	14.8 .017	$14.8,223$	148,435	148.650	148.867	148.165	148,372	148.583	148,799	149.016
2. Equivalent uniform annual capital cost	12.905	12,923	12,941	12,960	12,979.	12,918	12,936	12,954	12,973	12,992
3. Inerental emual cost a. Capital cost	-	18	18	19	19	-	18	18	19	19
b. Yaintenence cost of parement and abouleers.	-	0	0	0	0	-	0	0	0	0
e. Mainteannce cost of structures	-	1	1	1	1	-	1	1	1	1
d. Total equivalent uniform annual rloheir eost	-	19	19	20	20	-	19	19	20	20

4. Amual operating cost of vehicles arfected by exle weight linits: 2. POE 1965 ADT										
operating cost * b. Total equivalent uiform anaual	9.415	8.881	8.453	8,136	7.961	9.325	8.791	8,371	8,051	7.870
5. Increnental equivalent uriform decre ments in annual vehicle operating	-	534	428	317	175	-	5.34	420	320	181

[^11]प.S. DEPARTViTR OF CONERCE

 Ceasus Division A.ll | STEP THO $(35 / 55 / 60 / 65)$ I |
| :--- |

orpice or Research and Developaent
2able 12-4. - Comparison of highwa cost and motor vehicle operatiog cost for five levels of axle weight raxigur linits by each of four caximum length of vehicles, for the 20 -year perioc 1965 throuzh 1984 : National average Method of Analysis 6 with trensition

Cost 1tem	STEP AFREE (40/55/65/65) y					STEP FCUR ($40 / 55 / 70 / 70$) y				
	Rigid Pavement					Risid Paveseat				
	Single/tanden exle welsit cerimun lioits, kios									
	18/32	20/35	22/33	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COSS of ROVIDID BMEHAY FACINTIIS

1. Construction cost per nile: - Paveart and aboulders	103.992	104.190	104396	104.606	104810	104.180	104,378	104,585	104,796	105,001
	39,363	42,358	45,352	48,346	51,341	39,363	42,358	45,352	48.346	51,341
	49,073	49.080	49.087	49.095	49.101	49,073	49080	49,087	49.094	49102
	192,428	195,628	198.835	202,047	205,252	192,616	195.816	199.024	202,236	205,444
2. Equivalent unfors ennual capital cost	16,777	17.056	17.335	17,615	17,895	16,793	17,072	17,352	17,632	17912
3. Increantal ennual cost c. Capital cost	-	279	279	280	280	-	279	280	280	280
b. Jaintenance cost of parement and ebouless.	-	1	1	/	1	-	1	1	1	1
c. Kaintensnce cost of structures	-	25	25	25	25	-	25	25	2.5	25
d. Total equivalent unfrorm annus highuy cost	-	305	305	306	306	-	305	30%	306	306

MOTO TRUCK OPENATIN COST

4. Amual operatins cost of vehicles affected by axle weight limits: e. For 1965 ADT .										
b. Total equivalent umi form annual operating cost \#	24,967	23.701	22,671	21,930	21.470	24.695	23.429	22,395	21,656	21,190
5. Increnental equivalent unfrorm decrementa in ennual vehicle operating cost.	-	1,266	1,030	741	460	-	1,266	1.034	739	466

[^12]Just why the 0.9 ratio occurs on the Interstate rural system at the 24/4l-kip limit was not investigated. Overall, however, the benefit-cost ratios are exceptionally high.

SUMMARY AND ANALYSIS OF THE ECONOMY OF VEHICLE DIMENSIONS AND WEIGHTS BASED ON STUDIES MADE BY A. T. KEARNEY AND COMPANY UNDER RESEARCH CONTRACT

During 1964 and 1965, A.T. Kearney and Company, management consultants of Chicago, Illinois, under contract With the Bureau of Public Roads, made two studies to discover the advantages to be gained by liberalizing motor vehicle dimension and weight limits. This chapter outlines their approach, taken independently from those of the Bureau of Public Roads, and gives the main results of their studies. The results of the consultant's studies were used by the Bureau of Public Roads to conduct an engineering economy analysis comparing the costs and related benefits of possible liberalizations of motor vehicle dimension and weight limits. Therefore, this chapter also presents a check on the economy of motor vehicle dimensions and weights developed in analysis Method 1 (Chapter 10).

1. PLAN OF STUDY

The 30 liberalized levels of dimensions and weights shown in table 13-1 were the basis of the consultant's studies. It was assumed that at each of these levels would be carried the line-haul cargo tonnage transported by highway vehicles in 1960, broken down by the commodity density ranges shown in table 13-2.
TBble 23-1. -- Liberalized levels of vehicle dimension and axie

$\begin{aligned} & \text { Liberalized } \\ & \text { level no. } \end{aligned}$	Fe1ght, feet	Width, inches	Single/tondem axle 1101 t , k1ps	$\begin{aligned} & \text { Total length, } \\ & \text { feet } \end{aligned}$	No. of carzo	Cargo body length, fect	Vehicle classification fucluded
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \end{aligned}$	23.5	$\overbrace{102}^{109}$	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	\int^{55}	\downarrow	\int^{40}	$\begin{aligned} & 3-\mathrm{s} 2 \\ & 3-\mathrm{s} 2 \end{aligned}$
$\begin{aligned} & 7 \\ & 8 \\ & 9 \end{aligned}$		\downarrow	$\begin{aligned} & 18 / 32 \\ & 22 / 33 \\ & 26 / 44 \end{aligned}$	65	2	27	$\begin{aligned} & 2-52-3,3-52-4 \\ & 2-52-2,3-52-3,3-52-4 \\ & 2-51-2,3-52-2,3-52-4 \end{aligned}$
$\begin{aligned} & 10 \\ & 11 \\ & 12 \end{aligned}$		$\stackrel{102}{\downarrow}$	$\begin{aligned} & 28 / 32 \\ & 22,38 \\ & 26 / 44 \end{aligned}$	\downarrow		\downarrow	$\begin{aligned} & 2-52-3,3-52-4 \\ & 2-52-2,3-52-4 \\ & 2-51-2,3-52-2,3-52-4 \end{aligned}$
$\begin{aligned} & 1.3 \\ & 14 \\ & 15 \end{aligned}$		$\stackrel{95}{\downarrow}$	$\begin{aligned} & 28 / 32 \\ & 22 / 38 \\ & 25 / 44 \end{aligned}$	75		30	$\begin{aligned} & 3-52-3,3-52-4 \\ & 2-52-2,3-52-4 \\ & 2-51-2,3-52-3,3-52-4 \end{aligned}$
$\begin{aligned} & 16 \\ & 17 \\ & 18 \end{aligned}$		$\stackrel{102}{\downarrow}$	$\begin{aligned} & 18 / 32 \\ & 2223 \\ & 26 / 44 \end{aligned}$	\downarrow		\downarrow	$\begin{array}{ll} 3-52-3-3-52-4 \\ 3-52-2, & 3-52-4 \\ 2-52-2, & 3-52-4 \end{array}$
$\begin{aligned} & 19 \\ & 20 \\ & 21 \end{aligned}$		1	$\begin{aligned} & 18 / 32 \\ & 22 / 33 \\ & 25 / 44 \end{aligned}$	100		40	$\begin{aligned} & 3-52-4 \\ & 3-52-4 \\ & 3-52-3,3-52-4 \end{aligned}$
$\begin{aligned} & 22 \\ & 23 \\ & 24 \end{aligned}$		$\stackrel{202}{\downarrow}$	$\begin{aligned} & 18 / 32 \\ & 22 / 30 \\ & 26 / 44 \end{aligned}$		\downarrow	\downarrow	$\begin{aligned} & 3-52-4 \\ & 3-52-4 \\ & 3-52-3,3-52-4 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \end{aligned}$		\downarrow	$\begin{aligned} & 18 / 32 \\ & 22 / 39 \\ & 26 / 44 \end{aligned}$		3	${ }_{1}^{27}$	
$\begin{aligned} & 28 \\ & 29 \\ & 30 \end{aligned}$	\downarrow	102 \downarrow	$\begin{aligned} & 28 / 32 \\ & 22 / 33 \\ & 25 / 44 \end{aligned}$	\downarrow	\downarrow	\downarrow	$\begin{aligned} & 3-52-3-3,3-52-4-4 \\ & 3-52-3-3,3-52-4-4,3-52-4-3 \\ & 3-51-2-2,3-52-3-3,3-52-3-2,3-52-4-4 \end{aligned}$

$$
\begin{aligned}
& \text { 1/ Taken from exhibit } 2 \text { of the Kearney report }
\end{aligned}
$$

$$
\begin{aligned}
& \text { and the } 19 \text { major commodities } \\
& \text { Cool is considered the "H" level although the density is } 50 \mathrm{lb} . / \mathrm{cu} . \mathrm{ft} \text {. because it is carried } \\
& \text { in on open top type cargo body for which the maximum density is } 40.5 \mathrm{db} \text {. } \mathrm{cu} . \mathrm{ft} \text {. } \\
& \text { Pulpwood logs are considered in the "H" level although the density is } 45 \mathrm{lb} \text {./cu.ft. because }
\end{aligned}
$$

$40.5 \mathrm{Ib} . / \mathrm{cu} . \mathrm{ft}$.
नो ले ले च।
Table 13-2. --Commodity density levels 1/

The average distance of haul and amount of load per trip were used to estimate the total vehicle miles for each commodity density level. The average load per trip varied according to the liberalized level of vehicle dimension and weight limits. The total vehicle miles for each liberalized level of dimension and weight is the sum of the vehicle miles of travel for all commodity density ranges.

The approach by means of liberalizing dimension and weight limits was based on the assumption that competitive factors would force the highway transportation industry to select a single type of trailer combination having the minimum number of axles necessary to carry the maximum permissible load. This assumption was the reason for the use of more than one class of vehicle within a liberalized level. It perditted use of the minimum number of axles for each commodity density range.

Of the total 1960 line-haul tonnage transported in highway vehicles, as shown in table 13-3, 67.37 percent was found to be accounted for by the 19 major commodities represented by commodity density levels designated D, E, F, G, and H in table 13-2. General freight, 7.26 percent of the total tonnage, is represented by commodity density levels A, B, and C. All other tonnage, which includes 40 additional miscellaneous comodities, amounted to 25.37 percent of the total. The "all-other-tonnage" group was analyzed using the portion that showed highway shipment characteristics similar to the average for the I.C. C. certified carriers of general freight.

Table 13-3. -- Line-haul tonnages transported in highway vehicles, by special classification, United States, 1960

As grouped and analyzed by A. T. Kearney and Company	Tons (add 000)	Percent of total
n9 Major commodities	$1,848,961$	67.37%
HCC certified carriers of general freight*	$\ldots 199,228$	7.26
All other tonnage		
Total 1960 highway tonnage **	$\frac{696,257}{2,744,446}$	25.37

Sources: * Class I and II data - Trinc's Blue Book of the Trucking Industry, 1961, Trinc Associates, Ltd., Washington, D.C. Class III data - Selected Statistics of Class III Motor Carriers of Property for the Year, 1960, Interstate Comerce Comission, Washington, D. C.
** Intercity Freight Haulage, by Commodity, Shipping Density and Type of Transport, 1960, M. F. Kent, Highway Research Board, 43 rd Annual Meeting, Washington, D. C.

For both the 19 major cormodities and the group comprising all other tonnage, the consultant reduced the total tons to be hauled by the tons moved on single-unit trucks carrying paylaad weight less than could be carried using the 1960 dimension and weight limits. Table 13-4 shows the resulting line-haul tons that would have been affected by liberalization of vehicle dimensions and weights and the respective vehicle-miles and ton-miles of travel. It should be noticed that there is an effective 40 -percent reduction in the total tons hauled (2.74 to 1.64 billion tons).

As shown in table 13-4, although the 19 major commodities represent two-thirds of the total affected line-haul tonnage, they represent only one-third of the total vehiclemiles and ton-miles of travel. All other tonnage, accounting for 22 percent of the total affected line-haul tonnage, also represents roughly ane-third of the total vehicle-miles and ton-miles of travel.
2. CORRELATION OF VEHICLE-MILE ESTIMATES

Based on the year 1960, the Kearney report estimated that 13.46 billion vehicle-miles of travel would have been affected by vehicle dimension and weight liberalization. The flgure is based on reduction of the 1960 total line-haul tonnage by approximately 40 percent, representing the tonnage moved in singleunit vehicles at payloads less than those possible using the 1960 vehicle dimension and weight limits. It is also based on

Table 13-4. -- Estimated line-haul tonnage, miles of vehicle travel and ton-miles that would likely be a.ffected by vehicle weight and size limit liberalization by special classification, 1960

As grouped and analyzedby A. T. Kearney and Company	Line-haul tons (add 000)	Miles of vehicle travel (add 000)	Ton-miles (ada 000)
19 Major commodities	$1,064,525$	$3,965,400$	$57,948,800$
ICC certified carriers of general freight (1) All other tonnage group	199,228	$4,801,155$	$51,157,852$
Total	$1,644,605$	$13,456,742$	$165,850,483$

(1) Includes ICC reported data for general freight commodity groups only. Other comnodity groups transported by ICC certified camiers are included in the 19 major comodities and the all other tonnage data.
liberalized level no. 1 ($3-52$, 55-foot overall length, 40 -foot trailer, 96-inch width, 18/32-kip single/tandem axle weights) at maximum payload conditions.

For comparison, the publication HIGHAY STATISTICS for 1960 reports 61.3 billion vehicle-miles of travel on main rural roads. The figure is based on all types of trucks and combinations, including single units. It also reflects all degrees of loading--empty, partially loaded, and fully loaded.

3. VEHICLE-MLLE ESTIMATES

An illustration will convey a better understanding of the technique used to estimate line-haul vehicle mileage saved. If 450,000 pounds of freight were hauled 100 miles in 10 vehicles, each effectively limited by dimension and weight regulations to 45,000 pounds of payload (5 -axle semitrailer combinations with gross vehicle weights of 73,000 pounds and empty weights of 28,000 pounds), the total line-haul mileage for these vehicles would be 1,000 miles. But if the vehicles were permitted to carry 50,000 pounds of payload each, it would take only 9 vehicles to carry the 450,000 pounds a distance of 100 miles. Nine vehicles times 100 miles results in 900 vehicle-miles which, when subtracted from 1,000 vehicle-miles, equals 100 vehiclemiles saved by the increase in payload carrying capacity from 45,000 to 50,000 pounds.

The miles of vehicle travel that could be and would likely be affected by liberalizing of vehicle dimension and
weight limits were projected by the consultant to the year 1990, based on an average growth rate of 2.75 percent from 1960.

These results are show below in 5-year intervals:

Years

1965 to 1970 1970 to 1975 1975 to 1980 1980 to 1985 1985 to 1990

> Miles of vehicle travel $(1,000)$

Total
81,414,603
93,241,973
106,787,544
122,300,926
$140,067,986$
543,813,032
Based on an assumed starting year of 1965 for authorizing increased vehicle dimension and weight liaitsorecognizing that conversion to increased linits would be authorized gradually by individual Statesoothe consultant determined that a probable annual conversion rate of 10 percent, or a total of 10 years, would be required before all miles of vebicle travel were actually covered by increased vehicle limits. Therefore, the following adjustments were made in the projected miles of vehicle travel shown above, assuning that the 10 -percent conversion rate, or a 10 -year period starting with 1965 would be required before all States authorized the increased limits:

Years	Adjusted miles of vehicle travel
1965 to 1970	$24,865,975$
1970 to 1975	$75,099,323$
1975 to 1980	$106,787,544$
1980 to 1985	$122,300,926$
1985 to 1990	$140,067,986$
Total	$469,121,754$

The effects of liberalizing motor vehicle dimension and weight limits to any of the 30 levels were determined for 1960 In terms of the miles saved as a percentage of the $13,456,742,000$ vehicle-miles of travel that could have been affected in 1960. The resulting percentages are show in table 13-5.

Based on the estimated rates of conversion by carriers to utilization of the 30 levels of vehicle dimensions and weights, the estimates in table $13-6$ were made to show the potential accumulated decrease in miles of vehicle travel up to the year 1990 resulting from the line-haul transportation of freight in maximum payloads.
4. SECOND STUDY
A. T. Kearney and Company performed under a second contract for the express purpose of developing detail on trucking operations helpful in the design of pavements and calculations of operating costs for the line-haul trailer combination under increased dimensions and weights.
A. Developing Possible Liberalization-a Universal Application

To relate the 30 levels of dimension and weight limits to the degrees of pavement deterioration they cause, Kearney converted their effects to equivalent $18,000-$ pound axle applications (E 18 klps) for each census division. For instance, the Kearney report indicates that if highray freight in the New England census division were hauled in trailer combinations

Table 13-5. Estimated percent of miles of vehicle travel in line-haul transportation of ireight that would not have beer required in 1960 under 30 levels of increased vehicle dimension and weight limitsl

Liberal- ized dimen- sion and weight level no.	$\begin{aligned} & \text { Cargo-body } \\ & \text { length, } \\ & \text { feet } \end{aligned}$	Number of cargo bodies	Cargo-body width, inches	```Single/tan- dem axle- weight limits, kips```	Percentage of miles of vehicle travel
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \end{aligned}$		1	$\left.\right\|_{102} ^{96}$	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{array}{r} 4.1 \\ 7.6 \\ 16.7 \\ 21.8 \\ 24.1 \\ 25.6 \end{array}$
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$		${ }^{2}$	101	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 25 / 44 \end{aligned}$	$\begin{aligned} & 11.9 \\ & 17.4 \\ & 28.1 \\ & 34.1 \\ & 37.7 \\ & 40.6 \end{aligned}$
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \end{aligned}$	$\left.\right\|^{30}$		$\begin{array}{\|} 96 \\ 102 \\ 1 \end{array}$	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{aligned} & 14.6 \\ & 20.0 \\ & 31.4 \\ & 37.8 \\ & 41.7 \\ & 45.3 \end{aligned}$
$\begin{aligned} & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \end{aligned}$	$\left.\right\|_{1} ^{40}$		\int_{102}^{96}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{aligned} & 16.6 \\ & 22.4 \\ & 35.5 \\ & 42.6 \\ & 46.9 \\ & 50.9 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	$\left.\right\|^{27}$	1_{1}^{3}	\int_{102}^{96}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{aligned} & 17.7 \\ & 23.9 \\ & 38.5 \\ & 46.4 \\ & 51.3 \\ & 55.3 \end{aligned}$

1) Based on summary report of A. T. Kearney and Co.

Table 13-6. Projection from 1965 to 1990 of the potential decrease in accumulated vehicle-miles of travel resulting from linehaul transportation of freieht in maximum payloadsl]

Liberal- ized dimen- sion and weight level no.	Cargo-body length, feet	Number of cargo bodies	Cargo-body width, inches	Single/tandem exle weight limits, kips	Potentiel. decrease in billions of vehiclemiles of travel
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 5 \end{aligned}$	\int^{40}	1	\int_{102}^{06}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	Base 29.4 to 33.8 60.7 to 70.0 58.5 to 83.4 64.7 to 92.2 68.7 to 97.9
$\begin{array}{r} 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \end{array}$	$\left.\right\|^{27}$	2	\int_{102}^{96}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{aligned} & 32.3 \text { to } 46.0 \\ & 47.2 \text { to } 66.6 \\ & 57.0 \text { to } 86.1 \\ & 69.2 \text { " } 104.5 \\ & 76.5 \text { " } 115.5 \\ & 82.4 \text { " } 124.4 \end{aligned}$
$\begin{array}{r} 13 \\ 14 \\ .15 \\ 16 \\ 17 \\ 18 \end{array}$	30		\int_{102}^{96}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 25 / 44 \end{aligned}$	$\begin{aligned} & 34.1 \text { to } 55.8 \\ & 46.7 \text { to } 76.5 \\ & 38.1 \text { to } 96.2 \\ & 45.8 \text { " } 115.8 \\ & 50.6 \text { " } 127.8 \\ & 54.9 \text { " } 138.8 \end{aligned}$
$\begin{aligned} & 19 \\ & 20 \\ & 21 . \\ & 22 \\ & 23 \\ & 24 \end{aligned}$			$\left.\right\|_{102} ^{96}$	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{aligned} & 38.3 \text { to } 63.5 \\ & 52.3 \text { to } 85.7 \\ & 43.1 \text { " } 108.8 \\ & 51.7 \text { " } 130.5 \\ & 56.9 \text { " } 143.7 \\ & 61.4 \text { " } 155.1 \end{aligned}$
$\begin{aligned} & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \end{aligned}$	$\overbrace{}^{27}$	3	\int_{102}^{96}	$\begin{aligned} & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \\ & 18 / 32 \\ & 22 / 38 \\ & 26 / 44 \end{aligned}$	$\begin{array}{r} 52.8 \text { to } 74.2 \\ 71.3 \text { " } 100.2 \\ 114.8 n 161.4 \\ 108.3 \text { " } 177.5 \\ 119.8 \text { " } 196.3 \\ 129.1 \text { " } 211.5 \end{array}$

[^13]of 55-100t overall length, with 40-foot semitrailers 96 inches wide, under 22,000 -pound single and 38,000 -pound tandem=axle limitations, the total E 18 kip applications per mile of pavement would average 84,000 per year or 230 per day.

Table 13-7 indicates that universal use of the 27-100t doubles in combinations of 65 -foot overall length and 102-inch Width on all highway systems in the East North Central census division would produce 82 E 18-kip axle applications for every $100 \mathrm{E} \mathrm{l8-kip}$ axles it took in 1960 to haul the same amount of freight. The number of tons in each commodity densiter level, as a percentage of the total tons hauled, varies for the different census divisions. Therefore, the figures in table 13-7 are not necessarily representative of all census divisions.
B. Developing Possible Liberalization-a Separate Highway Systems

The phase of the second Kearney study related to separate highway systems was based on the reasoning that, for over-theroad operations, competitive factors would force the highway transportation industry to select two classes of trailer combinations, one of which would have the minimum number of axles necessary to carry the maximum permissible payload on the primary and secondary highway systems and the other class similarly selected for higher gross loeds on the Interstate system.
13-14

Liberalized level :o.*	Vehicle length, feet			Vehicle width, incies	Axcle weight, kips		Ratio of anticipeted to present E-18 effect. Fast North Central Census Division
	On secondary and primary systems	On Interstate systems			Single	Tandem	
0007	$\begin{aligned} & 65 \text { (27 doubles) } \\ & 65 \text { (27 doubles) } \\ & 75 \text { (30 doubles) } \\ & 75 \text { (30 doubles) } \\ & 55 \text { (40 single) } \end{aligned}$	same same same same 100 (40 double)		$\begin{array}{r} 96 \\ 102 \\ 96 \\ 102 \\ 96 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.85 \\ & 0.82 \\ & 0.80 \\ & 0.85 \\ & 0.86 \end{aligned}$
0010							
0013							
0016							
0119							
0422	$\begin{aligned} & 55(40 \\ & 65 \text { single) } \\ & 65(27 \\ & 65(27 \\ & \text { double }) \\ & 75(30 \\ & 75(30 \\ & \text { double }) \\ & 75 \end{aligned}$	100 (40 double)		$\begin{array}{r} 102 \\ 96 \\ 102 \\ 96 \\ 102 \end{array}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 0.99 \\ & 0.89 \\ & 0.95 \\ & 0.89 \\ & 0.93 \end{aligned}$
0719		$\begin{aligned} & 100(40 \\ & 100(40 \\ & \text { double) } \\ & 100(40 \\ & \text { double) } \\ & 100(40 \\ & \text { double }) \end{aligned}$					
1022							
1319							
1622							
0125		$100(27$$100(27$tripletriple $)$$100(27$trinle $)$$100(27$$100(27$		$\begin{array}{r} 96 \\ 102 \\ 96 \\ 102 \\ 96 \\ \hline \end{array}$	$\begin{aligned} & 18 \\ & 18 \\ & 18 \\ & 18 \\ & 18 \end{aligned}$	$\begin{aligned} & 32 \\ & 32 \\ & 32 \\ & 32 \\ & 32 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.85 \\ & 0.73 \\ & 0.81 \\ & 0.73 \end{aligned}$
0428							
0725							
1028							
1325							
1628	75 (30 double)	100 (27	triple)	102	18	32	0.80

Table 13-7 lists 12 of the 36 paired classes of trailer combinations that were studied by the consultant. In the righthand colum are the ratios of total anticipated E l8-kip axle applications of the paired classes to the total present E 18-kip effect of liberalized level number 1 of the 36 paired trailercombinations classes studied by the consultant. The table lists those pairs having a ratio of anticipated to present E 18-kip effect of less than 1.00 . The lowest or most favorable ratio shown is 0.73 for pairing of 27 -foot double trailers (65-foot overall length) and 27-foot triple trailers (100-foot overall length), all of which are 96 inches wide.

5. APPLICAIION OF THE KEARNEY FINDINGS

An important application of the results of the Kearney studies is to serve as an independent check of the in-house studies of the desirable dimensions and weights of motor vehicles reported upon here. But in order to compare the Kearney results with those obtained by the project staff, it is necessary to translate Kearney's E l8-kip applications based on maximum loading conditions to the E l8-kip axles developed in analysis Method 1 (Chapter 10) on the basis of 1962 loading practice. The following paragraphs outline the adjustments that were made in order to attain comparability in results.

The E l8-kip axles reported by Kearney were adjusted to account for traffic growth to 1965 from his base year 1960.

The average E 18-kip axles for the study period 1965 to 1984 were then determined using the electronic computer. The E 18kip axles for passenger cars and single-unit trucks were also added to Kearney's total, because they are included in Method 1. The base E 18-kip axles at the 18/32-kip single/tandem axleweight level for the 40 -foot semitrailer combination (liberalized level number 1) in each census division was adjusted to the E 18-kip values developed in Method 1 from the 1962 truck weight study at the $18 / 32$-kip single/tandem axle-weight level. The E 18-lip axles for each of the remaining liberalized levels were adjusted by the percentage used for liberalized level number 1. The costs of highway construction for pavement shoulders, bridges, earthwork and drainage, and maintenance costs were calculated as described for Method 1 in Chapter 10.

Loaded and empty vehicle-miles of travel were reported by Kearney for each commodity density level. The motor vehicle operating costs used were those developed in Chapters 9 and 10. The total motor vehicle operating cost for each liberalized level of motor vehicle dimension and weight was obtained by adding together the operating costs of all the commodity levels. Two adjustments were made in the total operating cost of each liberalized level of vehicle dimension and weight. To adjust to a level representative of the study period, the costs were multiplied by the ratio to the 1960 E 18 's of the total average E 18-kip axles for the study period shows by the
computer printout. Then, to adjust for correlation with Method 1, the factor used to adjust E 18's to Method 1 was also applied to motor vehicle operating costs. Benefit-eost ratios were then calculated using the procedure described for Method 1 in Chepter 10. The results are shown in table 13-9.

6. ECOHOMI OF HIGHER AXLE-NEIGET LEVEIS

The range of benefit-cost ratios resulting from use of the Kearney data for 40 -foot single-axle trailers confirms the range of benefit-cost ratios for increases in axle-weight limits shown by Method 1. The benefit-cost ratios besed on Kearney data show econom in higher axleweight limits for all vehicle classifications studied. Only the 40-foot, double-trailer combination indicated a low benefit-cost ratio. The reason for this exception can be traced to the fact that, for the 40-foot double trailers at the 18/32-kip single/tandem axleweight level for vehicles 96 and 102 inches wide, two liberalized levels of vehicle dimension and weight represented limited conditions of payload weight for commodity density levels A, B, and C. For other liberalized levels of vehicle dimensions and number of trailers, at the above-stated conditions of vehicle axle weight and width, payloads were limited as to cube for commodity density levels A, B, and C, which range from O to 27.5 pounds per cubic foot.

Cenaus Division Region	Cargo body leagth (feot) and number of cargo body unita	96 1ach maximum vehicle vidth					102 loch maximum vehicle width				
		Slugie/tandem axle waights in kipo					Slugle/tandem axle velghts in kips				
		18/32	20/35	24/41	26/44	26/44	18/32	20/35	24/41	24/41	26/44
1. FB	40 ft. - aingle 27 ft. - double 30 ft. - double 40 ft. - double 27 ft. - triple	-	5.04.1	5.4	5.6	5.7	-	4.7	$\begin{aligned} & 4.9 \\ & 3.6 \end{aligned}$		5.73.6
				3.6	3.7	3.7	-	2.9			
			3.6	3.7	4.1	3.8	-	3.3	3.2	4.4 3.7	3.7
			1.0	1.9	3.7	4.0	-	0.2	0.6	2.9	4.3
			4.0	3.4	3.0	2.9	-	1.2	4.9	3.1	4.1
2. MA	40 ft . - stagle 27 ft . - double 30 ft . - double 40 ft . - double 27 ft . - triple	-	6.1	6.5	7.44.6		-	5.2	5.9	6.9	8.1
		-	3.5	4.0		4.9		3.1	4.5	5.7	5.1
		-	7.8	6.6	5.4	3.4	-	3.9	5.1	5.5	5.2
		-	0.8	1.5	5.3	5.6	-	0.1	0.1	4.6	5.4 6.5
		-	3.5								
5. RNC	40 ft. - single 27 ft . - double 30 ft . - double 40 ft . - double 27 ft. - triple	-	9.3	5.9	4.7 4.4	4.7	-	6.4 4.7	5.0	5.6	6.4
		-	4.9	4.2	4.0	3.9	-	3.9	4.3	4.3	3.8
		-	0.3	1.1	4.1	3.9	-	0.0	0.1	4.0	3.5
		-	4.6	4.1	3.5	3.5	-	4.3	5.1	5.0	3.9
6. UTC	1.0 ft. - Bicuslo 27 ft. - double 30 ft. - double 40 It. - double clif. - triple	-	0.3	5.9	4.6	3.6	-	8.2	5.5	4.3	3.4
		-	4.2	4.2	2.5	1.6	-	4.4	3.5	3.12.6	2.31.8
		-	5.2	3.7	2.8	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	-	4.8	3.7		
		-	3.6	3.1	2.6		-	3.7	2.9	2.4	1.8
		-	4.2	3.1	2.0	$\begin{aligned} & 2.0 \\ & 0.8 \end{aligned}$		3.7	2.9	2.2	
7. ESC	40 ft . - B1ogle 27 it. - double 30 ft. - double 40 It. - double 2才 ft. - triple	-	10.1	9.9	9.9	11.2	-	9.5	9.3		10.26.4
		-	7.5	7.1	6.6	$\begin{aligned} & 7.4 \\ & 6.5 \end{aligned}$	-	6.18.3	6.9		
		-	8.8	7.5	6.3		-		8.1	6.7 6.7	6.96.4
		-	3.0	5.0	6.7	$\begin{aligned} & 6.5 \\ & 6.6 \end{aligned}$	-	8.3 2.4	4.55.4	6.1	
		-	7.8	7.3	6.3	6.1		2.6		7.5	7.2
8. WSC	40 ft . - olnole 27 ft. - double 30 Itt. - double 40 ft . - double 27 it. - triplo	-	24.313.4	18.8	14.9	13.0	-	17.6	14.5	13.812.7	$\begin{aligned} & 14.2 \\ & 11.8 \end{aligned}$
				10.9	10.5	9.17	-	10.712.0	12.411.1		
		-	14.3	11.2	9.1		-			12.7 10.8	$\begin{array}{r} 11.8 \\ 8.4 \\ 8.2 \end{array}$
		-	7.4	9.3 11.8	10.4			6.3 8.0	8.6	4.8	
			3.73.6					3.4	4.1	4.8	6.1
9. M	27 ft . - double	-		3.3	3.0	2.9	-	3.9	3.4	2.9	2.1
	30 ft . - double	-	3.9	3.5	2.8	1.9	-	2.8	3.1	3.3	2.9
	40 ft . - dorable	-	2.1	2.6	3.1	2.7	-	4.6	3.4	2.5	1.7
	27 ft . - tripla	-	7.7	5.0	3.1	1.8	-	5.8	4.8	3.3	2.1
10. P	40 ft . - sinsle	-	2.4	3.8	4.9	6.9	-	2.6	3.7	5.0	7.6
	27 ft . - doviole	-	2.1	2.5	2.8	3.2	-	1.1	2.2	2.7	2.7
	30 ft . - double	-	1.7	2.7	3.0	2.9	-	2.0	2.8	2.9	2.4
	1.0 ft. - double	-	1.8	2.1	2.2	1.6	-	0.3	1.4	2.4	3.2
	2? ft. - triple	-	2.3	2.4	2.5	2.4	-	2.7	2.3	1.3	1.6

For comodity density levels A, B, and C, which together in this case account for some 75 percent of the total vehiclemiles of travel, an increase in axlewreight limits usually pernitted the dropping of one axle, resulting in a lower gross vehicle weight and thus lower operating costs. But the condition of limited weight for the 18/32-kip single/tandem axleweight level for the $40-100 t$ double trailers did not permit the dropping of an axle when axleweight limits were raised by Kearney to the $22 / 38-\mathrm{kip}$ single/tandem level. Therefore, the net result of adding together the operating costs for all commodity levels was an operating-cost increase instead of a decrease.

7. IMCREASED VEHICLE WIDIH

Increase in vehicle width from 96 inches to 102 inches results in increased payloads for commodities that fill cargo bodies as to cube: that 1s, when the vehicle is visibly fully loaded by volume. But the increase in widtheand thus the increase in vehicle empty weight--decreases the allorable payload. The two conditions in which cube-full and weight-full trailers are increased in widh are therefore economically counterbalancing.

Decisions as to the economy of increases in width for specific vehicle classifications must be based on the net result for all commodity density levels. In general, the benefit-cost ratios in table $13-10$, based on the Kearney data, show that it would be economical to increase vehicle widths irom 96 inches to 102 inches.
＿Table 13－10 Fatio of incrementil raduction in truck operating cost to incremental increase in equivalent annusi highray cost resulting from an incicase in vahicle width from 96 Incines to 102 inches on the Primary Rual Hichray Syatem

Cencus Division Region	Cargo body length（fcet） and number of carro body units	Single／tandem axle welghts in kips				
		$18 / 32$	20／35	24／41	20／44	20／4／4
1． Ni	40 ft （－sincle	44.1	28.6	21.9	20.1	19.3
	27 ft．－doublc	24.6	52.0 ．	＊	283.3	9.8
	30 ft ．－double	21.0	＊	＊	＊	
	40 ft ．－couble	48.9	17.6	8.0	4.7	5.8
	27 st．－triple	14.5	－	－	－	7.4
2．MA	40 ft．－single	40.3	27.3	22.9	20.5	23.1
	27 ft．－double	14.2	24.3	9.2	66.9	16.0
	30 ft．－double	9.4	－		－	－
	40 ざt．－double	76.3	17.4	11.5	8.9	8.2
	27 ft．－tilinlc	7.9	－	－	－	＊
5．ENTC	$40 \mathrm{ft}$. －sincle	44．8	18.1	15.2	16.4	21.3
	27 ft．－douvle	－ 13.7	29.8	110.3	65.7	10.8
	30 f゙t．－double	22.6	＊	1	1	」
	40 It．－double	32.6	14.2	8.4	78.7	6.9
	27 ft．－triple	5.5	－	－	」	10.6
6．WNC	40 It．－sinulc	21.1	19.0	14.9	12.0	14.7
	27 させ．－Cutuzle	19.6	＊	＊	31.6	8.1
	30 ft．－douvie	24.6	＊	－1，	．	－
	Lo ft．－dourle	12.4	26.2	29.4	16.2	6.9
	27 ざt．－tripie	14.0		－	＊	4.5
7．ESC	40 ft －cimse	69.9	30.8	30.3	25.4	22.8
	27 £！．．－double	23.5	，	，	，	12.0
	30 ft．－double	26.7	＊	\downarrow	\square	1
	40 It．－double	31.0	14.5	12.5	9.5	9.1
	27 ft．－さござきle	21.6	－	－	＊	10.9
8．WSC	40 ざさ．－sinizle	99.7	34．7	22.1	20.5	28.3
	27 ft．－doublc	12.1	－7．3	－0．3	16.8	19.6
	30 ft ．－double	57.4	－	－8．	－	－
	40 It．－double	41.3	22.9	18.6	14.5	13.3
	27 ft．－triple	20.3	－	－		15.4
9． M	40 ft －－sincle	0.9	0.0	0.4	0.0	0.2
	27 ft．－doviole	10.8	＊	＊	＊	4.9
	30 ft．－double	10.5	4.6	3.7	7.2	＊
	40 ft．－double	7.6	25.8	52.6	30.3	11.1
	27．ft．－triple	29.6	－	－	－	1.4
10．P	म）ft．－sさnçle	－1．5	2.5	2.3	2.7	
	27 It．－Couble	20.8	41.7	13.3	89.2	＊
	30 ft．－doujle	15.0	＊	＊	＊	＊
	$40 \mathrm{ft}$. －double	24.4	0.6	0.5	0.4	4.7
	27 It．－ti̇iple	＊	＊	＊	＊	13.1

＊Annual híghay costs decressed end annual motor vehicle operatine sosts decreasea．
－Annual highway costs decreased ard anmial motor vehicle operatins costs increasea by an equal or eroater arount．

」 Anuusl hichray costs decireaced and annunl veifcle cperailaj costs jnereased by a leeser arount．

The only vehicle classifications for which increased width is indicated to be questionable economy are the 27-foot double and triple trailers and the $30-f 00 t$ double trailer. Reasons can be given for these conditions. For commodities resulting in loads with limited cubes, there is a limit of increased vehicle width and thus of payload and gross vehicle weight where additional axles are needed in order to prevent axleweight overload. Additional axles mean lower E l8-kip axle applications and highway costs but also higher practical maximum gross vehicle weights and vehicle operating costs. Thereiore, for those commodity density levels where an increase in width was accompanied by the need for an additional axle, there are no benefits or decreases in motor vehicle operating costs. The liberalized levels of motor vehicle dimension and weight that contained one or more commodity density levels requiring additional axles for an increase in vehicle width from 96 inches to 102 inches are shown below:

$\begin{aligned} & \text { Commodity } \\ & \text { density } \\ & \text { level } 1 / \end{aligned}$	Liberalized level number		Vehicle classification
	$\begin{gathered} \text { 96-1nch } \\ \text { vehicle width } \end{gathered}$	$\begin{aligned} & \text { 102-inch } \\ & \text { vehicle width } \end{aligned}$	
D, E	8	11	27-100t doubles
A, B, C.	15	18	27-foot doubles
A, B, C, D, E	26	29	27-foot triples
E	27	30	27-foot triples

1. See table 13-2 for types of commodities.

The need for additional axles is the significant factor in determining the economy of increasing width from 96 inches to 102 inches for the $27-f 00 t$ trailers. For the $30-f 00 t$ double trailer combination, it was found that a correction of the Kearney vehicle empty weight to show orderly increases in empty weight with increases in wiath would cause the $30-f 00 t$ doubletrailer combination to show economy for increases of width from 96 inches to 102 inches.
8. SUMMARY

The engineering economy analyses based on the studies of A. T. Kearney and Company indicate that econony is to be gained from the use of higher axle-weight limits than those now existing. The analyses, therefore, verify the findings of Method 1.

The analyses also indicate that general overall economy can be gained by increasin vehicle width from 96 inches to 102 inches.

The A. T. Kearney and Company studies indicate that there would be economic and service advantages for the truciding industry in the use of trailers with double-cargo as compared with singleacargo bodies. State legal overall length limits of 65 feet would be necessary before adequate double-trailer combinations could be operated.

CHAPTER 14

TRANSPORTAIION FACIORS IN HAULING
2,000 TONS OF PAYLOAD ONE MILE AND THE MARGINAL LTMITS OF VEHICLE WEIGHIS

Understanding of the significance of the results in chapters 10,11 , and 12 on the economy of axle weight and vehicle length may be enhanced by a study of the equivalent 18-kip axle applications and motor vehicle operating cost which result from hauling 2,000 tons of payload one mile by each indi= vidual class of vehicle and by hypothetical fleets. A logical extension of both the analysis of the economy of axle weight and vehicle length and of the 2,000 ton study is to determine the ultimate limits of axle weight and gross vehicle weight beyond which there would be no further economy of transportation.

1. EMPIY WEIGHT OF VEHICLES RELATED TO AXLE-WEIGHT AND GROSS WEIGHI LTMIIS

The trucking industry is desirous of keeping the empty, or tare, weight of vehicle as low as is sound, consistent with safety, dependability, reasonable operating cost, and suitability to the cargo carried. As axle weight increases, the vehicle empty weight must also increase to provide the desirable
structural strength and braking ability. As the gross vehicle weight increases, the weight of the power vehicle must also increase to provide for the desired speed and acceleration.

A. Tare Weight of Tractors

Table 14-1 gives the tare weight of 2-axle and 3-axle tractors for a range of practical maximum gross combination weights from 25,000 to 280,000 pounds. This table was developed by reference to manufacturers' catalogs and truck weight data, and extended by judgment.

B. Weights of Empty Trailers

By reference to manufacturers' catalogs and other sources of information, table 14-2 was prepared to show the average weight of empty trailers by length and number of axles. In general, these weights correspond closely to the weight of the closed-van trailer and to axle-weight limits of $18 / 32 \mathrm{kips}$. From tables $14-1$ and $14-2$ it is possible to develop the empty weight of any tractor-trailer combination according to trailer length and axle arrangement.
C. Empty Weights of Various Vehicle Classes at a Range of Axle-Weight Limits

The tare (empty) weights in tables 14-1 and 14-2 plus other information were used as the basis for obtaining the weights for specific classes of vehicles at specific lengths as given in table $14-3$ for the $18 / 32 \mathrm{kip}$ axle-weight limit.

Table 14-1. -- Net horsepower and tare weight of tractor related to practical maximum gross vehicle combination weight based upon truck weight studies, manufacturers data, and Judgment.

Practical maximum gross combination weight to be pulled, 1,000 pounds	Net available horsepower	Tare weight of tractor, pounds $1 /$	
		2-axle	3-axle
25	128	6,220	
30	138	6,800	10,300
40	158	7,960	11,250
50	178	9,120	12,200
60	198	10,280	13,150
70	218	11,440	14,100
80	238	12,600	15,050
90	258	13,760	16,000
100	278	14,920	16,950
120	328	17,240	18,850
140	358	19,560	20,750
160	398	21,880	22,650
280	338		24,550
200	378		26,450
220	418		28,350
240	458		30,250
260	498		32,150
280	638		34,050

1 The tare weight reflects any added weight necessary for increased axle-weight limits because of the resulting increase in practical maximum gross vehicle weight.

Table 14-2, -- Weight in pounds of empty trailers for use in combinations of vehicles at the 18/32 single/tandem axle-weight limits

Trailer width of 96 inches.
Weight of dollies: single-axle, 2,600 pounds; two-axle 5,000 pounds.

Trailer length, feet	Semitrailer		Full trailer		
	1 axle	2 axles	2 axles	3 axces	4 axles
20	6,300		8,900		
22	6,570		9,170		
24	6,840		9,440		
25	6,975	9,120	9,575	11,720	14,120
26	7,110	9,310	9,710	11,910	14,310
27	7,245	9,500	9,845	12,100	14,500
28	7,380	9,690	9,980	12,290	14,690
30	7,650	10,070	10,250	12,670	15,070
32	7,920	10,450	10,520	13,050	15,450
35	8,325	11,020	10,925	13,620	16,020
40	9,000	11,970	11,600	14,570	16,970
42	9,270	12,350	11,870	14,950	17,350
45	9,675	12,920	12,275	15,520	17,920

Table 14-3.-- Empty weights of different classes of vehicles and combinations

Table 14-4 gives the empty weights of the single-unit trucks $2 D$ and $3 A$ and of the tractor-semitrailer series for the range of axle-weight limits from $18 / 32$ to $60 / 95 \mathrm{kips}$.

The increase in tare weight with increased axle-weight limits was extended from the 18/32 limits by the use of the 1963 truck weight data. A plot was made of truck empty weights versus practical maximum gross vehicle weights. The practical maximum gross vehicle weight that would exist at each axleweight level was obtained by first determining from the graph the increment of tare weight for each increment of practical maximum gross vehicle weight based on the next higher axleweight limit.
D. Practical Maximum Gross Vehicle Weights

To calculate the number of vehicles required to haul 2,000 tons of payload and the operating cost of these vehicles, it is necessary to determine the practical maximum gross weights. For this computation, the practical maximum gross vehicle weight is defined as the sum of the maximum legal weights of the loadcarrying axles plus the weight on the front, or steering axle. Table 14-5 gives the practical maximum gross vehicle weights for the same series of classes of vehicles and axle-weight limits as were used in table 14-4.

Vehicle Clesa	Item	31agle/tandem axle-velght limits - kipe												
		18/32	20/35	22/38	24/41	26/44	28/47	32/53	36/59	40/65	44/71	48/77	52/83	60/95
20	Incremental empty welght Total eurpty velght	9,220	$\begin{array}{r} 2,200 \\ 11,420 \end{array}$	$\begin{array}{r} 1,800 \\ 13,220 \end{array}$	$\begin{array}{r} 1,600 \\ 14,820 \end{array}$	$\begin{array}{r} 1,500 \\ 16,320 \end{array}$	$\begin{array}{r} 1,400 \\ 17,720 \end{array}$	$\begin{array}{r} 2,220 \\ 19,920 \end{array}$	$\begin{array}{r} 1,900 \\ 21,820 \end{array}$	$\begin{array}{r} 1,700 \\ 23,520 \end{array}$	$\begin{array}{r} 1,600 \\ 25,120 \end{array}$	$\begin{array}{r} 1,500 \\ 26,620 \end{array}$	1,475 28,095	$\begin{array}{r} 2,725 \\ 30,820 \end{array}$
3 A	Incremental empty velght Total empty weleht	15,640	$\begin{array}{r} 1,430 \\ 17,070 \end{array}$	1,290	$\begin{array}{r} 1,200 \\ 19,560 \end{array}$	$\begin{array}{r} 1,150 \\ 20,710 \end{array}$	1,050 21,760	2,000 23,760	1,900 25,560	1,800 27,360	1,700 29,060	1,500 30,560	$\begin{array}{r} 1,400 \\ 31,960 \end{array}$	$\begin{array}{r} 2,800 \\ 34,760 \end{array}$
2-S1	Incremental tractor welght Incremental trailer veight Total empty weight	17,400	$\begin{array}{r} 500 \\ 1,150 \\ 19,050 \end{array}$	500 950 20,500	500 800 21,800	500 700 23,000	500 600 24,100	1,000 1,100 26,200	1,000 1,000 28,200	1,000 900 30,100	1,000 31,800	1,000 700 33,600	1,000 600 35,200	2,000 1,050 38,250
2-32	Inaremental tractor weight Incremental traller velght Total empty velght	22,070	$\begin{array}{r} 625 \\ 875 \\ 23,570 \end{array}$	625 775 24,970	625 675 26,270	$\begin{array}{r} 625 \\ 625 \\ 27,520 \end{array}$	$\begin{array}{r} 625 \\ 565 \\ 28,710 \end{array}$	1,250 1,020 30,980	1,250 910 33,140	1,250 810 35,200	1,250 710 37,160	1,250 610 39,020	$\begin{array}{r} 1,250 \\ 510 \\ 40,780 \end{array}$	$\begin{array}{r} 2,500 \\ 44,000 \\ 4,000 \end{array}$
3-52	Incremental tractor velght Incrementel traller velght Total empty weight	26,370	650 875 27.895	650 775 29,320	650 700 30,670	650 650 31,970	650 600 33,220	1,300 1,100 35,620	1,300 1,000 37,920	1,300 40,120	1,300 42,220	1,300 44,700	1,300 6600 46,120	2,600 1,050 49,770
2-S1-2	Incremental tractor veight Incremental traller velght Total empty woight:	-	$\begin{array}{r} 975 \\ 2,300 \end{array}$	$\begin{array}{r} 975 \\ 1,900 \end{array}$	$\begin{array}{r} 975 \\ 1,600 \end{array}$	$\begin{array}{r} 975 \\ 1,400 \end{array}$	$\begin{array}{r} 975 \\ 1,200 \end{array}$	$\begin{aligned} & 1,950 \\ & 2,200 \end{aligned}$	1,950	1,950	$\begin{aligned} & 1,950 \\ & 1,600 \end{aligned}$	1,950 1,400	1,950	$\begin{aligned} & 3,900 \\ & 2,100 \end{aligned}$
	Usiag 27' trallers Using 40^{\prime} trailers	$\left\lvert\, \begin{aligned} & 29,790 \\ & 33,300 \end{aligned}\right.$	$\begin{aligned} & 33,065 \\ & 36,575 \end{aligned}$	$\begin{aligned} & 35,940 \\ & 39,450 \end{aligned}$	$\begin{aligned} & 38,515 \\ & 42,025 \end{aligned}$	$\begin{aligned} & 40,890 \\ & 44,400 \end{aligned}$	$\begin{aligned} & 43,065 \\ & 46,575 \end{aligned}$	$\begin{aligned} & 47,215 \\ & 50,725 \end{aligned}$	$\begin{aligned} & 51,165 \\ & 54,675 \end{aligned}$	$\begin{aligned} & 54,915 \\ & 58,425 \end{aligned}$	$\begin{aligned} & 58,465 \\ & 61,975 \end{aligned}$	$\begin{aligned} & 61,815 \\ & 65,325 \end{aligned}$	$\begin{aligned} & 64,965 \\ & 68,475 \end{aligned}$	$\begin{aligned} & 70,965 \\ & 74,475 \end{aligned}$
2-52-3	Incremental tractor velght Incremental trailer weight Total ampty velght:	-	1,750	$\begin{array}{r} 975 \\ 1,550 \end{array}$	$\begin{array}{r} 975 \\ 1,400 \end{array}$	$\begin{array}{r} 975 \\ 1,300 \end{array}$	$\begin{array}{r} 975 \\ 1,200 \end{array}$	$\begin{aligned} & 1,950 \\ & 2,200 \end{aligned}$	1,950	1,950 1,800	1,950 1,600	1,950 1,400	1,950 1,200	$\begin{aligned} & 3,900 \\ & 2,100 \end{aligned}$
	Using 2\rceil^{\prime} trmilere Using 40^{\prime} treilera	$\begin{aligned} & 37,600 \\ & 42,540 \end{aligned}$	$\begin{aligned} & 40,325 \\ & 45,265 \end{aligned}$	$\begin{aligned} & 42,850 \\ & 47,790 \end{aligned}$	$\begin{aligned} & 45,225 \\ & 50,165 \end{aligned}$	$\begin{aligned} & 47,500 \\ & 52,440 \end{aligned}$	$\begin{aligned} & 49,675 \\ & 54,615 \end{aligned}$	$\begin{aligned} & 53,825 \\ & 58,765 \end{aligned}$	57,775 62,715	$\begin{aligned} & 61,525 \\ & 66,465 \end{aligned}$	$\begin{aligned} & 65,075 \\ & 70,015 \end{aligned}$	$\begin{aligned} & 68,425 \\ & 73,365 \end{aligned}$	$\begin{aligned} & 71,575 \\ & 76,515 \end{aligned}$	$\begin{aligned} & 77,575 \\ & 82,515 \end{aligned}$
3-92-4	Incremental tractor velght Incremental traller velght Total empty veleht:	-	$\begin{aligned} & 1,175 \\ & 1,750 \end{aligned}$	$\begin{aligned} & 1,175 \\ & 1,550 \end{aligned}$	$\begin{aligned} & 1,175 \\ & 1,400 \end{aligned}$	$\begin{aligned} & 1,175 \\ & 1,300 \end{aligned}$	$\begin{aligned} & 1,175 \\ & 1,200 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 2,200 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 2,000 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 1,800 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 1,600 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 1,400 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 1,200 \end{aligned}$	$\begin{aligned} & 4,700 \\ & 2,100 \end{aligned}$
	Using 27^{\prime} trailers Uaing 40' trallers	$\begin{aligned} & 44,500 \\ & 49,440 \end{aligned}$	$\begin{aligned} & 47,425 \\ & 52,365 \end{aligned}$	$\begin{array}{\|l\|l\|l\|} \hline 50,150 \\ 55,090 \end{array}$	$\begin{aligned} & 52,725 \\ & 57,665 \end{aligned}$	$\begin{aligned} & 55,200 \\ & 60,140 \end{aligned}$	$\begin{aligned} & 57,575 \\ & 62,515 \end{aligned}$	$\begin{aligned} & 62,125 \\ & 67,065 \end{aligned}$	$\begin{aligned} & 66,475 \\ & 71,415 \end{aligned}$	$\begin{aligned} & 70,625 \\ & 75,565 \end{aligned}$	$\begin{aligned} & 74,575 \\ & 79,515 \end{aligned}$	$\begin{aligned} & 78,325 \\ & 83,265 \end{aligned}$	$\begin{aligned} & 81,875 \\ & 86,815 \end{aligned}$	$\begin{aligned} & 88,675 \\ & 93,615 \end{aligned}$

14-8
Table 14-5 -- Practical maximum gross veights of several classes of vehiclen for axle-veight limits up to $60 / 95$ kips

2. EQUIVALENT 18-KIP AXIE APPLICATIONS AND

VEHICLE OPERATING COSTS RESULIING FROM
HAULING 2,000 TONS OF PAYLOAD IN DIFFERENT CLASSES OF VEHICLES AND FLEEETS

Added understanding of the interrelationships of axleweight limits, E $18-k i p$ axle applications, and cost of motor vehicle operation can be gained by studying each class of vehicle and vehicle fleet under hypothetical conditions. In the following analyses, the role of each class of vehicle in hauling 2,000 tons of payload Ireight is observed first in single vehicle classes, then in three fleets composed of different classes of vehicles.

A. Concept and Basic Provisions

A general conception of the relationship of the factors of (1) legal axle-weight limits, (2) E 18-kip axle-weight applications (applications of equivalent $18,000-$ pound single axles), (3) number of trucks eliminated under higher axle-weight and gross vehicle-weight limits, and (4) motor vehicle operating costs can be gained by considering these four factors in relation to haulage of a specific number of tons of payload, such as 2,000 tons ($4,000,000$ pounds) by the following classes and combinations of vehicles: (1) each of eight different classes of vehicles (scheme 1); (2) single-unit trucks, 40-foot semitrailers (scheme 2); (3) single-unit trucks, 40-100t semitrailers, and double 27-foot trailers with an overall vehicle combination length limit of 65 feet (scheme 3); and (4) single-
unit trucks, 40-100t semitrailers, and double 40-foot trailers with an overall combination length limit of 100 feet (scheme 4).

The eight vehicle classes that were analyzed either separately or in combination are listed below:

1. 2-axle, 6-tire single-unit truck (2D)
2. 3-axle, single-unit truck (3A)
3. 3-axle tractor-semitrailer combination (2-SI)
4. 4-axle tractor-semitrailer combination (2-S2)
5. 5-axle tractor-semitrailer combination (3-S2)
6. 5-axle tractor-semitrailer-full-trailer combination (2-Sl-2)
7. 7-axle tractor-semitrailer-full-trailer combination (2-52-3)
8. 9-axle tractor-semitrailer-full-trailer combination (3-52-4)

This analysis assumes that the 2,000 tons of payload are moved one bighway mile with the appropriate number of empty trips and trips with full and less than full payloads. For purposes of further approach to reality, it may be assumed that these 2,000 tons of freight are hauled in one day. This tonnage approximates that which is now hauled daily over many routes on the rural primary systems.

It was assumed that, for the transportation of the 2,000 tons of highway freight in each part of the study, each vehicle class is loaded identically in relation to payload capacity. The loading distribution used, from the standpoint of weights, was as follows:

1. 33% of the vehicles move empty,
2. 17% of the vehicles move one-fourth loaded,
3. 30\% of the vehicles move three-fourths loaded, and 4. 20% of the vehicles move fully loaded.

Varying empty weights (see table 14-6) -- depending upon the scheme of hauling the freight being considered -- were subtracted from the practical maximum gross weight (table 14-5) to get the maximum payload weight capacity for each vehicle class at each of the five axle-weight levels.

Using these maximum payload weights per vehicle, the pounds of payload at empty weight, one-fourth loaded, threefourths loaded, and fully loaded were determined. These payloads at various degrees of loadiag were used for two purposes: (1) to calculate an average payload for each class of vehicle at each axle-weight limit and (2) by adding them back to the empty weights, to get the gross weights at the four levels of loading at increased axle-weight limits.

By dividing the number of tons that a particular class of vehicle is to haul by the average payload for that vehicle In table 14-7, the number of vehicles in each class required to transport the 2,000 tons of highway freight was determined. These numbers of vehicles then were distributed according to the assumed degree of loading in order to calculate the total number of E 18-kip axles by vehicle class.

14-12
Table 14-6.-- Empty weights of each of eight classes of vehicles and combinations hauling 2,000 tons of freight at various axle-irelght limits

Axle weight limits, kips	2 D	3A	2-Sl	2-S2	3-52	2-Sl-2	2-S2-3	3-S2-4
SCHEME 1 - Using each of eight different vehicle classes at 65 feet maximum length								
18/32	10,100	13,800	16,000	22,070	26,370	29,790	37,600	44,500
20/35	12,300	15,230	17,650	23,570	27,895	33,065	40,325	47,425
22/38	14,100	16,520	19,100	24,970	29,320	35,940	1,2,850	50,150
24/41	15,700	17,720	20,400	26,270	30,670	38,515	45,225	52,725
26/44	17,200	18,870	21,600	27,520	31,970	40,890	47,500	55,200
SCHEME 2 - Using single-unit trucks and 40-foot semitrailers at 55 feet maximum leagth								
18/32	9,220	15,640	17,400	22,070	26,370			
20/35	11,420	17,070	19,050	23,570	27,895			
22/38	13,220	18,360	20,500	24,970	29,320			
24/41	14,820	19,560	21,800	26,270	30,670			
26/44	16,320	20,710	23,000	27,520	31,970			
SCHENE 3 - Using single-unit trucks, 40-foot semitrailers, and double 27 -foot trailers at 65 feet maximum length								
18/32	9,220	15,640	17,400	22,070	26,370	29,750	37,600	44,500
20/35	11,420	17,070	19,050	23,570	27,895	33,065	40,325	47,425
22/38	13,220	18,360	20,500	24,970	29,320	35,940	42,850	50,150
24/41	14,820	19,560	21,800	26,270	30,670	38,515	45,225	52,725
26/44	16,320	20,710	23,000	27,520	31,970	40,620	47,500	55,200
SCHEME 4 - Using single-unit trucks, $40-\mathrm{foot}$ semitrailers, and double 40 -foot trailers at 100 feet maximum length								
18/32	9,220	15,640	17,400	22,070	26,370	33,300	42,540	49,440
20/35	11,420	17,070	19,050	23,570	27,895	36,575	45,265	52,365
22/38	13,220	18,360	20,500	24,970	29,320	39,450	47,790	55,090
24/41	14,820	19,560	21,800	26,270	30,670	42,025	50,165	57,665
26/44	16,320	20,710	23,000	27,520	31,970	44,400	52,440	60,140

Table 14－7．－－Average payloads in pounds carried in eight classes of vehicles for four different schemes of hauling 2,000 tons of freight at various axle－weight limits

Axle weight limits	2 D	3A	2－Sl	2－S2	3－52	2－Sl－2	2－S2－3	3－S2－4
SZHENE 1 －Using each of eight different vehicle classes at 65 feet maxtum length＊								
18／32	7，152	12，997	12，903	16，984	22，126	23，801	33，519	43，712
20／35	7，434	14，011	14，189	18，760	24，359	26，103	37，107	48，094
22／38	7，900	15，091	15，521	20，584	26，638	28，592	40，789	52，570
24／41	8，461	16，213	16，876	22，454	28，952	31，222	44，541	57，116
26／44	9，069	17，358	18，233	24，347	31，289	33，945	48，339	61，710
SCHEME 2 －Using single－unit trucks and 40－foot semitrailers at 55 feet maximum length								
18／32	7，565	12，136	12，249					
20／35	7，845	13，151	13，534	$\stackrel{0}{4}$	\％			
22／38	8，313	14，231	14，867	${ }^{\circ}$	$\stackrel{\square}{8}$			
24／41	8，874	15，353	16，223	${ }_{6}$	${ }_{0}$			
26／44	10，481	16，498	17，578	$$	\％			
SCHEME 3 －Using single－unit trucks，40－foot semitrailers，and double 27 －foot trailers at 65 feet maximum length								
18／32						23，801	33，520	43，712
$20 / 35$	䉩					26，103	37，107	48，094
$22 / 38$	d	8	ภ	－	－	28，592	40，789	52，570
$24 / 41$	\sim	vo	\bigcirc	ט，	$\mathrm{wr}^{\text {r }}$	31，222	44，541	57，116
26／44	$\stackrel{\otimes}{\mathscr{\sim}}$	\％	\％	凶゙	※	33，945	48，339	61，710
SCHFME 4 －Using single－unit trucks，40－foot seinitrailers，and double 40－foot trailess at l00 feet maximum leagth								
$\begin{array}{ll} & 18 / 3 \\ & 20 / 3 \\ & 22 / 38 \\ \tilde{n} & 24 / 43 \\ & 26 / 41 \end{array}$	$\begin{aligned} & \text { 易 } \\ & \text { e } \\ & \text { in w } \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { ed } \\ & \text { in } \\ & 0 \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & 0 \\ & \bullet-1 \end{aligned}$		22，159	31，210	41，402
						24，462	34，799	45，784
						26，951	38，480	50，261
						29，581	42，231	54，808
		$$		$\begin{gathered} \ddot{0} \\ 0 \end{gathered}$	$\stackrel{\otimes}{\otimes}$	32，305	46，030	59，400

B. Scheme 1: Hauling 2,000 Tons of Freight by one Vehicle Class

One way to study the desirable dimensions and weights of motor vehicles is to assume that the 2,000 tons of highway freight move between points A and B in each of eight classes of highway frelght vehicles and at five different axle-weight limits. Instead of moving the freight in a fleet of mixed classes of vehicles, the freight movement in one class of vehicle is assumed, to provide a comparison of the relative efficiencies of each of the eight vehicle classes.

It will be noted in table $14-8$ that, under 18/32-kip axle-weight limitations (18,000 pounds for single and 32,000 pounds for tandem axles), the fewest vehicles (91.51) required to haul 2,000 tons of highway freight would result from using the 3-S2-4 vehicle. In addition, it should also be noted that, of the six trailer combinations, the 3-S2-4 vehicle would transmit to the pavement the fewest E 18-kip axles (189.67) in carrying 2,000 tons of payload.

It will be noted further that the 3-S2 vehicle, with two tandem axles and a steering axle, has 189.42 E 18-kip axles at 18/32-kip limitations, which increases to 482.10 at $26 / 44-k i p$ limitations, an increase of 154 percent. The 2-Sl-2 vehicle, with four single axles in addition to the steering axle, has 232.42 E 18-kip axles at the 18/32-kip limitations, increasing to 758.93 at the $26 / 44-\mathrm{kip}$ limitations, an increase of
Table 14-8. -- Scheme 1: Average payloads, number of vehicles, number of E l8-kip axles, and dollars of transport cost necessary to move 2,000 tons of freight in each of eight classes of vehicles and at various axle-weight limits

Axle weight limit	Item	2 D	3A	2-S1	2-S2	3-52	2-S1-2	2-52-3	3-S2-4
18/32	Average payload, lb.	7,152	12,997	12,903	16,984	22,126	23,801	33,519	43,712
	Number of vehicles required	559.28	307.76	310.01	235.52	180.78	168.06	119.34	91.51
	Fumber of E 18-kip axles	193.41	159.35	210.10	208.15	189.42	232.42	208.93	189.67
	Dollars of transport cost	\$191.44	111.81	- 113.51	91.66	75.28	72.28	58.87	52.07
20/35	Average payload, lb.	7,434	14,011	14,189	18,760	24,359	26,103	37,107	48,094
	Number of vehicles required	538.07	285.49	281.91	213.22	164.21	153.24	107.80	83.17
	Number of E 18-kip axles	285.22	213.80	294.81	279.11	247.88	330.33	280.00	249.06
	Dollars of transport cost	185.98	105.20	105.06	84.91	70.39	68.49	55.99	50.3
22/38	Average payload, lb. Number of vehicles require	7,900 506.33	15,091 265.06	15,521 257.72	20,584 194.33	$\begin{array}{\|c} 26,638 \\ \\ 150.16 \end{array}$	$\begin{array}{\|c\|} 28,592 \\ 139.90 \end{array}$	$\begin{array}{\|c} 40,789 \\ 98.07 \end{array}$	$52,570$ 76.09
	Number of vehicles requir Number of E 18-kip axles	506.33 406.95	265.06 280.76	410.81	194.33 362.08	311.53	449.29	363.77	$\begin{array}{r} 76.09 \\ 319.55 \end{array}$
	Dollars of transport cost	176.76	99.10	97.75	79.23	66.29	65.03	53.64	48.98
24/41	Average payload, lb.	8,461	16,213	16,876	22,454	28,952	31,222	44,541	57,116
	Number of vehicles required	472.76	246.72	237.02	178.14	138.16	128.11	89.80	73.03
	Number of E l8-kip'axles	553.55	354.78	537.86	460.44	391.97	590.71	464.33	399.51
	Dollars of transport cost	166.74	93.62	91.50	74.39	62.85	61.97	51.75	47.93
26/44	Average payload, lb.	9,069	17,358	18,233	24,347	31,289	33,945	48,339	61,710
	Number of vehicles required	441.06	230.44	219.38	164.29	127.84	117.84	82.75	64.82
	Number of E 18-kip axles	726.50	445.08	694.98	574.79	482.10	758.93	581.90	491.83
	Dollars of transport cost	- 157.19	88.77	86.19	70.29	59.95	59.35	50.24	47.15

227 percent. The 3-S2 vehicle would transmit to the pavement 3.77 E 18-kip axles per vehicle, while the 2-Sl-2 combination would transmit to the pavement 6.44 E $18-\mathrm{kip}$ axles per combination at the highest weight limitation studied (26/44-kip axles) and 1.05 and 1.38 E $18-\mathrm{kip}$ axles per vehicle, respectively, at the lowest weight limitations studied (18/32 kips).

Table 14-8 indicates that at all five axle-weight levels the lowest cost of moving 2,000 tons of highway freight one mile is obtained through the use of the $3-52-4$. The most costly trailer combination is the $2-\mathrm{Sl}$. The most costly of the eight classes of vehicle is the $2 D$ single-unit truck.
C. Schemes 2, 3, and 4: Hauling 2,000 Tons of Freight in Fleets made up of Several Classes of Vehicles

Three hypothetical fleets (schemes 2, 3, and 4) composed of several classes of vehicles were envisaged for the purpose of transporting 2,000 tons of freight between two points one mile apart. The efficiency of these fleets is based upon both cube (cargo-volume capacity) and weight requirements and is forecast with respect to loaded and empty vehicle loadings observed at truck weighing stations in 1963.

For this study, each class of vehicle was assumed to travel empty 33 percent of the time; one-fourth loaded, from the standpoint of axle weights, 17 percent of the time; three-fourths loaded 30 percent of the time; and fully loaded only 20 percent of the time.
(1) Distribution of the 2,000 tons among the various vehicle classes

The shipping densities of cargo are the key factors in selecting the economical vehicle when both axle-weight limits and number and length of cargo bodies are considered. The 2-Sl combination under an $18 / 32-k i p$ axle-weight limit will utilize its 2,262 cubic feet of usable capacity when loaded with commodities of density less than $11 \frac{1}{2}$ pounds per cubic foot (pcf). The 2,262 cubic feet is based on an exterior trailer length of 40 feet, height from pavement to exterior of roof of 13.5 feet, an exterior width of 96 inches, and a maximum inside cargo space height of 9.0 feet with an assumed inside loading height of 7.5 feet. Commodities weighing $11 \frac{1}{2}$ pcf or more must travel in 2-Sl combinations less than visibly fully loaded because of axle-weight limits.

Similarly, the 2-S2 combination cannot legally (under 18/32-kip axle limitations) travel with a visibly full load of commodities weighing more than about 16 pcf. The $3-\mathrm{s} 2$ combination can legally travel with visibly full loads of commodities weighing up to 21 pci but above that weight this vehicle must travel less than fully volume-loaded. See tables 14-10 and 14-11 for the maximum product densities for visibly fully loaded vehicles.

By increasing the axle-weight allowances from 18/32 to $26 / 44$ kips, the cutofs points above which full cubage loads could not legally be carried would be raised from $11 \frac{1}{2}$ to $16 \frac{1}{2}$
Table 14-10.-- Scheme 2: Shipping density in pounds per cubic foot at which cargo ean be stowed visibly fully loaded at various axle-weight limitations in highway vehicles with single cargo-body dimensions of 40 -feet length and 96 inches width

Axle weight limits Single/tandem, kips		2-Sl	2-S2	3-52
18/32	```Practical maximum gross vehicle welght, lb. Empty weight, lb. Maximum payload weight, lb. Shipping density, lb./cu.ft.```	$\begin{aligned} & 43,600 \\ & 17,400 \\ & 26,200 \\ & 11.58 \end{aligned}$	$\begin{aligned} & 58,400 \\ & 22,070 \\ & 36,330 \\ & 16.06 \end{aligned}$	$\begin{aligned} & 73,700 \\ & 26,370 \\ & 47,330 \\ & 20.92 . \end{aligned}$
20/35	Stowage capacity, cu.ft. Bmpty weight, lb. Maximum payload weight, lb. Shipping density, lb./cu.ft.	$\begin{aligned} & 48,000 \\ & 19,050 \\ & 28,950 \\ & 12.80 \end{aligned}$	$\begin{gathered} 63,700 \\ 23,570 \\ 40,130 \\ 17.74 \end{gathered}$	$\begin{array}{r} 80,000 \\ 27,895 \\ 52,105 \\ 23.03 \end{array}$
22/38	Stowage capacity, cu.ft. Empty weight, lb. Maximum payload weight, lb. Shipping deasity, lb./cu.ft.	$\begin{array}{r} 52,300 \\ 20,500 \\ 31,800 \\ 14.06 \end{array}$	$\begin{aligned} & 69,000 \\ & 24,970 \\ & 44,030 \\ & 19.46 \end{aligned}$	$\begin{array}{r} 86,300 \\ 29,320 \\ 56,980 \\ 25.19 \end{array}$
24/41	Stowage capacity, cu.ft. Empty weight, lb. Maximum payload weight, lb. Shipping density, lb./cu.ft	$\begin{array}{r} 56,500 \\ 21,800 \\ 34,700 \\ 15.34 \end{array}$	$\begin{aligned} & 74,300 \\ & 26,270 \\ & 48,030 \\ & 21.23 \end{aligned}$	$\begin{aligned} & 92,600 \\ & 30,670 \\ & 61,930 \\ & 27.38 \end{aligned}$
26/44	Stowage capacity, cu.ft. Empty weight, lb. Maximum payload weight, lb. Shipping density, lb./cu.ft.	$\begin{aligned} & 60,600 \\ & 23,000 \\ & 37,600 \\ & 16.62 \end{aligned}$	$\begin{array}{r} 79,600 \\ 27,520 \\ 52,080 \\ 23.02 \end{array}$	$\begin{aligned} & 98,900 \\ & 31,970 \\ & 66,930 \\ & 29.59 \end{aligned}$
	Stowage capacity, cu.ft.	2,262	2,262	2,262

Table 14-11. -- Shipping density in pounds per cubic foot at which cargo can be stowed visibly fully loaded at various axle-weight

Axle weight limit single/ tandem, kips		Scheme 3 27 feet long and 96 inches wide			Scheme ${ }^{4}$40 feet long and 961 inches wide		
		2-S1-2	2-52-3	3-52-4	2-51-2	2-52-3	3-52-4
18/32	Practical maxdmum gross vehicle veight, lb. Empty weight, ib. Maxdmum payload weight, 1 lb . Shipping density, lb./cu. ft.	$\begin{aligned} & 80,700 \\ & 29,790 \\ & 50,910 \\ & 16.80 \end{aligned}$	$\begin{array}{r} 109,300 \\ 37,600 \\ 71,700 \\ 23.66 \end{array}$	$\begin{array}{r} 238,000 \\ 44,500 \\ 93,500 \\ 30.86 \end{array}$	80,700 33,300 47,400 10.48	$\begin{gathered} 109,300 \\ 42,540 \\ 66,760 \\ 14.76 \end{gathered}$	$\begin{gathered} 138,000 \\ 49,440 \\ 88,560 \\ 19.58 \end{gathered}$
20/35	Stowage capacity, cu. ft. Empty weight, lb. Maximum payload welght, ib. Shipping density, lb./cu. it.	$\begin{aligned} & 88,900 \\ & 33,065 \\ & 55,835 \\ & 18.43 \end{aligned}$	119,700 40,325 79,375 26.20	$\begin{array}{r} 150,300 \\ 47,425 \\ 102,875 \\ 33.95 \end{array}$	88,900 36,575 52,325 12.57	$\begin{aligned} & 119,700 \\ & 45,265 \\ & 74,435 \\ & 16.45 \end{aligned}$	$\begin{gathered} 150,300 \\ 52,365 \\ 97,935 \\ 21.65 \end{gathered}$
22/38	Stowage capacity, cu. ft. Kmpty weight, lb. Maxdmum payload weight, lb. Shipping density, lb:/cu. ft.	97,100 35,940 61,160 20.18	130,100 42,850 87,250 28.80	$\begin{aligned} & 162,600 \\ & 50,150 \\ & 12,450 \\ & 37.11 \end{aligned}$	97,100 39,450 57,650 12.74	$\begin{gathered} 130,100 \\ 47,790 \\ 82,310 \\ 18.19 \end{gathered}$	$\begin{gathered} 162,600 \\ 55,090 \\ 107,510 \\ 23.76 \end{gathered}$
24/41	Stowage capacity, cu. ft. Empty weight, lb. maxdmum payload weight, 1 lb . Shipping density, $1 \mathrm{lb} . / \mathrm{cu}$. ft.	$\begin{gathered} 105,300 \\ 38,515 \\ 66,785 \\ 22.04 \end{gathered}$	$\begin{array}{r} 140,500 \\ 45,225 \\ 95,275 \\ 31 . \end{array}$ 31.44	$\begin{gathered} 174,900 \\ 52,725 \\ 122,175 \\ 40.32 \end{gathered}$	$\begin{array}{r} 105,300 \\ 42,025 \\ 63,275 \\ 13.99 \end{array}$	$\begin{gathered} 140,500 \\ 50,165 \\ 90,335 \\ 19.97 \end{gathered}$	$\begin{gathered} 174,900 \\ 57,665 \\ 177,235 \\ 25.91 \end{gathered}$
26/44	Stowage capacity, cu. ft. Eupty weight, lb. Maximum payload weight, ib. Shipping deasity, lb./cu. ft.	$\begin{aligned} & 123,500 \\ & 40,890 \\ & 72,610 \\ & 23.96 \end{aligned}$	$\begin{aligned} & 150,900 \\ & 47,500 \\ & 103,400 \\ & 34.13 \end{aligned}$	$\begin{aligned} & 187,200 \\ & 55,200 \\ & 132,000 \\ & 43.56 \end{aligned}$	$\begin{aligned} & 123,500 \\ & 44,400 \\ & 69,100 \\ & 15.27 \end{aligned}$	$\begin{gathered} 150,900 \\ 52,440 \\ 98,460 \\ 21.76 \end{gathered}$	$\begin{aligned} & 187,200 \\ & 60,140 \\ & 127,060 \\ & 28.09 \end{aligned}$
	Stowage capacity, eu. ft	3,030	3,030	3,030	4,524	4,524	4,524

Table 14-12. -- Distribution of 2,000 tons of payload by 5 -pound shipping density groups and an estimate of the total cubage required to havil the 2,000 tons of payload

Shipping density, pcf	$\begin{aligned} & \text { Percentage } \\ & \text { of total } \\ & \text { intercity } \\ & \text { freight in } \\ & 1960 \text { I/ } \end{aligned}$	Cumulative percentage of intercity freight in 1960 1/	Distribution of 2,000 tons of highway freight (tons)	Cubage required for 2,000 tons of highway freight (cf)
5-9.9	1.30	1.30	26.0	6,980
10-14.9	3.15	4.45	O3.0	10,120
15-19.9	0.58	5.03	11.6	1,330
20-24.9	1.71	6.74	34.2	3,047
25-29.9	4.34	11.08	86.8	6,324
30-34.9	3.79	14.87	75.8	4,672
35-39.9	5.29	20.16	105.8	5,650
40-44.9	9.25	29.41	185.0	8,716
45-49.9	10.44	39.85	208.8	8,801
50-54.9	5.34	45.19	106.8	4,072
55-59.9	8.65	53.84	173.0	6,023
60-64.9	0.11	53.95	2.2	70
65-69.9	1.12	55.07	22.4	664
70-74.9	0.48	55.55	9.6	265
80-84.9	0.17	55.72	3.4	82
85-89.9	0.03	55.75	0.6	14
90-94.9	2.98	58.73	59.6	1,289
100-104.9	33.52	92.25	670.4	13,087
105-109.9	0.27	92.52	5.4	101
110-114.9	0.26	92.78	5.2	92
115-119.9	0.50	93.28	10.0	170
130-134.9	1.45	94.73	29.0	438
145-149.9	1.96	96.69	39.2	532
155-159.9	0.02	96.71	0.4	5
160-164.9	0.08	96.79	1.6	20
165-169.9	0.04	96.83	0.8	10
180-184.9	0.10	96.93	2.0	22
185-189.9	2.20	99.13	44.0	469
195-199.9	0.01	99.14	0.2	2
215-219.9	0.04	99.18	0.8	7
220-224.9	0.24	99.42	4.8	43
225-229.9	0.55	99.97	11.0	97
310-314.9	0.03	100.00	0.6	4
TOTAL	100.00		2,000.0	83,218

1/ Source: Based on Table 2 of report, "Intercity Freight Haulage, by Commodity, Shipping Density and Type of Traneport, 1960," by Malcolm F. Kent, Highway Research Record 82, Highway Research Board.
14-21
pcf for the 2-Sl combination, from 16 to 23 pci for the 2-S2, and from 21 to $29 \frac{1}{2}$ pcf for the $3-52$.

Table 14-12 indicates that on the basis of weight only, 1.30 percent of commodities moving by highway transport have shipping densities of less than 10 pcf; 4.45 percent, less than 15 pcf; 5.03 percent, less than 20 pcf; 6.74 percent, less than 25 pcf; and 11.08 percent, less than 30 pcf. Therefore, using the 3 -S2 combination with a 40-foot body, slightly more than 5.03 percent of all cormodities hauled, or only those of a density of less than 21 pcf, could be hauled as a visibly full load without exceeding an 18/32-kip axie-weight limit. Under an axle-weight limit of $26 / 44 \mathrm{kips}$, close to 11.08 percent of all commodities, or those of less than 30 pcf, could be hauled as visibly full loads without exceeding the axle-weight limits.

Scheme 2 is based on the use of vehicles with single cargo bodies. The proportion of the 2,000 tons of freight to be carried by each of the five vehicle classes affected by increases in axle-weight limits is based upon the results of the 1962 truck weight study. Because gross vehicle weight limitations have been raised in 19 States since 1962, the 3-S2 vehicle is now supplanting the $2-S 2$ vehicle. For this reason, it is assumed in this analysis that the vehicle-miles reported for the $2-52$ vehicle are indicative of the future $3-52$ travel and vice versa.

The vehicle classes and the proportion of the 2,000 tons assigned to each vehicle are as follows:

SCHEME 2
Highway freight
Percent (Tons)

$2 D$	220	11
$3 A$	80	4
$2-S 1$	140	7
$2-S 2$	680	34
$3-S 2$	880	$\underline{44}$
	2,000	100

In a fleet with mixed single- and double-cargo bodies, the tonnage of cargo to be hauled will be divided between single- and double-cargo vehicles and combinations on the basis of transport requirements and economy. The vehicles with singlecargo bodies will not be entirely supplanted by the double-cargo vehicles, should the double-cargo combination be authorized. where it is not now permitted.

The distribution of the 2,000 tons of freight among the vehicle classes, when 27-foot double-cargo-body combinations are included in the fleet, is based partly oi vehicle class distribution in States allowing both single- and double-cargo-body vehicles and partly on experience in Michigan where both 7-and 9-axle and more combinations are found. The assumed distribution of the 2,000 tons to a fleet with 27 -foot double-cargo combinations is as follows:

SCHEME 3
Vehicle class
Highway freight
Percent
(Tons)

$2 D$	220	11.0
$3 A$	70	3.5
2-S1	130	6.5
2-S2	280	14.0
$3-S 2$	300	15.0
$2-S 1-2$	200	10.0
$2-S 2-3$	400	20.0
$3-S 2-4$	400	20.0
	2,000	100.0

In the above distribution, the single-unit trucks (2D and 3A) are assigned 14.5 percent of the total tonnage; the single-trailer combination vehicles (2-S1, $2-52$, and $3-52$), 35.5 percent; and the double-trailer combination vehicles (2-S1-2, 2-S2-3, and 3-S2-4), the remaining 50.0 percent. For the 2-Sl combination, there still is a need of commodities weighing up to 10 pcf , and for the $2-\mathrm{S} 2$, commodities weighing $15 \frac{1}{2}$ to $22 \frac{1}{2} \mathrm{pcf}$.

The tons of cargo assigned to each vehicle type in this combined 40-foot single- and 40-foot double-cargo-body fleet are as follows:

SCHEME 4
Vehicle class
Highway freight
Percent (Tons)

$2 D$	220	11.0
$3 A$	70	3.5
2-S1	100	5.0
2-S2	220	11.0
$3-S 2$	260	13.0
2-S1-2	230	11.5
2-S2-3	420	21.0
$3-S 2-4$	480	24.0
	2,000	100.0

(2) Comparison of number of vehicles and E 18-kip axle applications

The number of vehicles necessary to carry the assigned tons of payload was obtained by dividing the total pounds of freight by the average payload per vehicle considering all degrees of loading from empty 0 full. For example, in scheme 2 the 12,249 -pound average payload of the $2-\mathrm{Sl}$, under single 18 and tandem 32-kip limitations, when divided into 140 tons, resulted in 22.86 2-Sl combination vehicles required to carry this assigned tonnage for the single-cargo-body fleet.

Table 14-13 shows that, for each vehicle class in schemes 2, 3 and 4, the number of vehicles needed decreases as the axle-weight limits increase. Also, it is evident that, although the number of vehicles required decreases, the E 18kip factors for the heavier axle weight results in increased E 18-kip applications.
(3) Comparison of vehicle operating costs

For scheme 2, for which single-cargo-body vehicles were used in the transport of 2,000 tons of freight at the $18 / 32-\mathrm{kip}$ axle-weight limits, total operating costs were found to be about 14 percent higher than for scheme 3 , in which double-cargo-body combinations 40 -feet in length were used. As shown in table $14-13$, at the $18 / 32-k i p$ axle-weight limits, the cost per mile to move 2,000 tons of highway freight is $\$ 97.36$ for the
Table 14-13. -- Number of vehicles, dollers of transport cost, and 18 -kip exles necessary to mave

- scimar 2 - Using siagle unit truake and ho-foot seatimallern at 55 seot modiun length.

single-cargo-body fleet, $\$ 85.40$ for the fleet with 27 -foot double trailers, $\$ 85.35$ for the fleet with 40 -foot double trailers. Similar costs for these three fleets under the $26 / 44-k i p$ restrictions are $\$ 75.24, \$ 68.28$, and $\$ 60.23$, respectively. This reduction in motor vehicle operating cost of approximately 23 percent for the three fleets at the $26 / 44-k i p$ axle-weight limits results from carrying the same payload in fewer vehicles at the $26 / 44-k i p$ axle-weight limit than are required at the 18/32-kip axle-weight limit.

3. MARGINAL AXLE-WEIGHT LIMIMS BASED ON ECONOMY OF TRANSPORTING 2,000 TONS OF PAYLOAD

The analyses of the economy of axle-weight limits, as presented in Chapter 10, indicate that there is overall transportation economy in axle-welght limits above the $26 / 44-k i p$ limit used in these analyses. It is desirable, therefore, to extend the analyses to still higher axle-weight limits. In order to gain some indication of the axle-weight limits above which no further economy may be expected, the 2,000 ton payload study was extended to $60 / 95-k i p$ limits using a hypothetical fleet.
A. Concepts and Procedures

As a first approach to determining the marginal limits of vehicle axle weights above which no further transportation economy could be achleved, the $2,000-$ ton study described in the preceding section was extended to higher axle-weight limits.

The results apply only to the primary rural system in the East North Central census division, which was chosen for analysis.

The analysis is based on hauling 2,000 tons of payload one mile on a newly constructed highway. The axle-weight limits used are as follows:

Single/tandem, pounds Single/tandem, pounds

$$
\begin{array}{ll}
18,000 / 32,000 & 32,000 / 53,000 \\
20,00 / 35,000 & 36,000 / 59,000 \\
22,000 / 38,000 & 40,000 / 6,000 \\
24,000 / 41,000 & 44,000 / 71,000 \\
26,000 / 44,000 & 48,000 / 77,000 \\
28,000 / 47,000 & 52,000 / 83,000 \\
& 60,000 / 95,000
\end{array}
$$

The distribution of payload among the classes of
vehicles in the scheme is the same as previously given in table 14-13. The loading distribution between empty and full payload, also is the same as stated on page 14-21. The vehicle empty weights and practical maximum gross weights were taken from tables $14-4$ and $14-5$. The average payloads per vehicle for each class of vehicle and the three schemes of fleet composition are given in table 14-14.

The E 18 -kip axle applications, highway costs, and maintenance costs were calculated according to the procedure developed in Method 1. Table 14-17 gives the motor vehicle operating costs per vehicle-mile for the axle-weight limits of 28/47 kips and above.
Table 14-14.-oAverage payloads per vehicle for the axle-weight limits of 28/47 kips and above.

Vehicleclassification	Single/tandem axle weight limits - kips							
	28/47	32/53	36759	$40 / 65$	44/77	$48 / 77$	$52 / 83$	60/25
Scheme 2								
2 D	10,135	11,725	13,455	15,278	17,148	19,065	20,993	24,955
3A	17,690	20,121	22,646	25,170	27,741	30,406	33,118	38,541
2-S1	18,980	21,832	24,731	27,676	30,668	33,707	36,792	43,033
2-S2	26,269	30,163	34,109	38,101	42,140	46,226	50,359	58,727
3-52	36,651	38,419	43,234		53,005	57,961	62,963	73,037
Scheme 3								
2D	10,135	11,725	13,455	15,278	17,148	19,065	20,993	24,955
3A	17,690	20,121	22,646	25,170	27,741	30,406	33,118	38,541
2-51	18,980	21,832	24,731	27,676	30,668	33,707	36,792	43,033
2-S2	26,269	30,163	34,109	38,101	42,140	46,226	50,359	58,727
3-52	33,651	38,419	43,234	48,096	53,005	57,961	62,963	73,037
2-Sl-2	36,762	42,489	48,309	54,223	60,230	66,331	72,526	85,055
2-52-3	52,185	59,969	67,846	76,284	84,816	93,442	102,160	114,128
3-S2-4	66,350	75,723	85,190	94,751	104,404	114,152	123,993	143,815
Scheme 4								
2 D	10,135	11,725	13,455	15,278	17,148	19,065	20,993	24,955
3A	17,690	20,121	22,646	25,170	27,741	30,406	33,118	38,541
2-51	18,980	21,832	24,731	27,676	30,668	33,707	36,792	43,033
2-52	26,629	30,163	34,109	38,101	42,140	46,226	50,359	58,727
3-52	33,651	38,419	43,234	48,096	53,005	57,961	62,963	73,037
2-51-2	35,121	40,848	46,668	52,582	58,589	64,690	70,885	83,414
2-S2-3	49,875	57,659	65,537	73,975	82,507	91,132	99,851	111,819
3-52-4	64,041	73,414	82,881	92,441	102,095	111,842	121,683	141,505

Table 14-17.-Loaded gross weight and operating cost per mile for selected vehicle classes

Vehicle cless	28/47	$32 / 53$	Axle we $36 / 59$	at Iimit,	kips, sin 44/71	e/tandem $48 / 77$	52/83	60/95
	A. 80 percent of maximum practical gross vehicle weight kips m loaded gross weight							
2 D	31.52	36.00	40.48	44.96	49.44	53.92	58.40	67.36
3 A	47.68	53.44	59.20	64.96	70.72	76.48	82.24	93.76
2-51	51.68	58.24	64.80	71.36	77.92	84.48	91.04	104.16
2-52	67.92	76.40	84.88	93.36	101.84	110.32	118.80	135.76
3-52	84.16	94.24	104.32	114.40	124.48	134.56	144.64	164.80
2-SI-2	97.36	110.48	123.60	136.72	149.84	162.96	176.08	202.32
2-52-3	129.20	146.00	162.80	179.60	196.40	213.20	230.00	263.60
3-82-4	159.60	179.28	198.96	218.64	238.32	258.00	277.68	317.04
B. Operating cost, cents per vehicle-mile								
2 D	36.021	36.819	37.664	38.556	39.495	40.479	41.511	43.715
3 A	39.120	40.372	41.701	43.106	44.590	46.150	47.788	51.295
2-S1	39.981	41.474	43.066	44.760	46.553	48.446	50.439	54.726
2-52	43.859	46.128	48.564	51.168	53.939	56.877	59.893	66.697
3-52	48.351	51.448	54.781	58.351	62.157	66.200	70.479	79.748
2-S1-2	52.454	56.934	61.815	67.097	72.779	78.863	85.346	99.516
2-52-3	64.021	71.075	78.786	87.154	96.179	105.861	116.200	138.850
3-52-4	77.267	86.989	97.612	109.137	121.564	134.892	149.122	180.287

B. Results of the Analysis

Table 14-18 sets forth for each scheme the number of vehicles by class, the total motor vehicle transport cost, and the number of E l8-kip axle applications for each of eight levels of axle-weight limit. A general observation from the table is that, as the axle-weight limit moves upward from $28 / 47 \mathrm{kips}$ to $60 / 95 \mathrm{kips}$, the number of vehicles is reduced to about half the initial number, and the E l8-kip axles are increased about 10 times.

The benefit-cost ratios and the basic highway and motor vehicle costs are given in table 14-19 for the full range of axle-weight limits from $18 / 32 \mathrm{kips}$ to $60 / 95$ kips. For all three schemes, the incremental benefit-cost ratios decrease with increasing axle-weight limits. The marginal axle-weight limits are about $56 / 89,52 / 83$, and $52 / 83$, respectively, for the three schemes. The ratios are plotted in figure 14-1.

As mentioned at the beginning of this section, the analysis applies to hauling 2,000 tons of payload one mile in hypothetical fleets of vehicles under the highway costs pertaining to the primary rural system in the East North Central census division. Since the overall economy of increased axleweight limits depends upon the number of trucks (ADT) and the fleet composition by vehicle class, this type of analysis would lead to different results with smaller or greater total numbers of tons of payload to transport. The answers, however, are
rable 14-18. .o Muber of vehicles, tranaport cost, and 1 18-kip acien for hauling 2,000 tone of payload one

Vehicle claselfication and tons carried	Schee 2	Slagle/tande axle veight ildits, kipe							
		28/47	32/53	36/59	40/65	$44 / 71$	48/77	52/83	60/95
$\stackrel{2 D}{220}$	Mraber of vehicles Traneport cost - I $18-\mathrm{kip}$ axles	43.41 15.64 100.06	37.53 13.82 151.50	$\begin{array}{r} 32.70 \\ 12.32 \\ 213.41 \end{array}$	$\begin{array}{r} 28.80 \\ 11.10 \\ 297.64 \end{array}$	$\begin{array}{r} 25.66 \\ 10.13 \\ 398.46 \end{array}$	$\begin{array}{r} 23.08 \\ 9.34 \\ 521.97 \end{array}$	$\begin{array}{r} 20.96 \\ 8.70 \\ 667.66 \end{array}$	$\begin{array}{r} 17.63 \\ 7.71 \\ 1,047.15 \end{array}$
38 80	Hurber of vehiole Trasport cost - \$ z 18-kip axces	9.04 3.54 23.40	$\begin{array}{r} 7.95 \\ 3.21 \\ 33.56 \end{array}$	7.07 2.95 46.75	$\begin{array}{r} 6.36 \\ 2.74 \\ 63.00 \end{array}$	5.77 2.57 83.28	$\begin{array}{r} 5.26 \\ 2.43 \\ 107.71 \end{array}$	$\begin{array}{r} 4.83 \\ 2.31 \\ 137.34 \end{array}$	$\begin{array}{r} 4.15 \\ 2.13 \\ 212.36 \end{array}$
$2-81$ 140	Fumber of vehicles Trasport cost - \$ 1818-15p axles	24.75 5.90 64.22	$\begin{array}{r} 12.83 \\ 5.32 \\ 97.63 \end{array}$	11.32 4.88 139.48	$\begin{array}{r} 10.12 \\ 4.53 \\ 194.45 \end{array}$	9.13 4.25 266.68	$\begin{array}{r} 8.31 \\ 4.03 \\ 350.68 \end{array}$	$\begin{array}{r} 7.64 \\ 3.84 \\ 453.91 \end{array}$	$\begin{array}{r} 6.51 \\ 3.56 \\ 727.50 \end{array}$
$\begin{array}{r} 2-82 \\ 680 \end{array}$	Erimber of vehicles Treasport cost E 18-kip axlee	51.77 22.70 242.03	45.09 20.80 353.82	39.87 19.36 499.22	35.69 18.26 688.29	$\begin{array}{r} 32.27 \\ 17.41 \\ 923.34 \end{array}$	29.42 16.73 $1,206.11$	27.01 16.20 $1,551.12$	$\begin{array}{r} 23.16 \\ 15.45 \\ 2,459.01 \end{array}$
$\begin{array}{r} 3-82 \\ 880 \end{array}$	number of vehicles Transport cost I 18-kip exles	$\begin{array}{r} 52.03 \\ 25.29 \\ 258.15 \end{array}$	$\begin{array}{r} 45.81 \\ 23.57 \\ 362.20 \end{array}$	$\begin{array}{r} 40.71 \\ 22.30 \\ 510.00 \end{array}$	$\begin{array}{r} 36.59 \\ 21.35 \\ 689.27 \end{array}$	$\begin{array}{r} 33.20 \\ 20.64 \\ 913.72 \end{array}$	$\begin{array}{r} 30.36 \\ 20.10 \\ 1,190.27 \end{array}$	$\begin{array}{r} 27.95 \\ 19.70 \\ 1,508.81 \end{array}$	$\begin{array}{r} 24.10 \\ 19.22 \\ 2,365.88 \end{array}$
$\begin{aligned} & \text { Total } \\ & 2,000 \end{aligned}$	turber of vebicles Transport cost -(18-kip axlee	$\begin{array}{r} 171.27 \\ 73.07 \\ 687.86 \end{array}$	149.21 66.72 998.71	$\begin{array}{r} 131.67 \\ 61.81 \\ 1,408.51 \end{array}$	$\begin{array}{r} 117.56 \\ 57.98 \\ 1,932.65 \end{array}$	$\begin{array}{r} 106.03 \\ 55.00 \\ 2,585.48 \end{array}$	$\begin{array}{r} 96.43 \\ 52.63 \\ 3,376.74 \end{array}$	$\begin{array}{r} 88.36 \\ 50.75 \\ 4,328.80 \end{array}$	$\begin{array}{r} 75.55 \\ 48.07 \\ 6,811.90 \end{array}$

Subla liz-18. on limber of vehiclea, transport cost, and \bar{E} 18-kip acles for hauling 2,000 tons of payload one

Vebicle classificetion and ton carried	Schem 3	Siugle/tanden axle veight linits, klpe							
		28/47	32/53	36/59	40/65	44/71	48/77	52/83	60/95
$\underset{2 \times 0}{2 D}$	Fubber of vehicles rreasport cost s l8-kip axles	43.41 15.64 100.06	37.53 13.82 151.50	32.70 123.32 223.41	$\begin{array}{r} 28.80 \\ 11.10 \\ 297.64 \end{array}$	$\begin{array}{r} 25.66 \\ 10.13 \\ 398.46 \end{array}$	23.08 9.34 521.97	$\begin{array}{r} 20.96 \\ 8.70 \\ 667.66 \end{array}$	$\begin{array}{r} 17.63 \\ 7.71 \\ 1,047.15 \end{array}$
30	Thmber of vehiclee Tranaport cost -届18-1E1p axles	7.91 3.09 20.45	$\begin{array}{r} 6.96 \\ 2.81 \\ 29.36 \end{array}$	6.18 2.58 40.81	5.56 2.40 55.08	5.05 2.25 72.97	4.60 2.12 94.27	4.23 2.02 119.43	$\begin{array}{r} 3.63 \\ 1.86 \\ 185.06 \end{array}$
$2-31$ 130	humber of vehicles Transport cost - \$ 18 18-kip axles	13.70 5.48 59.67	11.91 4.94 90.46	$\begin{array}{r} 10.51 \\ 4.53 \\ 129.48 \end{array}$	9.39 4.20 180.74	$\begin{array}{r} 8.48 \\ 3.95 \\ 247.56 \end{array}$	7.71 3.74 324.90	$\begin{array}{r} 7.07 \\ 3.57 \\ 423.32 \end{array}$	$\begin{array}{r} 6.04 \\ 3.31 \\ 676.50 \end{array}$
$2-82$ 280	Number of venicles transport cost - \$ r 18-k1p axles	21.32 9.35 99.60	$\begin{array}{r} 18.57 \\ 8.57 \\ 145.58 \end{array}$	16.42 7.97 205.57	14.70 7.52 283.42	13.29 7.17 380.71	12.11 6.89 496.21	$\begin{array}{r} 11.12 \\ 6.67 \\ 638.34 \end{array}$	$\begin{array}{r} 9.54 \\ 6.36 \\ 1,023.55 \end{array}$
$3-82$ 300	rumber of rehicles Transport cost - \$ F b8-kip axles	17.83 8.62 88.07	$\begin{array}{r} 15.62 \\ 8.04 \\ 123.46 \end{array}$	$\begin{array}{r} 13.88 \\ 7.60 \\ 173.98 \end{array}$	12.48 7.28 235.19	$\begin{array}{r} 11.32 \\ 7.04 \\ 321.31 \end{array}$	$\begin{array}{r} 10.35 \\ 6.85 \\ 405.62 \end{array}$	9.53 6.72 461.16	$\begin{array}{r} 8.22 \\ 6.56 \\ 806.06 \end{array}$
$\xrightarrow{2-51-2}$	thuber of vehicles Transport cost 5 18-kip arles	10.88 5.71 94.68	9.41 5.36 141.89	8.28 5.12 205.66	7.38 4.95 286.43	$\begin{array}{r} 6.64 \\ 4.83 \\ 388.33 \end{array}$	6.03 4.76 519.13	$\begin{array}{r} 5.52 \\ 4.71 \\ 660.96 \end{array}$	$\begin{array}{r} 4.70 \\ 4.68 \\ 1,056.76 \end{array}$
$\begin{gathered} 2-52-3 \\ 400 \end{gathered}$	Rumber of vehicles Irenapori cost - \$ s 18-kip acles	$\begin{array}{r} 15.33 \\ 9.81 \\ 142.27 \end{array}$	$\begin{array}{r} 13.34 \\ 9.48 \\ 206.54 \end{array}$	$\begin{array}{r} 11.79 \\ 9.29 \\ 795.20 \end{array}$	10.49 9.14 400.42	9.43 9.07 529.85 7.66	8.56 9.06 690.19 7.01	7.83 9.10 88.87 6.45	$\begin{array}{r} 7.01 \\ 9.73 \\ 1,266.99 \\ 5.56 \end{array}$
$\begin{gathered} 3-32-4 \\ 400 \end{gathered}$	Thumer of vehicloa Irensport cost - \$ E 18-kip axles	$\begin{array}{r} 12.06 \\ 9.32 \\ 120.41 \end{array}$	$\begin{array}{r} 10.56 \\ 9.19 \\ 170.80 \end{array}$	9.39 9.17 238.81	8.44 9.21 325.27	7.66 9.31 427.53 87.53	7.01 9.46 560.22 79.45	6.45 9.62 710.57 72.71	$\begin{array}{r} 5.56 \\ 10.02 \\ 1,118.42 \\ 62.33 \end{array}$
$\begin{aligned} & \text { Total } \\ & 2,000 \end{aligned}$	theber of vehicles Treasport cost - \$ 5 18-kip axce:	142.44 67.02 725.21	$\begin{array}{r} 123.90 \\ 62.21 \\ 1,059.59 \end{array}$	$\begin{array}{r} 109.15 \\ 58.58 \\ 1,502.92 \end{array}$	$\begin{array}{r} 97.24 \\ 55.80 \\ 2,064.19 \end{array}$	$\begin{array}{r} 87.53 \\ 53.75 \\ 2,756.72 \end{array}$	$\begin{array}{r} 79.45 \\ 52.22 \\ 3,612.51 \end{array}$	$\begin{array}{r} 72.71 \\ 51.11 \\ 4,567.31 \end{array}$	$\begin{array}{r} 62.33 \\ 50.23 \\ 7,170.49 \end{array}$

sable 1k-18. - Mmber of vahicles, transport cost, and E 18 -kip axles for hauling 2,000 tons of payload one

Vehtcle alassiflention and tons carried	Schem 4	Single/tandee axle velight 14mits, kipe							
		28/47	32/53	36/59	40/65	44/71	48/77	52/83	60/95
${ }_{200}^{20}$	number of vehicles mransport cost -18-ing axce	$\begin{array}{r} 43.41 \\ 15.64 \\ 150.06 \end{array}$	37.53 13.82 151.50	32.70 12.32 213.41	$\begin{array}{r} 28.80 \\ 11.10 \\ 297.64 \end{array}$	$\begin{array}{r} 25.66 \\ 10.13 \\ 398.46 \end{array}$	$\begin{array}{r} 23.08 \\ 9.34 \\ 521.97 \end{array}$	$\begin{array}{r} 20.96 \\ 8.70 \\ 667.66 \end{array}$	$\begin{array}{r} 17.63 \\ 7.71 \\ 1,047.15 \end{array}$
30 70	nebor of rebicles zrearport cost z 18 -kxp axlees	$\begin{array}{r} 7.91 \\ 3.09 \\ 20.45 \end{array}$	$\begin{array}{r} 6.96 \\ 2.81 \\ 29.36 \end{array}$	6.18 2.58 40.81	5.56 2.40 55.09	$\begin{array}{r} 5.05 \\ 2.25 \\ 72.97 \end{array}$	$\begin{array}{r} 4.60 \\ 2.12 \\ 94.27 \end{array}$	$\begin{array}{r} 4.23 \\ 2.02 \\ 119.43 \end{array}$	$\begin{array}{r} 3.63 \\ 1.86 \\ 285.06 \end{array}$
$2-51$ 100	uneber of vehicles xransport cost - - 18-kip axies	$\begin{aligned} & 10.54 \\ & 4.21 \\ & 4.92 \end{aligned}$	9.16 3.80 69.60	8.09 3.48 99.50	7.23 3.24 138.69	$\begin{array}{r} 6.52 \\ 3.04 \\ 389.99 \end{array}$	5.93 2.87 249.45	5.44 2.74 325.12	4.65 2.54 521.01
$2-82$ 200	muber of rehicles rrensport cost L L3-kyp axles	16.52 7.25 77.17	$\begin{array}{r}14.59 \\ 6.73 \\ \hline 14.54\end{array}$	12.90 6.26 161.58	11.55 58.91 22.79	$\begin{array}{r} 10.44 \\ 5.63 \\ 298.95 \end{array}$	9.52 50.41 390.06	8.74 5.24 502.36	7.49 59.00 796.42
$3-82$ 260	Mraber of vehicloe Treasport cost - \ddagger E 28 -icip acles	15.45 7.47 76.29	13.53 6.96 107.05	$\begin{array}{r} 12.03 \\ 6.59 \\ 150.48 \end{array}$	10.81 6.31 203.40	9.81 6.10 269.73	8.97 5.94 352.44	$\begin{array}{r} 8.26 \\ 5.82 \\ 445.56 \end{array}$	$\begin{array}{r} 7.12 \\ 5.68 \\ 698.06 \end{array}$
$2-31-2$ 230	truber of vehiclea rransport cost E 18-kip acles	$\begin{array}{r} 13.10 \\ 6.87 \\ 116.48 \end{array}$	21.26 6.41 174.44	9.86 6.09 230.79	$\begin{array}{r} 8.75 \\ 5.87 \\ 343.44 \end{array}$	7.85 5.71 466.12	7.11 5.61 616.65	$\begin{array}{r} 6.49 \\ 5.54 \\ 787.25 \end{array}$	$\begin{array}{r} 5.51 \\ 5.48 \\ 1,247.19 \end{array}$
${ }_{4}^{2-520}$	Truber of rehicles rransport cost - \$ E 18-EIp axle	$\begin{array}{r} 16.84 \\ 10.78 \\ 159.97 \end{array}$	14.57 10.36 234.01	12.82 10.10 326.08	11.36 9.90 439.73	$\begin{array}{r} 10.18 \\ 9.79 \\ 572.97 \end{array}$	9.22 9.76 752.17	$\begin{array}{r} 8.41 \\ 9.77 \\ 959.04 \end{array}$	$\begin{array}{r} 7.51 \\ 10.43 \\ 1,365.08 \end{array}$
$3-52-4$ 480	huber of vebiclea Transport cost E 18-kip axcee	$\begin{array}{r} 14.99 \\ 11.98 \\ 152.56 \end{array}$	$\begin{array}{r} 13.08 \\ 11.38 \\ 225.15 \end{array}$	$\begin{array}{r} 11.58 \\ 11.30 \\ 298.46 \end{array}$	$\begin{array}{r} 10.38 \\ 11.33 \\ 404.97 \end{array}$	9.40 11.43 530.62	8.58 11.57 693.76	7.89 11.7 878.62	$\begin{array}{r} 6.78 \\ 1,32.22 \\ 1,378.09 \end{array}$
$\begin{aligned} & \text { Total } \\ & 2,000 \end{aligned}$	nuber of vebicles Freneport cost - \$ s 18-kip axce	$\begin{array}{r} 138.76 \\ 66.89 \\ 748.90 \end{array}$	$\begin{array}{r} 121.52 \\ 62.27 \\ 1,092.65 \end{array}$	$\begin{array}{r} 106.16 \\ 58.72 \\ 1,522.11 \end{array}$	$\begin{array}{r} 94.44 \\ 56.06 \\ 2,105.75 \end{array}$	$\begin{array}{r} 84.92 \\ 54.08 \\ 2,799.74 \end{array}$	$\begin{array}{r} 77.01 \\ 52.62 \\ 3,670.77 \end{array}$	$\begin{array}{r} 70.42 \\ 51.60 \\ 4,685.04 \end{array}$	$\begin{array}{r} 60.32 \\ 50.92 \\ 7,238.06 \end{array}$

Table 14-19. .- Anmlysis of the marginal maximum exle-veight linite bssed on hauling 2,000 of freight over a melle

helpful in gaining some insight into the ultimate limits of axle weight beyond which no further economy could be expected. Attention is called to table $14-5$ giving the practical maximum gross vehicle weights for each class of vehicle for axle-weight limits up to $60 / 95$ kips. The highest gross vehicle weight in this table for axle-weight limits of $52 / 83 \mathrm{kips}$ is 347.1 kips for the 3-S2-4 combination, or well above the gross vehicle weight of 225 kips , the point at which the trucking costs in cents per payload ton-mile cease to decrease. However, because all trucks do not move fully loaded as to weight and because, in a total fleet of several classes of vehicles, many vehicles would have far lower practical maximum gross weights than would the $3-52-4$, gross weights above the maximum for the limit of transport economy could prove economical in the total fleet of vehicles.
4. MARGIIAL GROSS WEIGHT LIMITS BASED ON ECONOMY OF TRANSPORTING 2,000 TONS OF PAYLOAD

The preceding Section 3 attempts to determine the upper axle-weight limits beyond which no further transportation economy is to be expected. Economy is based upon the highway costs combined with motor vehicle operating costs. It is logical to determine as well the ultimate, or marginal, limits of gross vehicle weight, or that point where no further transport economy would result from further increases in gross vehicle weight.
A. Concepts and Procedure

Higher gross vehicle weights may be obtained by adding axles to the vehicle combination without increasing the maximum limits of axle weight. The adding of axles can be achieved by adding trailers to a chosen basic power tractor. Thus, the 2-Sl class of tractor-semitrailer could be successively increased in total gross combination weight by adding a second, third, fourth, and sixth trailer. This is the process followed, using the $2-S 1,2-S 2$, and $3-S 2$ semitrailer combinations as basic vehicles.

Unlike the analysis for the marginal axle-weight limit, the marginal gross vehicle-weight limit cannot be achieved considering the highway cost. This statement is true because when the axle-weight limits are held constant and the gross vehicle weight increased by adding trailers, there is no appreciable increase in the highway cost. In fact, in most of the cases tried, the highway cost actually decreased as the gross combination weight of the vehicle increased. Consequently, the marginal gross vehicle weight has been determined without reference to highway cost.

Essentially, the marginal gross vehicle weight is simply that gross vehicle weight, or that loaded gross vehicle weight, at which the cost of transporting goods reaches a minimum in cents per ton-mile of payload. This marginal loaded
gross weight is given by Hoy Stevens 1 as approximately 180,000 pounds, which would correspond to a practical maximun gross vehicle weight of 225,000 pounds, based upon an 80 -percent ratio of loaded gross weight to practical maximum gross vehicle weight.
B. Results of the Analysis for

Marginal Gross Vehicle Weight
Figure 14-2 gives the transport cost in cents per payload ton-mile for the $2-\mathrm{Sl}, 2-\mathrm{S} 2$, and $3-S 2$ vehicle classes with successive numbers of trailers up to gross vehicle combination weights of about 400,000 pounds expressed in terms of the practical maximum gross weight based upon the 18/32kip single/tandem axle-weight limits. Curves based upon the Stevens 33-67 percent payload distribution are also given. It should be noticed that the difference between the Stevens payload distribution and the 33-17-30-20 percent distribution gives a decidely lower cost in cents per payload ton-mile for the 33-67 percent distribution. This would be expected, because the number of trips to haul 2,000 pounds would be fewer with the 33-67 distribution than with the 33-17-30-20 distribution.

The analysis for the marginal axle-weight limits indicated that they were about $52 / 83 \mathrm{kips}$ single/tandem axle-
y Hoy Stevens Line-Haul Trucking Cost Upgraded, 1964, Highway Research Record No. 127, Highway Research Board, National Research Council, 1966, p. 19.

weight limits. If the marginal axle weight found in that study is plotted in terms of gross vehicle weight, there is indication that the marginal practical maximum gross vehicle weight would be about 314,000 pounds, somewhat higher than was found in the marginal gross weight study. In any case, both the marginal axle weight and the marginal gross vehicle weight are appreciably higher than are apt to become legal in the foreseeable future.

C. Concluding Analysis with Respect to
 Marginal Gross Vehicle Weight

It is to be expected that intercity highway freight carriers will continue to find that the use of several classes of vehicles is desirable as a means of getting the most efficient operation in jauling different commodities different distances. Therefore, a specific marginal gross vehicle weight for the heaviest probable single class of vehicle to be used in a fleet would not indicate that such marginal gross vehicle weight would be attained by each separate class of vehicles within the fleet, or that it would not be an advantage to load higher than the marginal limit. It probably would be true that, because of the dropping off and picking up of trailers en route and other characteristics of transport operation, the trucking industry would find it advantageous on certain trips to start with an initial gross vehicle weight that is higher than the marginal gross vehicle weight, since there would be no significant increase in cost per payload ton-mile.

5. MARGINAL ADT FOR ECONOMY OF INCREASED AXLE-WEIGHT LIMITS

Because the pavement design depth is a function of the number of E 18-kip axle applications and the number of axle applications is a direction function of ADT, it is reasonable to expect that the economy (benefit-cost ratio) of increased axle-weight limits would vary with the change in ADT. The following study of the marginal ADT for economy of increased axle-weight limits shows that there is a minimum ADP below which the benefit-cost ratio is less than 1.0, and that there appears to be no upper limit to economy as ADT increases.
A. Scope of Study

An examination of the benefit-cost ratios resulting from Methods 1, l-M, 2, and 3 discloses that, in general, lower ratios will be obtained with lower ADT. A positive conclusion is not readily apparent, because traffic composition, pavement design criteria, construction prices, and other factors besides ADT vary among highway systems and census divisions. Therefore, a study of marginal economical ADT was made for each of the 10 census divisions and each of the six highway systems. The results are summarized and reported in table 14-20 as a National average for each highway system and for each of four intervals of increased axle-weight limits. The study was based entirely on increases in axle-weight limits and did not consider increases in motor vehicle width, length, and gross weight.
B. Concept and Approach to Solution

For any given increase in axle-weight limits, a reduction in ADI (when the same total tons of payload are hauled) will result in the same percentage reduction in truck transport costs and in E 18-kip axle applications to the highway. The E $18-k i p$ highway construction-cost relationship is not a straight line function, and the net result of reducing ADP for a given increase in axle-weight limits is a percentage reduction in annual highway costs that is less than the percentage reduction in ADI and transport costs. Therefore, for any given increase in axle-weight limits, trial and error reductions of the ADT can be made to determine that marginal ADI which results in a benefit-cost ratio of 1.0 .

An advantage in using the design concept of minimum pavement thickness (Method 1-M) for the marginal ADT analysis is that the increment of annual highway costs for a given increase in axle-weight limits will remain constant for any decrease in ADI volumes. Therefore, for a given increase in axle-weight limits, the percentage by which the incremental annual benefit has to be reduced to equal the incremental annual highway cost is equal to the reciprocal of the benefit-cost ratio. The ADI volume at the lower axle-weight level multiplied by this percentage gives the minimum economical ADP for the increase in axle-weight limits.
C. Results

Table 14-20 lists the marginal ADT's for the four intervals of change in axle-weight limit for the six highway systems and for the composite of the 10 census divisions (National average). The figures under the column headed Method l-M are the marginal ADI's based on the minimum pavement design concept.

Table 14-21 shows the effect on the marginal ADT of variations in the minimum pavement design depth. For a given increase in axle-weight limits, the marginal ADT decreases as the minimum pavement depth increases. The marginal ADT's for the primary rural highway system were calculated on the basis of the minimum pavement design concept (Method l-M), construction costs for the East North Central census division, and average ADT for the study period 1965 to 1985.

Table 14-20. -- Marginal ADI's based on Method l-M, rigid pavements, and the concept of minimum pavement design depth - National average, or composite of 10 census divisions

Increase in single/tandem axle-weight limits, kips	Highway system		Method$1-M$	Hethod 1
	No.	Name		
18/32 to 20/35	1	IR	914	1,082
	2	IU	1,390	1,631
	3	PR	147	397
	4	PU	299	443
	5	SR	31	142
	6	SU	874	1,090
20/35 to $22 / 38$	1	IR	1,070	1,237
	2	IU	1,675	1,928
	3	PR	277	432
	4	PU	343	544
	5	SR	39	170
	6	SU	1,026	1,269
22/38 to $24 / 41$	1	IR	1,307	1,478
	2	IU	2,058	2,322
	3	PR	217	488
	4	PU	468	708
	5	SR	53	209
	6	SU	1,255	1,528
$24 / 41$ to $26 / 44$	1	IR	1,932	2,151
	2	IU	3,140	3,453
	3	PR	356	742
	4	PU	953	1,363
	5	SR	102	353
	6	SU	1,981	2,365

(Table 14-21. --Marginal ADT's for various minimum pavement design depth based on Method 1-M, for the East North Central census division, rigid pavements, and the primary rural highway system, using the average ADT for the study period 1965-1985

Increase in single/tandem axle-weight limits, kips	Minimum pavement design depth, inches			
	$7^{\prime \prime}$	$8^{\prime \prime}$	$9^{\prime \prime}$	$10^{\prime \prime}$
	413	245	156	107
$20 / 35$ to 22/38	434	256	183	129
$22 / 38$ to 24/41	449	290	224	162
$24 / 41$ to 26/44	696	459	357	256

DISCUSSION, SUMMARY, AND CONCLUSIONS WITH RESPECT TO DIMENSION AND WEIGHT LIMITS

Chapters 10 through 14 report on the investigation of the economy of vehicle dimensions and weight with particular reference to axle-weight limits and overall combiaation length. It is desirable now to review these chapters in their overall concept, meaning, and significance of resuits.

1. LACK OF UNIFORMITY OF STATE LAWS

Difficulties for the trucking industry in interstate cartage are inherent in the State-to-State range of variation in the limiting legal vehicle dimensions of width, height, and length; in axle-weight limits from the low of 18,000 to 23,520 pounds for a single axle and from 32,000 to 44,000 pounds for a tandem axle; and in gross vehicle-weight limits. Furthermore, there is no sound engineering, economic, or industrial basis for the wide variation in legal limits of dimensions and weights. Economy of highway freight transportation could be significantly increased if uniformity of legal dimensions and weights could be achieved. This report on the desirable dimensions and weights of motor vehicles supplies a substantial

$$
15-1
$$

foundation for use in establishing the desirable limits of vehicle dimensions and weights in each State.

2. TOLERAITCES AND ENFORCEMENTI

In several States, three factors exist having the same effects that would result from increasing axle-weight limits above the nominal, or basic, limits usually referred to. These factors are (a) the higher axle-weight or gross weight Iimits for local products of agriculture, forestry, or mining;
(b) the enforcement tolerances (as high as 13 percent); and (c) overloading practice combined with weak enforcement efforts.

Relatively, certain States would not experience many additional E l8-kip axle applications to its pavements if the special limits for local products were made universal, and if the maximum axle-weight limits with tolerance were made the universal legal limits. These two changes combined with effective enforcement would provide for higher axle-weight limits to the benefit of transport without adding a significant increase in loading on the highways, certainly up to the $20,000 / 35,000$ pound axle-weight limit.
3. BASIC FACTORS SUPPORIING THE RESEARCH

The economy of highway transportation as calculated
includes in all cases the highway construction costs, maintepance costs of the highway, and the cost of operating trucks over the highways. In all calculations, the additional cost of
highway construction for an increase in axle-weight limits was charged 100 percent against the benefit of decreased trucking cost within the 20-year analysis period, even though the additional cost of earth work, of the pavement base and surface, and of structures was for a type of work that could be expected to last for 50 to 75 years.

The analyses reported in Chapters 10 through 14 are believed to indicate the minimum economy to be expected. All factors on which the economy depended were conservatively determined.

4. THE GROSS VEHICLE-WEIGHI LIMITS

Specific attention is called to the inconsistency of the State and Federal limits on gross vehicle weight and the limits on axle weight, length of vehicles, and the number of axles. The purpose of the gross vehicle-weight law is particularly to protect bridges, and this purpose is not achieved in a State having a gross weight limit of 73,280 pounds and 18/32-kip axleweight limits and permitting a conbination vehicle with double cargo units. With the 65-foot combination with double cargo units, economy depends upon hauling gross weights higher than 73,280 pounds or even 76,000 pounds, the limit common in the western States. Even if single axles were used exclusively, a reasonable gross limit for the 65 -foot tractor with double trailers would be 82,000 pounds.
5. IMPLICATION OF HIGHER AXIE-WEIGHT LIMITS, GROSS WEIGHP LIMITS, AND VEHICLE LENGTHS

The highway systems existing today are composites of a wide range of structural capacities, considered from the viewpoint of their adaptation to truck axle-weight applications. It is not feasible to determine just what would happen to existing highway systems under legal provision for higher weight limits. It is logically concluded, however, that the economy indicated by the axle-weight limit study on one mile of new construction would apply equally well to existing highways.

As the pavements on existing highways reach a state of structural deterioration calling for reconstruction, it is presumed that the proper authorities would provide the desirable improvement. This action is in conformity with the practice over the last 40 years, which have experienced a continuous building and rebuilding of the roadways, including the replacement of structures. Over the last several years, the State laws have been modified from year to year to provide for higher limits of vehicle dimensions and weights. Therefore, if the States now having the lower dimension and weight limits desire to increase these limits to the levels existing in adjacent States, they would simply be repeating history and would continue to replace their highways as they have done in the past.

The economy of vehicle length is great and can be achieved without increasing highway costs, particularly with
the use of the double 27 -foot trailers drawn by a tractor under a limit of 65 feet.
6. HIGHER LIMITS FOR ACCESSCONIROLIED HIGHWAYS

Although the $65-f 00 t$, or possibly the 70 -foot, limit on vehicle length for combinations is desirable for use on all highway systems, it is reasonable to allow a greater length limit, and consequently a higher gross weight, on the Interstate highway sytem and on other routes with comparable standards of design. The experience on toll highways in Kansas, Indiana, Ohio, New York, and Massachusetts, where double 40-foot trailers are permitted to operate at an approximate length of 100 feet and gross vehicle weight of 125,000 pounds, has proved this operation to be successful. Toll authority reports indicate, on the whole, no interference with traffic, safe operation from the point of view of accidents, and high transport economy.

On these toll highways, no provision is made on the property of the toll authorities for making up and breaking down the double trailers at toll gates. If the 100-foot long double trailer were permitted on the entire Interstate system, public authorities or the private trucking industry would need to provide for a marshaling yard close to the Interstate interchange to avoid using the long combination on highways that are not divided or not fully access-controlled.

7. ECONOMY OF AXLE WEIGHI

The calculated economy of increasing axle-weight limits $1 s$ high, particularly for the Interstate and primary highway systems under Method l-M, in which miaimum depths of pavement structure were used. It is established that overall highway transportation economy will prevail with increased axle-weight limits up to as high as $26 / 44 \mathrm{kips}$. The rate of return in proportion to the highway cost necessary to achieve these benePits is expressed in benefit-cost ratios on the order of 3 to 20.

8. SENSITIVITY OF FACIORS

In the analysis of the economy of axle-weight limits, the sensitivity of certain factors in controlling highway construction cost, the benefit-cost ratio, and E 18-kip axle applications was remarkably great. In the beginning no attempt was made to be precise or to develop smooth trends in the number of vehicles of each class at the different levels of axle-weight limit. Furthermore, the calculation of the E 18-kip axle applications was not controlled precisely. The earlier calculations using Method 1 indicated the sensitivity of these factors, but the cost was redone in some instances to provide for carrying the number of vehicles and E 18 factors to tenths. Also, preliminary checks were made to provide for a smooth transition of these factors from one level of axle-weight limit to the bigher ones.

The pavement construction cost was found to be sensitive to the one-hundredth of an inch of pavement depth. That is, the final pavement construction cost would show an appreciable change in dollar value with the sensitivity of 0.01 inch of pavement and shoulder depth. For a mile of highway, this insignificant degree of depth is blown up considerably. Likewise, the number of vehicles was sensitive to both the E 18-kip application and the motor vehicle operating cost.

9. MARGINAL LIMITS OF WEIGHT AND ADI

Although some difficulties were experienced in developing procedures for determining the marginal limits of weight and $A D T$, results were obtained indicating that the single/ tandem axle-weight limits beyond which no further increases in the economy of highway transportation can be expected were about $44 / 70$ kips. The marginal gross weight limit is approximately 200,000 pounds per combination. In both cases, these marginal limits are so far beyond today's practical limits that there is little possibility that they would be seriously considered for new legislation. These marginal limits have value, however, because they show that any axle-weight limit in the neighborhood of $26 / 44 \mathrm{kips}$ and any gross weight limit in the area of 125,000 pounds (the present limit on toll highways where the double 40-foot cargo units are permitted) should achieve the economy that this study indicates is attainable.

The study to determine the average daily traffic volume below which the increase in axle-weight limit would not produce a gain in economy indicated that ADT's as low as 500 will result in economy at higher axle-weight limits. On 2-lane, bidirectional secondary highways, an increase to $26 / 44-k i p$ limits would give a benefit-cost ratio of 1.0 at an ADT of about 500 vehicles of all classes. For the primary rural highway system, a 4-lane divided highway with an ADT of 2,000 would produce a benefit-cost ratio of 1.0 for the $26 / 44-k i p$ limits.

10. MINIMUM PAVEMENT DEPIH AND MARGINAL LIMITS

Method l-M for determining axle-weight economy was developed to correct for the fact that the AASFO interim pavement design guides used in this study often resulted in a depth of pavement structure less than thet currently considered adequate by the highway departments. Because the AASHO design formula produced design depths at the higher axle-weight limits that were still materially below today's State minimum depths, in applying Method l-M an increment of pavement depth was added to the minimum depth for each increase in axle-weight limit.

The marginal ADI--that ADT at which the benefit-cost ratio would be $1.0-$-could not be calculated on a normal basis, because the marginal ADT is so low that the pavement design depth resulting from the design formula is far below the minimum design depth considered to be practical. The scheme used
in Chapter 14, however, results in a reasonable approximation of the marginal ADT.

In theory, as the ADT decreases, the pavement design depth, pavement costs, and the total dollar volume of transport benefits decrease, all in some ratio to each other that is not a constant. Therefore, it can be expected that the marginal ADI is a low traffic volume. In the opposite direction, the marginal axle-weight limits are high ($46 / 70 \mathrm{kips}$), because the pavement design depth increases more slowly as the ADT (E 18-kip axle applications) increases, while at the same time the parement cost decrease in dollars per cubic yard in place.

11. RAMP WIDIH FOR 1O2-INCH VEHICLE WIDIH LTMIT

The estimated highway construction cost to match increased axle-weight limits would not require any increase in the cost of interchange ramps and other comparatively narrow facilities. For a change in vehicle leagth, however, the off-tracking may necessitate wider paved lanes on some interchange ramps or on sharp corners in some urban areas. The analyses using Method 4 make no allowance for this possible increase in highway cost, but it is recognized that such increases might come about. The cost increase, however, would be relatively small.

Because of the difficulty of getting a reliable measurement, the economy of vehicle width has not been developed in
detail. Chapter 13, in which the study by the A. T. Kearney Company is discussed, gives some indication that there is modest economy in the change to 102 inches of vehicle width. This economy is not priced out on the basis of increased highway cost for increased vehicle width, because the general geometrics of design are now adequate to provide the necessary safety for the 102-inch width.

Where existing traffic lanes are less than 12 feet, reconstruction will normally be to widen enough lanes to accomodate the 102 -inch width, even though the 96 -inch width may likely continue to be the legal maximum. It should be recognized that ramp design and construction for the l02-inch wide vehicle may require wider pavement than would the 96-inch limit. Again, no estimate of this cost has been made because it would be relatively small.
12. TRUCK ADT

In all of the analyses for the economy of increased vehicle weight and length, there is an indicated reduction in the average daily traffic of trucks from the $2 D$ (2-axle, 6-tired, single unit) upward. In actual practice, it is probable that this decrease in daily truck traffic will not actually materialize. Two factors may prevent it from taking place. The normal growth in truck use to serve the needs of growing industry and increasing population would normally prevent any decrease in truck ADT. Second, if trucking becomes
more profitable with increased limits of vehicle dimensions and weight, such increased profitability is apt to induce greater use of the highway by heavy truckiag.

13. PROBABLE ACTUAL USE OF HIGHER LIMITS

In the analyses of axle-weight economy and of the economy of combination length, it is assumed that the same number of tons of payload would be hauled at the increased levels of axleweight limit and length as would be hauled at the existing limits. This assumption is one not likely to be realized for a reason already discussed: any liberalizing of vehicle limits on dimensions and weights probably will result in increased use of the highways by beavier trucks. However, in order to determine the relative effects of increases in limit, it was essential to hold constant all factors except the change in the limit of weight or dimension.

As the States approach uniformity in limits, a change made by any single State will affect trucking practice in adjacent States. If a State has low legal limits, trucks operating between that State and surrounding States having higher limits will not be able to take full advantage of those higher limits. The maximum weight or maximum dimensions used by truckers in interstate travel is controlled by the State having the minimum limit. The analyses for economy of vehicle weight and of vehicle length do not take into consideration these probable changes in trucking practice.

14. FEASIBILITY OF DOUBLE- AND

 TRIPLE-CARGO COMBINATIONSA combination made up of a tractor, a semitrailer, and a full trailer with the conventional type of axle arrangements could have a total of nine axles: the front (or steering) axle and four sets of tandem axles. This type of axle arrangement is common on the toll highways permitting the 100 -foot long combination with 40-foot double trailers. A question arises whether, considering the mechanical and operational features of the vehicle, the 9 -axle combination using 27 -foot trailers for a total length of 65 feet is practical. The trucking industry may know the answer, but this report merely raises the question.

The combination of tractor and three 27 -foot long trailers in an overall length of 100 feet is a practical one that has proved satisfactory in test runs in Idaho and Nevada. The tripletrailer combination should, however, be restricted to divided highways with full control of access.

15. EFFECT ON PASSENGER CARS

Increased vehicle weights and lengths may affect passenger car traffic as much favorably as unfavorably. On the favorable side, the passenger car will be required to pass fewer and slower-moving trucks, because of the fewer trips required to transport a given tonnage of cargo. This is particularly true for an increase in axle-weight limits, but it is equally true for double-cargo combinations that could theoretically reduce by
half the number of combination vehicles. The net result of using the double-trailer as opposed to the single-trailer combination is, therefore, a reduced total length of a.ll trucks to be passed by passenger cars, although individual truck length to be passed might be 65 feet instead of 50 feet.

A greater number of trucks having heavy gross weights might have to be passed on plus grades, provided that the weight-horsepower ratio does not increase. The present trend is toward lower weight-horsepower ratios in vehicles operating on the highway and those being manufactured.

16. THE BENEFICIARIES OF HIGHER LIMITS ON VEHICLE DIMENSION AND WEIGHT

It is easy to conclude that increased vehicle dimension and axle-weight limits would result in benefits to the owners and operators of the vehicles taking advantage of the more liberal limits. In the end, however, it may be assumed that at least a fair share of these benefits would be passed on to the public at large. About 25 percent of the haulage of freight on the public highway is done by common carriers whose tariff schedules are regulated by State regulatory comissions and the Interstate Commerce Commission. If higher dimension and weight limits permitted these carriers to earn substantially more profit, the regulatory comnission would reduce the tariff schedules. Again, in private industry, where haulage is done by private operators carrying their own goods, general competition would
control wholesale and retail prices to some extent. There is no reason to expect the competitive economic laws to operate differently in the transportation industry than they do in the manufacturing and distribution industries.

Consistent with general public policy, cost responsibility of the users of the highway should be assigned on some equitable basis related to cost incurred and benefits received. There is so great a margin of benefits over costs that any properly allocated additional tax burden on the heavier trucks that would utilize higher axle-weight limits would still leave then with substantial net benefits.
17. SHORTENING OF SERVICE LIFE OF PAVEMENIS, RESULTING FROM INCREASED AXLE-WEIGHT LIMITS

The shortening of the years of service life resulting from increased axle-weight limits was not used in any of the analysis methods adopted for this study. Instead, the effect of any increase in E 18-kip axle application was taken care of by increasIng the pavement depth. Of interest, however, is table 15-2, giving the reductions in service life for Method l-M from the design life of 20 years. The reduced service life calculated is the elapsed time in years that it would take for the pavements to have received the total number of $\mathrm{E} 18-\mathrm{kip}$ applications that would be received in 20 years under a lower axle-weight limit.

18. NATIONAL SUMMARY OF METHOD I-M

On the bottom lines of table 15-3 are the benefit-cost ratios for Method l-M for each of the six highway systems. The National average ratios in this table offer a better indication of the overall economy of the increased axle-weight limits than is obtainable separately for each of the 10 census divisions. As may be expected, the secondary urban system has the lowest benefit-cost ratios ranging from 2.1 to 5.6. The high ratios-up to 55.7 on the primary urban system--again indicate that the trucking cost reductions are many times the highway cost increase for the full range of axle-weight increases up to $26 / 44$ kips.

19. ANNUAL REDUCTIONS IN TRUCK OPERATING COSTS BY HIGHWAY SYSTEMS

The analyses for economy of axle-weight limit by Methods $1,2,3,4$, and 6 were made on the basis of one highway mile of new construction. It is of considerable importance to explore the truck operating costs on an annual basis for the entire highway system mileage. In tables 15-4 and 15-5 for Method 1-M and tables 15-6 and 15-7 for Method 4 are found the system mileages, truck-miles, and truck operating costs for the ADT's of 1965 and 1984. Tables $15-4$ and $15-6$ give daily values for the basic information. Tables $15-5$ and $15-7$ give the base totals for each of the two years for length step 0 and the yearly differences from this base to the higher axle-weight limits on the right of the base entries.
O.S. DEPARTMENT OF COMAERCE
Burean of Public Roads
conve invian All
 MOTAR mROCK OPERATIIG COST

4. Axsual operating cost of vehicles afrected by axle weight limits: a. Por 1965 ADI										
b. Potal equivalent uniform annual opereting cost	232,044	228,713	224,003	218,657	215,181	232,044	228,713	224,003	218,657	215,181
5. Increnental equivalent uniform decrezents in amual vehicle operating cost.	-	3,331	4,710	5,346	3,476	-	3,331	4,710	5,346	3,476

5. Increnental equivalent uniform decreRATIO OF

truck operating cost to incruan
inerease in equivilent minal 11.9

- chleuisted et 6 percent interest rete per amuin and 20 years.
U.S. DEPARTMENT OF COMMRRCE
Burean of Public Roads
sable 15-3. - Comparlecn of highway cost and notor vehicle operating cost for Ave levele of axle-velght modinal lindts, for the 20 -year period 1965 through 1984 - - National average

$$
\text { Mothod of Analyese } 1-M \text { with transition }
$$

R1gld Pavement					Fleclble Pavement				
Single/	mar	cight	-	kips	Single	dem ${ }^{\text {a }}$	exdmum	ght	kps
18/32	20/35	22/38	24/42	26/44	18/32	20/35	22/38	24/41	26/44

1. Canstructica cost per mile: a. Paresent and aboulders	222,792	223,852	225,279	227,088	228,761	196,957	197,728	198,779	200,113	201,361
. b. Bridge structures.	1.294 .314	1296,265	1,299,229	1,303,246	1,307,264	1,294,314	1,296,265	1,299,229	1,303,246	1,307,264
1	492,872	492,902	492,944	493,006	493,063	492.871	492,928	493,008	493,122	493,227
	2,009,978	2,013,019	2,017,452	2,023,340	2,029,088	1,984,142	1,986,921	1991.016	1,996,481	2,001,854
2. Bquivelent uniform annul capitel cost	175,240	175,505	175,892	176,405	176.906	172,987	173,230	173,587	174,063	174,532
3. Incremental amual cost a. Capitel cost	-	265	387	513	501	-	243	357	476	469
b. Maintenance cost of pavenent and aboulders.	-	9	11	13	12	-	4	5	7	6
c. Maintenance cost of structures	-	111	139	193	193	-	111	139	193	193
d. Total equivalent uniform amual hichery cost	-	385	537	719	706	-	358	501	676	668
MOTCR TRUCK OPERATIIS COST										

6. Ratio of incremental reduction in \quad 年
Censue incrasion All

4. Anmual operating cost of vehicles affected by axle reight 11 mits : a. For 1965 ADT										
b. Total equivaleat ymiform annual operating cost	368,086	357,380	346,460	332,350	323,250	368,086	357.380	346,460	332,350	323,250
5. Incremental equivalent uniform decrements in amual vehicle operating cost.	-	10,706	10,920	14,110	9,100	-	10.706	10,920	14,110	9,100

0
0
$\dot{\gamma}$

15-19
O.S. DEPARTMENT OF COMMERCE
Bureau of Public Fonds
rable 15-3.-Comparison of highiny cost and notor vehicle operating cost for five levels

All

Consua urvisioa All

cost of providing highiay racturtins

Cost item	Ridg Pavenent					Flexible Pavement				
	18/32	20/35	22/38	24/41	26/44	28/32	20/35	22/38	24/41	26/44
COST Of Proviming mighuay facturtios										
1. Constructicn cost per infle: a. Paveant and aboulders .	180,568	180,808	181,212	181,775	182,301	143,781	144,424	145,456	146,656	147.757
b. Bridge minuctures. .	31,194	31,439	31,816	32,308	32,801	31,194	31.438	31,816	32,308	32,801
Pauthwork and dralnage	86.710	86,717	86,730	86,751	86,769	86,710	86,755	86,831	86,929	87,020
d. Yotal construction cost. . . .	298,472	298,964	299758	300,834	301,871	261.685	262,617	264,103	265,893	267,578
2. Equivilent uniform annual capital cost	26,022	26,065	26,134	26,228	26,319	22.815	22,896	23,026	23,182	23,329
3. Incremental amual cost a. Capital cost	-	43	69	94	91	-	81	130	156	147
aboulders. b. Maintensance cost of parement and	-	1	1	2	2	-	2	3	3	3
c. Maintenance cost of structures	-	2	3	4	4	-	2	3	4	4
d. Total equivalent miform annual hichray cost	-	46	73	100	97	-	85	136	163	154

4. Anmual operating cost of vehiclee affected by arle reight limits: a. For 1965 ADT										
b. Total equivaleat puiform anval	56,018	54,860	53,425	51,892	50,992	56,018	54,860	53,425	51,892	50,992
5. Incremental equivaleat miform decre ments in anmual vehicle operating cost.	-	1,158	1,435	1,533	900	-	1,158	1,435	1,533	900

O. S . DEPARTMENT OF COMMERCE
Burean of Public Roade
Tablel5-3. - Comparison of highray cost and motor vehicle operating cost for five levels

O.S. DEPARTMENT OF COMMERCE
Burean of Public Roads
Sable.15-3.-Compariecn of highay cost and notor vehicle operating cost for ive levels of axle-velacht modimin 14 mits, for the 20 -year period 1965 therough 1984 -- National average
censue invasion All_

Richd Pavement					Ster Mex ble Pavenent				
le/	x	delpht	mem 14	${ }_{\text {kid }}$					
18/32	20/35	22/38	24/41	26/44	28/32	20/35	2/38	4/42	26

MOICR tRUCK OPERATHE COST										
4. Annual operating cost of vehicles affected by arle weight limits: a. For 1965 ADT b. Total equivalent ymironm annual operecing cost 5. Incremental equivalent uniform decrecost. ments in amoual vehicle operating										
	10,068	9,777	9,451	9,048	8,816	10,068	9,777	9,451	9,048	8.816
	-	291	326	403	232	-	291	326	403	232
RATIO OF ATMUAL DECREASE İ MOTOR TRUCK OPERATDIG COST TO ANMUAL HIGEWAY COST										
6. Retio of incremental reduction in truck operating cost to incremental increase in equivalent enmil histoway cost.	-	22.4	20.4	20.2	11.6	硅	17.1	14.2	14.9	8.6

Peblel5-3. - Comparison of highay cost and motor vehicle operating cost for 11 ve levels
of acre-velght Eardma liedte, for the 20 -year pariod 1965 through 1984 - N National average
Census invelos All

Rigld Pavement					Fledble Pavement				
Single/tand axle velight madmum 11-its, kos					Single/tandem oxle mextrum velght limits, kips				
18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44

COST OF FROVIDIN HDGENAY EACINITIOS

a. Parment and aboulders .	104,044	104,164	104,338	104,548	104,752	82,197	82,427	82,784	83;185	83,571
b. Bridge structures.	40,814	42,826	45,352	48,346	51,341	40,814	42,826	45352	48,346	51,341
c. Burthwort and drainage	49,018	49,082	49,087	49,095	49,102	49,078	49,096	49,125	49.159	49,191
	193,936	196,072	198,777	201,989	205,195	172,089	174,349	177,261	180,690	184,103
Equivilext mifors monal capital cost	16,908	17,095	17,330	17,610	17,890	15,004	15.201	15,454	15,753	16,050
Ineremental amunl cost a. Capital cost	-	187	235	280	280	-	197	253	299	297
b. Maintensmee cost of pavenent and shourders.	-	0	1	1	1	-	1	1	1	1
c. Maintenmee cost of structures	-	17	21	25	25	-	17	21	25	25
d. Total equivalent unifosm anmal hicmery cost	-	204	257	306	306	-	215	275	325	323

MOICR TRUCK OPERATHE COST

4. Amual operatiog cost of vehicle affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent umiform annual operexing cost	29.091	28,301	27,344	26,202	25,521	29,091	28,301	27,344	26,202	25,521
5. Incremental equivalent uniform decrements in amual rehicle operating cost.	-	790	- 957	1,142	681	-	790	957	1,142	681

3.9	3.7	3.7	2.2	-	3.7

- colculated at 6 percent interest rate per ann and 20 years.

An examination of tables 15-5 (axle weight, Method l-M) and 15-7 (length steps, Method 4) discloses phenomenal annual reductions in truck operating costs. A change from the 18/32kip limits to $20 / 35$ kips would have resulted in reductions for 1965 from $\$ 25.2$ million on the Interstate urban system to $\$ 249.7$ million on the primary rural system. For all six systems, the combined reductions are $\$ 623.9$ million. For 1965 and the $26 / 44-$ kip limits, the combined six-system reductions are $\$ 2,703.9$ million. For 1984 the truck operating-cost reductions range up to four times those of 1965. The differences between 1965 and 1984 result from the forecast of truck $A D T$ and traffic composition.

Comparing tables 15-5 and 15-7 shows that from length step 0 to step 1 the change to the 65-foot maximum length of vehicle combination reduces the truck operating cost two to three times as much as does the change in axle-weight limit from $18 / 32$ to $20 / 35 \mathrm{kips}$. This length change from step 0 to step 1 for 1965 results in cost reductions of $\$ 43.4$ million (secondary urban system) to $\$ 741.7$ million (primary rural system) and $\$ 1,227.8$ million (all systems). These cost reductions are for the single years 1965 and 1984. For the entire period from 1965 to 1984 , they would be approximately 20 times the average for the two years.
Table $25-4 .-$ Centerinue siles, truck ADF, daily truck-miles, and daily operating costa, by

Highway	Item	$13 / 32-k i p$ axleweicut 11 mita		20/35-kip axleweight limita		22/38-kip axleweight limits		24/41-kip axleweight limits		26/44-kip axleweight limits	
		1965	1984	1965	1984	1965	1984	1965	1984	1965	1984
1. Ik	```Centerline miles Truck ADT (National wtd average) Truck-miler, da11:' (1,000) Truck (vehicle) operating costs. dally ($1,000)```	15,640	34,060	15,643	34,880	15,648	34,880	15,648	34,880	15,648	34,880
		11,0911	2.047 11.343	1,049 16,415	1,974 68,862	1,002 15,673	1,888 65,862	$\begin{array}{r}15 \\ \hline 14,953\end{array}$	1,796 62,653	14,908	1,713 59,744
		6,592	27,947	6,453	27,476	6,302	26,891	6,142	26,266	6,001	25,731
2. IV	$\begin{aligned} & \text { Centerline miles } \\ & \text { Truck AIT (National witd averag } \\ & \text { Truck-miles, daily (1,000) } \\ & \text { Truck (vehicle) oreratine costs, } \\ & \text { dally (} \$ 1,000) \end{aligned}$	3,213 1,882	6,002	3,213 1,800	6,002 4,004	3,213 1,712	6,002 3,821	3,213 1,598	6,002 3,570	3,213 1 1,499	6,002 3,355
		6,047	25,04?	5,782	24,031	5,501	22,932	5,133	21,429	4,817	20,137
		2,2?3	9,297	2,154	y,045	2,081	8,774	1,981	8,379	1,898	8,051
3. PR	Centerline miles Truck ADT (National whd everaee) ITruck-miles, daily (1,000) Truck (vehicle) operatine costs dasly (\$1,00n)	184,461	197, 574	184,861	197,874	184,861	197,874	184,861	197,874	184,861	197,874
		333 .559							65, 333		
		, 559	5,706	,952	73,549	55,998	69,873	52,826	65,970	50,020	62,528
		[3, 2×0	29.441	22,606	28,620	21,845	27,708	21,050	26,774	20,373	5,992
4. \%	```Centerline miles Truck ADT (National vtd. average) Truck-miles, daily (l,omu) Truck (vehicle) operatiny costs, dafly ($1,000)```	19,1这	29.455	19,100	29,455	19,108	29,455	19,108	29,455	19,108	29,455
		831	1,096		1,034	736	966	676		628	
		15,076	32,287	14,982	30,449	14,060	28,444	12,909	26,131	11,999	24,309
		5,824	11,95i	5,546	11,366	5,262	10,772	4,914	10,078	4,650	9,557
5. SR	Centerline miles Truck ADT (Rational wtd averače) Truck-miles, daily (1,000) Truck (vehicle) operating costs, daily (\$1,000)	602,899	66\%, 332	602,899		602,899					665,332
		$\begin{aligned} & 61 \\ & 36,904 \end{aligned}$	$\begin{array}{r} 84,82 \\ 54,404 \end{array}$	$\begin{array}{r} 58 \\ 35,079 \end{array}$	$\begin{array}{r} 78 \\ 51,631 \end{array}$	$\begin{array}{r} 55 \\ 32,947 \end{array}$	$\begin{gathered} 73 \\ 48,405 \end{gathered}$	$\begin{array}{r} 51 \\ 30,787 \end{array}$	$\begin{aligned} & 55,279 \\ & 689 \end{aligned}$	$\begin{aligned} & 48,48 \\ & 28,922 \end{aligned}$	
		13,467	20,127	12,955	19,394	12,365	18,512	11,773	17,686	11,267	16,991
6. su	```Centerline miles Truck ADT (Nationel wtd. average) Truck-miles, dotly (1,000) Truck (vehicle) operatine cost daily ($1,00n)```	118,639	28.104	18,639	28,104	18,639	28,104	18,639	28,104	18,639	28,104
		194	223			179	204	166	190	155	178
				3,497	6,050	3,336	5,742	3,102	5,349	2,897	5,007
		1,316	2,299	1,284	2,239	1,239	2,154	1,173	2,046	1,115	1,952
$\begin{gathered} \text { All } \\ \text { systems } \\ (1-6) \end{gathered}$	Centerline miles Truck ADP (Nationel wth. avera; Truck-iniles, deilly (1,000) Truck (vehicle) operating costs daily (\$1.000)	844,360	961.647			844, 368		844, 368	961,647		
					265						223
		141,070	266,179	134,707	254,572	127,515	241,258	219,662	226,811	112,861	214,286
		52,712	101,068	51,003	98,161	49,094	94,811	47,033	91,229	45,304	88,274

Table 15-5.--Annual average truck traffic, annual truck-miles, and annual truck operating costs at base and 1984--Method 1-M, National total

Highway system	Item	18/32-kip axle-weight limits		20/35-kip axleweight limits		22/38-k1p axleweight limits		24/41-kip axleweight limits		26/44-kip axleweight limits	
		1965 base	1984 base	1965	1984	1965	1984	1965	1984	1965	1984
1. IR	Trick average annual traffic Truck-miles, annual (millinns) Truck (vehicle) operating cost, annual (million dollars)	$\begin{aligned} & 398,215 \\ & 6,228.7 \\ & 2,406.1 \end{aligned}$	$\begin{aligned} & 747,155 \\ & 26,054.8 \\ & 10,200.7 \end{aligned}$	$\begin{array}{r} 15,330 \\ 237.3 \\ 48.9 \end{array}$	$\begin{array}{r} 26,645 \\ 920.2 \\ 171.9 \end{array}$	$\begin{array}{r} 32,485 \\ 508.1 \\ 105.9 \end{array}$	$\begin{array}{r} 58,035 \\ 2,015.2 \\ 385.4 \end{array}$	$\begin{aligned} & 50,370 \\ & 788.4 \\ & 164.3 \end{aligned}$	$\begin{array}{r} 91,615 \\ 3,186.5 \\ 613.6 \end{array}$	$\begin{array}{r} 66,795 \\ 1,043.5 \\ 215.7 \end{array}$	$\begin{array}{r} 121,910 \\ 4,248.2 \\ 808.8 \end{array}$
2. IU	Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operating cust, annual (million dollars)	686,930 $2,207.2$ 811.4	$\begin{array}{r} 1,522,780 \\ 9,140.3 \\ 3,3934 \end{array}$	$\begin{array}{r} 29,930 \\ 96.7 \\ 25.2 \end{array}$	$\begin{array}{r} 61,320 \\ 369.0 \\ 91.6 \end{array}$	$\begin{array}{r} 62,050 \\ 199.3 \\ 51.8 \end{array}$	$\begin{array}{r} 128,115 \\ 770.2 \\ 190.9 \end{array}$	$\begin{array}{r} 103,660 \\ 333.6 \\ 88.3 \end{array}$	$\begin{array}{r} 219,730 \\ 1,318.7 \\ 335.1 \end{array}$	$\begin{array}{r} 139,795 \\ 449.0 \\ 118.6 \end{array}$	$\begin{array}{r} 298,205 \\ 1,790.3 \\ 454.8 \end{array}$
3. PR	Truck average annual traffic Truck-miles, anqual (millions) Truck (vehicle) operating cost, annual (million dollars)	$\begin{array}{r} 121,545 \\ 22,469.0 \\ 8,500.9 \end{array}$	$\begin{aligned} & 141,620 \\ & 28.026 .9 \\ & 10,746.0 \end{aligned}$	5,110 951.6 249.7	$\begin{aligned} & 5,840 \\ & 1,181.5 \\ & 299.7 \end{aligned}$	$\begin{array}{r} 10,950 \\ 2,029.8 \\ 527.4 \end{array}$	$\begin{array}{r} 12,775 \\ 2,523.2 \\ 632.5 \end{array}$	$\begin{array}{r} 17,155 \\ 3,187.5 \\ 817.6 \end{array}$	$\begin{array}{r} 20,075 \\ 3,947.8 \\ 973.5 \end{array}$	$\begin{aligned} & 22,630 \\ & 4,211.7 \\ & 1,064.7 \end{aligned}$	$\begin{array}{r} 26,280 \\ 5,204.2 \\ 1,258.9 \end{array}$
4. PU	Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operating cost, annual (million dollars)	$\begin{array}{r} 303,315 \\ 5,794.7 \\ 2,125.8 \end{array}$	$\begin{aligned} & 400,040 \\ & 11,784.8 \\ & 4,364.3 \end{aligned}$	$\begin{array}{r} 17,155 \\ .326 .3 \\ 101.5 \end{array}$	$\begin{array}{r} 22,630 \\ 670.9 \\ 208.4 \end{array}$	$\begin{array}{r} 34,675 \\ 662.8 \\ 205.1 \end{array}$	$\begin{array}{r} 47,450 \\ 1,402.7 \\ 432.5 \end{array}$	$\begin{array}{r} 56,575 \\ 1,083.0 \\ 332.2 \end{array}$	$\begin{array}{r} 76,285 \\ 2,246.9 \\ 685.8 \end{array}$	$\begin{array}{r} 74,095 \\ 1,415.1 \\ 428.5 \end{array}$	$\begin{array}{r} 98,915 \\ 2,912.0 \\ 876.0 \end{array}$
5. SR	Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operating cost, annual (million dollars)	22,265 $13,470.0$ $4,915.5$	29,930 $19,857.5$ $7,346.4$	$\begin{array}{r} 1,095 \\ 666.1 \\ 186.9 \end{array}$	1,460 $1,012.1$ 267.5	$\begin{aligned} & 2,190 \\ & 1,444.3 \\ & 402.2 \end{aligned}$	$\begin{array}{r} 3,285 \\ 2,189.6 \\ 598.5 \end{array}$	$\begin{aligned} & 3,650 \\ & 2,232.7 \\ & 618.3 \end{aligned}$	$\begin{aligned} & 5,210 \\ & 3,330.6 \\ & 891.0 \end{aligned}$	$\begin{array}{r} 4,745 \\ 2,913.4 \\ 803.0 \end{array}$	$\begin{aligned} & 6,570 \\ & 4,322.7 \\ & 1,144.6 \end{aligned}$
6. SU	Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operating cost, annual (million dollars)	$\begin{array}{r} 70,810 \\ 1,320.9 \\ 480.3 \end{array}$	$\begin{array}{r} 81,395 \\ 2,291.1 \\ 839.1 \end{array}$	$\begin{array}{r} 2,190 \\ 44.5 \\ 11.7 \end{array}$	$\begin{array}{r} 2,920 \\ 82.9 \\ 21.9 \end{array}$	$\begin{aligned} & 5,475 \\ & 103.3 \\ & 28.1 \end{aligned}$	$\begin{array}{r} 6,935 \\ 195.3 \\ 52.9 \end{array}$	$\begin{array}{r} 10,220 \\ 188.7 \\ 52.2 \end{array}$	$\begin{aligned} & 12,045 \\ & 338.7 \\ & 92.3 \end{aligned}$	$\begin{array}{r} 14,235 \\ 263.5 \\ 73.4 \end{array}$	$\begin{array}{r} 16,425 \\ 463.6 \\ 126.7 \end{array}$
$\begin{gathered} \text { All } \\ \text { systems } \\ (1-6) \end{gathered}$	Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operatine cost, annual (million dollars)	60,955 $51,490.5$ $19,240.0$	101,105 $97,155.4$ $36,889.9$	2,555 $2,322.5$ 623.9	4,380 $4,236.6$ $1,061.0$	5,840 $4,947.6$ $1,320.5$	9,490 $9,096.2$ 2.283 .7	9,125 $7,813.9$ 2.072 .9	14,965 $14,369.2$ $3,591.3$	$\begin{aligned} & 12,045 \\ & 10,296.2 \\ & 2,703.9 \end{aligned}$	$\begin{aligned} & 19,710 \\ & 18,941.0 \\ & 4.669 .8 \end{aligned}$

Tsble 15-6.-- Centerline miles, truck ADT, dally truck-miles, and daily truck operatiag costs, by

$\underset{\substack{\text { HLghway } \\ \text { system }}}{\text { and }}$	Item	Step 0		Leagth step 1		Lenoth step 2		Leasth step 3		Length step 4	
		1962 axle-veight 13mit		35/50/55/65 feet		35/55/60/65 feet		40/58/65/65 feet		40/55/70/70 feet	
		1965	1984	1965	1984	1965	1984	1965	1984	1965	1984
1. IR	Centerline miles, December 31,1965 Truck ADT (Nationsl wtd. average) Truck-miles, daily (1,000) Truck (vehicle) operating costs, daily ($\$ 1,000$)	15,648 1,091	34,880 2,047 2,	15,648	34,880 1,761	15,648	34,880 1,677	15,648	34,880 1,580	25,648	34,880 1,529
		$\begin{aligned} & 1,01 \\ & 17,065 \end{aligned}$	71,383	14,567	61,411	13,910	58,507	13,057	55,105	12,660	53,348
		6,592	27,947	6,007	25,867	5,742	24,707	5,437	23,494	5,277	22,794
2. IU	Ceaterline miles, December 31, 1965 Truck ADT (National wtd. average) Truck-miles, dally (1,000) Truck (vehicle) operatiog costs, daily ($\$ 1,000$)	3,213 1,882	6,002 4,172	3,213 1,677	6,002 3,727	3,213 1,639	6,002 3,634	3,213 1,479	6,002 3,291	3,213	6,002 3,239
		6,047	25,042	5,388	-32,372	5,265	21,814	4,753	19,750	4,685	19,441
		2,223	9,297	2,027	8,550	1,978	3,326	1,794	7,004	1.,772	7,484
3. PR	Centerliae milts, December 32, 1965 Truck ADT (National wtd. average) Truck-miles, daily (1.000) Truck (vehicle) operating costs daily ($\$ 1,000$)	$\begin{array}{r} 184,061 \\ 61,559 \\ 639 \end{array}$	$\begin{array}{r} 197,874 \\ 7688 \\ 7686 \end{array}$	184,861	197,874	$\begin{array}{r}184,861 \\ \hline 280\end{array}$	$\begin{array}{r}197,874 \\ \hline 330\end{array}$	184,861	$\begin{array}{r}197,874 \\ \hline 607\end{array}$	$\begin{array}{r}184,861 \\ \hline 255\end{array}$	197,874
				53,881	68,200	51,843	6;,293	48,997	60,205	47,144	59,563
		$23,290$	29,441	21,258	27,415	20,448	26,267	19,129	24712	18,748	24,203
4. PU	Centerline miles, December 31, 1965 Truck ADT (National wtd. average) Truck-miles, daily (1,000) Truck (vehicle) operating costs, daily ($\$ 1,000$)	$\begin{aligned} & 19,108 \\ & 15,876 \\ & 15, \end{aligned}$	$\begin{aligned} & 29,455 \\ & 3,1,96 \\ & 32,287 \end{aligned}$	$\begin{aligned} & 19,108 \\ & 73,535 \\ & 13, \end{aligned}$	$\begin{aligned} & 29,455 \\ & 27,473 \end{aligned}$	$\begin{aligned} & 19,108 \\ & 13,648 \\ & 13,68 \end{aligned}$	29,455291226,867	19,20811,928	$\begin{aligned} & 29,455 \\ & 82, \\ & 24,230 \end{aligned}$	$\begin{aligned} & i .9, i v i \\ & 11,787 \\ & 11,785 \end{aligned}$	$\begin{array}{r} 29,455 \\ 812 \\ 23,900 \end{array}$
		5,824	11,957	5,053	10,399	4,946	10,157	4,477	9,236	4,420	9,109
5. SR	Centerline miles, December 31, 1965 Truck ATT (National wtd. average) Truck-miles, dally (1,000) Truck (vehicle) operating costs,dally ($\$ 1,000$)	$\begin{array}{r} 602,899 \\ 36,904 \end{array}$	$\begin{gathered} 665,332 \\ 84,404 \\ 5,404 \end{gathered}$	$\begin{array}{r} 602,899 \\ 62 \\ 67 \end{array}$	665,332		$\begin{array}{r} 665,332 \\ 83 \end{array}$		$\begin{array}{r} 665,332 \\ 76 \end{array}$	$\begin{array}{r} 602,899 \\ 32.854 \end{array}$	
						$\begin{array}{r} 60 \\ 36,41! \end{array}$		$\begin{aligned} & 535,55 \\ & 33,173 \end{aligned}$			$\begin{array}{r} 75 \\ 50,039 \end{array}$
		3,467	20,127	13,806	21,404	13,454	20,769	12,342	19,140	12,211	18,903
6. su	Centerline miles, December 31,1965 Truck Air (National wtd. average Truck-I1les, dally (1,000) Truck (vehicle) operatine costs dally ($\$ 1,000$)	$\begin{array}{r} 18,639 \\ 194 \\ 3,619 \end{array}$	$\begin{array}{r} 28,104 \\ 2,23 \\ 6,277 \end{array}$	$\begin{array}{r} 18,639 \\ 174 \\ 3,239 \end{array}$	$\begin{array}{r} 28,104 \\ 202 \\ 5,672 \end{array}$	18,6391713,179	$\begin{array}{r} 28,104 \\ 5.58 \\ 5.557 \end{array}$	18,6391532.886	28,1041785,205	$\begin{array}{r} 18,639 \\ 1,152 \\ 2,828 \end{array}$	$\begin{array}{r} 28,104 \\ 176 \\ 4,950 \end{array}$
						3,179					
		1,316	2,299	1,197	2,118	1,174	2.012	1,061	1,079	1,049	1,858
$\underset{\substack{\text { Alt } \\ \text { systems } \\(1-6)}}{ }$	Centerliae miles, December 31, 1965 Truck ADT (National vid. average) Truck-miles, daily (1,00) Truck (vehicle) operating costs, dally ($\$ 1,000$)	$\begin{array}{r} 844,369 \\ 141,070 \\ 16,712 \end{array}$	961,647277266,179	$\begin{aligned} & 844,368 \\ & 127,904 \\ & 151 \end{aligned}$	$\begin{aligned} & 961,647 \\ & 252 \\ & 242,109 \end{aligned}$	$\begin{aligned} & 844,368 \\ & 123,847 \end{aligned}$	$\begin{aligned} & 961,647 \\ & 243 \\ & 243,388 \end{aligned}$	$\begin{aligned} & 344,300 \\ & 133,855 \\ & 135 \end{aligned}$	$\begin{aligned} & 961,647 \\ & 215,54 \\ & 215,504 \end{aligned}$	$\begin{aligned} & 344,308 \\ & 111,957 \end{aligned}$	$\begin{aligned} & 961,647 \\ & 211,247 \\ & 200 \end{aligned}$
			101,068	49,348	95,753	47,752	92,298	44,245	86,065	43,477	84,351

Table 15－7．－－Annusl average truck traffic，annual truck－miles，and anual truck operating costa Metbod 4，National totals
Note：All differences are decreases from the base except as noted by plus（ t ）sign．

Highway system	Item	Step 0		Leagth step 1		Leasth step 2		Length step 3		Length step 4	
		1962 axle－weight limit		35／50／55／65 reet		$35 / 55 / 60 / 65$ feet		40／55／65／65 reet		40／55／70／70 reet	
		1965 base	1984 bese	1965	1984	1965	1984	1965	1．04	1：65	1984
1．IR	Truck ammal average traffic Truck－miles，annual（millions） Truck（vehicle）operatine cost， annual（million dollars）	$\begin{aligned} & 398,215 \\ & 6.228 .7 \\ & 2,406.1 \end{aligned}$	$\begin{aligned} & 747,155 \\ & 26,054.8 \\ & 10,200.7 \end{aligned}$	$\begin{array}{r} 58,400 \\ 911.8 \\ 213.5 \end{array}$	$\begin{array}{r} 104,390 \\ 3,639.8 \\ 759.2 \end{array}$	$\begin{array}{r} 73,730 \\ 1,151.6 \\ 310.3 \end{array}$	$\begin{aligned} & 135,050 \\ & 4,699 \cdot 7 \\ & 1,182.6 \end{aligned}$	93,805 $1,462.0$ 421.	－it．－， ，－1， 1，625．	$\begin{aligned} & 102,80 \\ & 1,200 \\ & 400.0 \end{aligned}$	$\begin{array}{r} 189,970 \\ 6,5828 \\ 1.980 .8 \end{array}$
2．IU	Truck annual average traffic Truck－miles，anaual（millions） Truck（vehicle）sperating cost， anaual（million dollars）	$\begin{array}{r} 686,930 \\ 2,207.2 \\ 811.4 \end{array}$	$\begin{array}{r} 2,522,780 \\ 9,140.3 \\ 3,393.4 \end{array}$	$\begin{array}{r} 74,825 \\ 240.5 \\ 71.5 \end{array}$	$\begin{array}{r} 162,425 \\ 974.6 \\ 272.7 \end{array}$	$\begin{array}{r} 88,695 \\ 285.4 \\ 89.4 \end{array}$	$\begin{array}{r} 196,370 \\ 1,178.2 \\ 354.4 \end{array}$	147，cy 472.3 2308		$\begin{aligned} & 1.4,1 \omega \\ & 3.54= \end{aligned}$	$\begin{gathered} 340,54 ; \\ 2,044 \\ \ddots .4 . \end{gathered}$
3．PR	Truck annual average traffic Truck－miles，annual（millions） Truck（vehicle）operating cost， snnual（million dollars）	$\begin{array}{r} 121,545 \\ 22,469.0 \\ 8,500.9 \end{array}$	$\begin{aligned} & 141,620 \\ & 28,026.9 \\ & 10,746.0 \end{aligned}$	$\begin{array}{r} 15,330 \\ 2,802.5 \\ 741.7 \end{array}$	$\begin{array}{r} 15,695 \\ 3,133.9 \\ 739.5 \end{array}$	$\begin{gathered} 19,345 \\ 3,546.3 \\ 1,037.3 \end{gathered}$	$\begin{aligned} & 21,170 \\ & 4,19.4 . y \\ & 1,150.5 \end{aligned}$	$\begin{aligned} & \text { e,64, } \\ & 4,91,0 \\ & 1.54 \end{aligned}$	$\begin{aligned} & \therefore 3 \\ & 31 \\ & \therefore \quad 2 \end{aligned}$	$\begin{aligned} & 28,470 \\ & 5,261.5 \\ & 1,657.3 \end{aligned}$	$\begin{gathered} 31,755 \\ 6,266.4 \\ 1,91.9 \end{gathered}$
4．PU	Truck average annual traffic Truck－miles s anual（millions） Truck（venicle）operating cost， annual（million dollars）	$\begin{gathered} 303,315 \\ 5,794.7 \\ 2,125.8 \end{gathered}$	400,040 $21,784.8$ $4,364.3$	$\begin{gathered} 44,89 \\ 854.5 \\ 281.4 \end{gathered}$	$\begin{array}{r} 59.495 \\ 1,757.5 \\ 568.7 \end{array}$	$\begin{gathered} 50: 005 \\ 951.9 \\ 320.5 \end{gathered}$	67. 1.20 .203	$\because ラ$, 1,44 491.0		73.110 14932 458.4	$\begin{array}{r} 103.660 \\ 3,059.1 \\ 1,039.5 \end{array}$
5． SR	Truck annual average traffic Truck－miles，annual（millions） Truck（vehicle）operatiog cost， annual（million dollars）	22,265 $13,470.0$ $4,915.5$	29,930 $19,857.5$ $7,346.4$	$+365$ ＋142． 4 $+123.7$	$\begin{array}{r} +1,460 \\ +941.0 \\ +466.1 \end{array}$	$\begin{aligned} & 365 \\ & 178.5 \\ & 1.1 \end{aligned}$	$+365$ $+345.3$ $+234.3$	$\begin{aligned} & 2,190 \\ & 1,361.8 \\ & 4106 \end{aligned}$	2,04 1,20	$2,5 j 2$ $1,477.9$ 4584	$\begin{aligned} & 2,555 \\ & 1,593.2 \\ & 446.8 \end{aligned}$
6． SU	Truck andual average traffic Truck－miles，annual（millions） Truck（veilicle）operating cost， annual（million dollars）	$\begin{array}{r} 70,810 \\ 1,320.9 \\ 480.3 \end{array}$	$\begin{gathered} 81,395 \\ 2,291.1 \\ 839.1 \end{gathered}$	$\begin{gathered} 7,300 \\ 138.7 \\ 43.4 \end{gathered}$	$\begin{aligned} & 7,665 \\ & 220.8 \\ & 66.1 \end{aligned}$	$\begin{array}{r} 8,395 \\ 160.6 \\ 51.8 \end{array}$	$\begin{array}{r} 9.1=5 \\ 26: .3 \\ 82.9 \end{array}$	$\begin{array}{r} 14,365 \\ 278.5 \\ 33.2 \end{array}$	$\begin{aligned} & 16,425 \\ & 464.3 \\ & 153.3 \end{aligned}$	$\begin{array}{r} 15,330 \\ 288.7 \\ 97.5 \end{array}$	$\begin{array}{r} 17,155 \\ 484.4 \\ 161.0 \end{array}$
$\begin{gathered} \text { All } \\ \text { systems } \\ (1-6) \end{gathered}$	Truck annual average traffic Truck－wiles，annual（millions） Truck（vehicle）operating cost annual（million dollars）	60,955 $51,490.5$ $19,240.0$	$\begin{gathered} 101,105 \\ 97,155.4 \\ 36,889.9 \end{gathered}$	5,840 $4,805.6$ $1,227.8$	9,125 $8,785.6$ $1,940.1$	7,300 $6,274.3$ $1,810.4$	12,410 $11,968.6$ $3,201.1$	11,680 $9,930.1$ $3,090.6$	19,345 $18,462.2$ $5,476.1$	12,410 $10,626.2$ $3,370.8$	$\begin{aligned} & 20,805 \\ & 20,050.3 \\ & 6,101.7 \end{aligned}$

HIGHWAY FINANCING REQUIREMENIS UNDER

 INCREASED AXIE-WEIGHT LIMITSAny increase in the legal limits of axle weight would no doubt be accompanied by some additional highway construction cost for the structure of pavements and bridges on existing systems in order to provide the necessary strength to carry the heavier axles that would follow such an increase in axle-weight limits. Therefore, some estimate is called for of the additional financial requirements for highway construction that would result from increased legal limits on axle weight.

1. BASIC CONCEPT AND APPROACH

An estimate of the additional financing required for highway construction under laws pernitting higher axle weights can be made by using the material in Chapter 10 as the basis for estimating the additional construction cost per mile of highway. There remains, however, the necessity of estimating the number of miles of existing highway that would be constructed, reconstructed, or resurfaced, in a given time period. It has been assumed that any increase in the allowable weights of axles would result in thicker pavements and stronger bridges,
and, therefore, in a greater cost in dollars per mile of highway construction. The analysis of the economy of axleweight limits indicates the additional costs per mile to be expected.

It is logical to assume that the heavier axle weights, when applied to pavements not specifically designed for such axle weights would cause the pavement to reach a stage warranting reconstruction or resurfacing sooner in calendar time than it would were it not subjected to the higher axle weights.

Since the original pavement design in Chapter 10 was based upon the specific number of E 18-kip axle applications in the 20-year period, the shortening of the service life of the pavement over the years to reach a PSI of 2.0 in 20 years can be calculated by determining the date at which the number of E l8-kip axle applications accumulated would be the same under the higher axle-weight limits as under the lower limits. This time interval, beginning January 1 , 1965, was calculated for each of the 5 axle-weight limits at the same time that the computer calculated the pavenent design and pavement cost. In calculating the finances required under different levels of axle-weight limits, analysis Method l-M was used for determining the adjusted average service life and the added cost of construction or reconstruction at the higher limits.

The second major factor that had to be determined was the total miles of highways to be reconstructed each year for
the 20 years beginning January 1, 1965. The approach to this estimate was to determine the amount of existing construction on each of the highway systems in terms of the ages, or vintage years, of construction of its several segments and the miles remaining. By applying to the miles of original construction by vintage years a retirement distribution or survivor curve of the appropriate average service life, a theoretical retirement from existing pavements and the miles remaining by ages could be forecasted year by year. Assuming, then, that the retired mileage of pavements would be replaced by reconstruction or resurfacing and that the highway system would be extended by adding lanes and increasing centerline mileage year by year, it is possible to develop a new-construction, reconstruction, and resurfacing program for the 20-year period from 1965 through 1984 for each highway system considered.

In order to apply the basic method, it was necessary to determine by pavement type the lane-miles constructed during each year and the lane-miles existing at the beginning of each year for each highway system and for each of the ten census divisions. Further, it was necessary to determine the shape of the survivor curves and the average service life to be applied to each vintage year of construction by pavement surface type, by highway system, and by census division.

2. ASSEMBLY OF HISTORICAL DATA ON PAVEMENT CONSTRUCTION TO 1964

The forecast of the requirements for pavement replacement from 1965 through 1984 depends upon the age and surface type of pavements existing on January 1, 1965. An estimate of these ages and mileages as of 1965 depends upon the year-by-year constructed mileage in prior years. Therefore, a IIrst step in a projection of construction activity from 1965 through 1984 was to assemble the historical. data on construction before 1965.

Data on annual lane-miles of construction by surface types and by census divisions were obtained from construction tabulations furnished by the Program Analysis Division, "Highway Statistics," and other sources. The lane-miles. constructed are given for the East North Central census division in table 16-1 together with the type survivor curve and average service life, as an illustration of how the data for each census division were handled.
3. SELECTION OF SURVIVOR CURVES AND SERVICE LIVES

Through the Statewide highway planning surveys, starting
in 1935 and continuing to the present, several of the State highway departments made studies to determine the service lives

CENSUS OIVISION. S EAST VORTH CEVIRAL

VEAR LANE-MILES BUIL?

TVPE SURVIVOR CURVES FOR EACH SINGLE/TAVOEM AXLEWEIGHY LIMIT

SYSTEM I PWERSTATE RURAL
$22138 \quad 24 / 41 \quad 26 / 44$
SURFACE-TYPE GROUP, OO

1947	25	51	12.0	51	9.4	51	7.7	S 1	6.4	51	5.5
1949	29	51	12.0	51	9.4	51	1.7	51	6.4	51	5.5
1950	103	51	15.0	51	11.7	51	9.8	$\$ 1$	8.0	S 1	6.9
1951	31	51	15.0	51	11.7	51	9.6	51	8.0	51	6.9
1952	113	S 1	15.0	. 51	11.7	51	9.6	\$1	B. 0	51	6.9
1953	180	51	15.0	51	11.7	51	9.6	51	8.0	51	6.9
1954	26	31	15.0	51	11.7	51	9.6	S1	8.0	51	6.9
1935	26	51	15.0	51	11.7	51	9.6	51	8.0	51	6.9
1956	31	51	20.0	51	15.7	\$1	12.8	31	10.7	51	9.2
1957	33	51	20.0	51	15.7	51	12.8	51	10.7	51	9.2
1960	42	52	20.0	52	15.7	52	12.8	52	10.1	52	9.2
1961	35	52	20.0	52	15.7	52	12.8	52	10.7	52	9.2
1962	186	52	20.0	52	15.7	52	12.8	52	10.7	52	9.2
1963	198	52	20.0	52	15.7	52	12.8	52	10.7	52	9.2
1964	$1 * 8$	S 2	20.0	S2	15.7	S 2	12.8	52	10.7	52	9.2

SURFACE-TYPE GROUP. I

1947	13	54	17.0	54	14.8	54	13.0	54	11.5	54	10.4
1948	32	54	17.0	54	14.8	54	13.0	54	11.5	54	10.4
194\%	26	54	17.0	54	14.8	54	13.0	54	11.5	54	10.4
1939	132	54	19.0	54	15.7	54	13.8	54	12.2	54	11.0
1951	121	54	18.0	54	15.7	54	13.8	54	12.2	54	11.0
1952	98	54	18.0	54	15.7	54	13.8	54	12.2	54	11.0
1953	126	54	18.0	54	15.7	54	13.8	54	12.2	54	11.0
1954	215	54	18.0	54	15.7	54	13.8	54	12.2	54	11.0
1955	197	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2
1956	425	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2
1957	259	56	20.0	56	17.4	56	15.3	56	13.6	56	12.2
1958	411	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2
1959	456	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2
1960	1161	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2
1961	1142	54	20.0	54	17.4	54	15.3	54	13.6	54	12.2

SYSTEM 2 INTERSTAIE URBAN

1947	3	51	12.0	51	11.0	51	10.1	\$1	9.4	S1	0.7
1948	11	S 1	12.0	S 1	11.0	51	10.1	\$1	9.4	S 1	0.7
1949	63	S 1	12.0	\$ 1	11.0	51	10.1	\$1	9.4	51	0.7
1950	34	S 1	15.0	51	13.7	51	12.6	51	11.7	\$1	10.9
1951	13	S 1	15.0	51	13.7	\$1	12.6	S 1	11.7	S1	10.9
1952	26	51	15.0	S1	13.7	S1	12.6	51	11.7	51	10.9
1953	34	S 1	15.0	51	13.7	51	12.6	S 1	11.7	51	10.9
1954	2	51	15.0	S 1	13.7	51	12.6	S1	11.7	51	10.9
1955	60	S 1	15.0	\$1	13.7	51	12.6	51	11.7	\$1	10.9
1956	29	\$1	20.0	S 1	18.3	51	16.9	51	15.6	S 1	14.5
1957	3	51	20.0	51	18.3	51	16.9	51	15.6	51	14.5
1958	51	51	20.0	51	18.3	51	16.9	S 1	15.6	51	14.5
1959	13	51	20.0	51	18.3	51	16.9	51	15.6	51	14.5
1960	27	52	20.0	52	10.3	52	16.9	52	15.6	\$2	14.3
1961	6	52	20.0	52	18.3	52	16.9	52	15.6	S 2	14.3
1962	2	52	20.0	52	10.3	52	16.9	52	15.6	\$2	14.5
1963	0	52	20.0	52	18.3	52	16.9	52	15.6	52	14.3
1964	27	52	20.0	S 2	18.3	52	16.9	52	15.6	52	14.5

SYSTEM 2 INTEASTATE URBAN

8948	2	54	17.0	54	15.7	54	14.5	54	13.5	54	12.6
1949	27	\$4	17.0	54	15.7	54	14.5	54	13.5	54	12.6
1950	26	54	10.0	54	16.6	54	15.4	54	14.3	54	13.3
1951	25	54	18.0	\$4	16.6	54	15.4	54	14.3	54	13.3
1952	77	54	18.0	54	16.6	54	15.4	S4	14.3	54	13.3
1953	98	54	18.0	54	16.6	54	15.4	54	14.3	54	13.3
1954	15	54	18.0	54	16.6	54	15.4	54	14.3	54	13.3
1955	74	54	20.0	54	10.4	54	17.1	54	15.8	54	14.8
1956	41	54	20.0	54	18.4	54	17.1	54	15.8	54	14.8
1957	134	\$6	20.0	56	16.4	56	17.1	56	15.8	56	14.8
1958	31	54	20.0	54	10.4	54	17.1	\$4	15.0	54	14.8
1959	67	54	20.0	54	10.4	54	17.1	54	15.0.	. 54	14.8
1960	88	54	20.0	56	18.4	54	17.1	54	15.8	54	14.8
1961	148	54	20.0	54	18.4	54	17.1	54	15.8	54	14.8
1962	108	54	20.0	54	$10.4{ }^{\circ}$	54	17.8	54	15.8	54	14.8
1963	122	53	20.0	53	10.4	53	17.1	53	15.0	S 3	14.8
1964	279	53	20.0	53	18.4	53	17.1	\$3	15.8	53	14.8

IO THE DESIGNATION SUCH AS L3-20 INDICAPES AN L3 SHAPE OF THE CURVE AND - 20 YEARS AVERAGE SEAVICE LIFE.

TABLE 16-1. .- ESTImATEO LANE-MILES OF HIGHMAY CONSTRUCTION ANO RELATEO TYPE SURVIVOR GリRVFG IO FOR FIVE AXLE WEIGHT LIMITS
CENSUS OIVISION. S EAST NORTH CENTRAL
TYPE SURVIVOR CURVES FOR EACH SINGLE/TAYOEM AXLE-WEIGHT LIMIT

SYSTEM 3 FEOERAL-ALO PRIMARY RURAL SURFACE-TYPE GROUP, 00

1. The oesignation such as l3-20 inolcates an lu shape of the curve ano a 20 years average service ilfe.

TABLE 16-1. .- ESTIMATEO LANE-MILES OF HIGMWAY CONSTRUCTIDN ANO RELATEO TYPE SURVIVOR CURVES IO FOR FIVE AXLE-WEIGHT LIMITS

CENSUS OIVISION, 5 EAST NORTH CEVTRAL
vear Lane-mlles
IYPE SURVIVOR CURVES FOR EACH SINGLE/TAYOEA AKLE-WEIGHT LINIT

| $10 / 32$ | $20 / 35$ | $26 / 38$ | $26 / 44$ |
| :--- | :--- | :--- | :--- | :--- |

SYSTEM 3 FEOERAL-AIO PRIMARY RURAL SURFACETTYPE GROUP. J

1923	3033	53	29.0	53	28.3	53	27.5	53	26.9	53	26.3
1924	2286	54	28.0	54	27.3	54	26.6	54	25.9	54	25.4
1925	1368	53	28.0	53	27.3	53	26.6	53	25.9	53	25.4
1926	1112	53	27.0	53	26.3	53	25.6	53	25.0	53	24.4
1927	1232	13	28.0	13	27.3	13	26.6	4.3	25.9	13	25.4
1920	2088	14	28.0	44	21.3	14	26.6	14	25.9	14	25.4
1929	1788	53	26.0	53	25.3	53	24.7	53	24.1	53	23.5
1930	2196	53	26.0	53	25.3	53	24.7	53	24.1	53	23.5
1931	2106	R 3	2月.0	R 3	27.3	R 3	26.6	R 3	25.9	R 3	25.4
1932	2128	53	26.0	53	25.3	53	24.7	53	24.1	53	23.5
1933	1350	R 3	27.0	Q 3	26.3	R 3	25.6	R3	25.0	$R 3$	24.4
1934	656	- 3	27.0	R 3	26.3	R 3	25.6	R 3	25.0	R 3	24.4
1935	306	R 3	25.0	R 3	24.4	R 3	23.7	R3	23.2	R 3	22.6
1936	258	R 3	23.0	R 3	22.4	R 3	21.8	R 3	21.3	A3	20.8
1937	640	R 3	25.0	R 3	24.4	R 3	23.7	R 3	23.2	A3	22.6
1938	258	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1939	380	53	28.0	53	27.3	53	26.6	53	25.9	53	25.4
1740	118	53	2月.0	53	27.3	53	26.6	53	25.9	53	25.4
8941	260	53	18.0	53	17.5	53	17.1	53	16.7	53	16.3
1942	160	53	18.0	S3	17.5	53	17.1	53	16.7	53	16.3
1943	36	53	16.0	53	15.6	53	15.2	53	14.8	53	14.5
1944	126	53	15.0	53	14.6	53	14.2	53	13.9	53	13.6
1945	136	53	26.0	53	25.3	53	24.7	53	24.1	53	23.5
1946	120	53	20.0	53	19.5	53	19.0	53	10.5	53	10.1
1947	735	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1948	1107	53	18.0	53	17.5	53	17.1	53	16.7	53	16.3
1949	1289	51	19.0	51	18.5	51	18.0	51	17.6	51	17.2
1950	1496	53	20.0	53	19.5	53	19.0	53	10.5	53	10.1
1951	1531	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1952	1763	53	20.0	53	19.5	53	19.0	53	18.5	53	10.1
1953	1137	53	20.0	53	19.5	53	19.0	53	10.5	53	18.1
1954	1347	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1955	1227	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1956	1407	53	20.0	53	19.5	53	19.0	53	18.5	53	18.1
1957	1130	53	20.0	53	19.5	53	19.0	53	10.5	53	18.1
1958	382	\$3	20.0	53	19.5	53	19.0	53	18.5	53	10.1
1959	617	53	20.0	53	19.5	53	19.0	53	10.5	53	10.1
1960	695	53	20.0	53	19.5	53	19.0	53	10.5	53	18.1
1961	364	53	20.0	53	19.5	53	19.0	\$3	10.5	\$3	18.1
1962	562	\$3	20.0	53	19.5	53	19.0	53	10.5	53	18.1
1963	1021	53	20.0	53	19.5	S3	19.0	\$3	10.5	\$3	18.1
1964	213	53	20.0	53	19.5	S 3	19.0	53	18.5	\$3	18.1

SYSTEM 4 FEOERAL-AIO PRIMARY URBAN SURFACE-TYPE GROUP F

1934	10	L1	5.0	11	4.3	L1	3.7	L1	3.3	1.1	3.0
1937	45	11	9.0	L1	7.7	L1	6.7	Ll	6.0	Ll	5.4
1938	34	14	9.0	14	7.7	14	6.7	14	6.0	14	5.4
1939	6	15	9.0	$L 5$	7.7	15	6.7	15	6.0	15	5.4
1940	3	L2	6.0	L2	5.1	12	4.5	12	4.0	L2	3.6
1941	2	41	8.0	L 1	6.9	11	6.0	11	5.3	L 1	4.8
1942	1	L1	7.0	11	6.0	L1	5.2	11	4.6	11	4.2
1943	3	L1	8.0	L1	6.9	L 1	6.0	11	5.3	11	4.8
1944	8	11	6.0	11	5.1	L 1	4.5	11	4.0	11	3.6
8945	10	14	7.0	L4.	6.0	14	5.2	14	4.6	14	4.2
1946	10	41	7.0	1.1	6.0	Li	5.2	41	4.6	4.1	4.2
1948	10	53	7.0	53	6.0	S3	5.2	53	4.6	53	4.2
1949	22	52	8.0	52	6.9	52	6.0	52	5.3	52	4.8
1951	14	53	10.0	53	8.6	53	7.5	53	6.6	53	6.0
1952	5	L 1	14.0	L1	12.0	L 1	10.5	11	9.3	L1-	8.3
1957	18	L1	14.0	81	12.0	11	10.5	11	9.3	L 1	8.3
1958	6	L1	14.0	11	12.0	L 1	10.5	11	9.3	L 1	8.3
1959	4	L2	B. 0	12	6.9	42	6.0	12	5.3	12	4.8
1960	6	53	10.0	53	8.6	53	7.5	53	6.6	53	6.0
1963	0	53	10.0	53	8.6	53	7.5	53	6.6	53	6.0
1964	3	53	10.0	53	8.6	53	7.5	53	6.6	53	6.0

B- THE OESIGNATION SUCH AS L3-20 INOICATES AN L3 SHAPE OF THE CURVE ANO A 20 VEARS AVERAGE SERVICE LIFE.

TABLE 16-1. .- ESTIMATED LANE-MILFS OF HIGHAY COVSTRUCTION AVO RELAIEO TVPE SURVIVOR CIMVEI IE FOR FIVE ARLE WEIGHE LIMITS

CENSUS OIVISION, S EAST NORTH CENTRAL
YEAR LANE-MILES TYPL SURVIVOR CURVES FOR EACH SINGLE/TAVOEA QUILI AXLE WEIGHTLIMIT

		18/32		20135		22138		24/41		26/44	
	SYSTEM		FEOEAAL-AID		PRIMARY	URBAN		SURFAこE-TYPE		GRDUP, 00	
1934	2724	13	10.0	43	8.6	13	7.5	43	6.6	13	6.0
1935	89	53	12.0	53	10.3	53	9.0	53	7.9	53	7.2
1936	111	53	12.0	53	10.3	53	9.0	53	7.9	53	7.2
1937	103	53	14.0	53	12.0	53	1C. 5	53	9.3	53	6. 3
1938	99	53	12.0	53	10.3	53	9.0	53	7.9	53	7.2
1939	253	53	10.0	53	8.6	53	7.5	53	6.6	53	6.0
1940	271	52	13.0	52	11.1	52	9.7	52	8. 6	52	7.7
1941	253	52	10.0	52	8.6.	52	7.5	52	6.6	52	6.0
1942	231	53	10.0	53	R. 6	53	7.5	53	6.6	53	6.0
1943	297	53	14.0	53	12.0	53	10.3	53	9.3	53	8.3
1944	457	53	15.0	53	12.9	53	11.2	53	9.9	53	0.9
1945	419	53	9.0	53	7.7	53	6.7	53	6.0	53	5.4
1946	755	54	14.0	54	12.0	54	10.5	54	9.3	54	6. 3
1967	374	52	15.0	52	12.9	52	11.2	52	9.9	52	A. 9
1948	350	53	11.0	53	9.4	S3	8.2	S.3	7.3	53	6.6
1949	398	52	11.0	52	9.4	52	8.2	52	7.3	52	8.6
1950	440	51	14.0	51	12.0	51	10.5	51	9.3	S1	8.3
$19 \% 1$	299	52	13.0	52	11.1	52	9.1	52	8.6	52	7.7
1952	338	52	13.0	52	11.1	52	9.7	52	8.6	52	7.7
1953	232	51	10.0	51	8.6	S1	7.5	51	6.6	51	6.0
1954	366	51	10.0	51	0.6	51	7.5	51	6.6	51	6.0
1955	424	52	15.0	52	12.9	52	11.2	52	9.9	52	0.9
1956	457	52	15.0	52	12.9	52	11.2	52	9.9	52	8.9
1957	685	52	15.0	52	12.9	52	11.2	52	9.9	52	8.9
1958	614	52	15.0	52	12.9	52	11.2	52	9.9	52	8.9
1959	745	52	15.0	52	12.9	52	11.2	52	9.9	52	8.9
1960	22 \%	52	15.0	S2	12.9	52	11.2	52	9.9	52	0.9
1961	1112	52	15.0	52	12.9	52	11.2	52	9.9	52	8.9
1962	490	52	15.0	52	12.9	52	11.2	52	9.9	52	0.9
1963	476	52	15.0	52	12.9	S 2	11.2	52	9.9	52	8.9
1964	458	52	15.0	S 2	12.9	52	11.2	52	9.9	S2	0.9

SYSTEM 4 FEDERAL-AIO PRIMARY URBAN SURFACE-YYPE GROUP. J

1934	420	R 3	27.0	$R 3$	26.3	R 3	25.5	R 3	24.8	R 3	24.2
1935	214	R 3	25.0	R 3	24.3	R 3	23.6	Q 3	23.0	R 3	22.4
1936	262	Q 3	23.0	R 3	22.4	R 3	21.8	R 3	21.2	R 3	20.6
1937	260	R 3	25.0	R 3	26.3	R 3	23.6	R 3	23.0	R 3	22.4
1936	198	54	16.0	54	i 5.6	54	15.1	54	14.7	54.	14.4
1939	266	54	31.0	54	30.1	54	29.3	54	20.5	54	27.8
1940	180	53	31.0	53	30.1	53	29.3	53	28.5	53	27.6
1941	214	53	17.0	53	16.5	53	16.1	53	15.6	53	15.3
1942	172	53	17.0	53	16.5 .	53	16.1	53	15.6	53	15.3
1943	74	53	16.0	53	15.6	53	15.1	53	14.7	53	14.4
1944	106	53	16.0	53	15.6	53	15.1	53	14.7	53	14.4
1945	148	54	26.0	54	25.3	54	24.6	54	23.9	54	23.3
1946	134	56	14.0	56	13.6	56	13.2	56	12.9	56	12.6
1947	24	54	17.0	54	16.5	54	16.1	54	15.6	54	15.3
1948	14	54	17.0	54	16.5	54	16.1	54	15.6	54	15.3
8949	144	54	11.0	54	16.5	54	16.1	54	15.6	54	15.3
1950	130	51	19.0	51	18.5	51	18.0	51	17.5	51	87.8
1951	117	53	20.0	53	19.4	53	18.9	53	18.8	53	18.0
1952	106	53	20.0	53	19.4	53	18.9	53	18.4	53	18.0
1953	128	55	20.0	53	19.4	53	18.9	53	18.4	53	1 ค. 0
1954	154	53	20.0	53	19.4	53	18.9	53	16.4	53	18.0
1955	176	54	20.0	54	19.4	54	18.9	54	18.4	54	18.0
1956	239	54	20.0	54	19.4	54	18.9	54	18.4	54	18.0
1957	154	54	20.0	54	19.4	54	18.9	54	16.4	54	18.0
1958	230	54	20.0	54	19.6	54	18.9	54	18.4	54	18.0
1959	311	34	20.0	54	19.4	54	18.9	54	18.4	54	18.0
1960	300	54	20.0	54	19.4	54	18.9	54	18.4	54	10.0
1961	298	54	20.0	54	19.4	54	18.9	54	18.4	54	18.0
1962	366	54	20.0	54	19.4	54	18.9	54	18.4	54	10.0
8963	256	54	20.0	54	19.4	54	18.9	54	18.4	54	18.0
8964	259	54	20.0	54	19.6	54	18.9	54	10.4	54	18.0

8- THE DESIGNATION SUCH AS L3-20 lVDICATES AN LS SHAPE OF THE CUQVE aND a 20 YEARS AVERAGE SERVICE LPFE.

In years of their pavements by surface type. By reference to these reports in the files of the Bureau of Public Roads and to published papers, a selection of typical survivor curves and service lives was made for each vintage of construction from 1920 to 1964 for each of the four highway systems and ten census divisions. Table 16-1 indicates the final selections for the East North Central census division. The word final is used because in some cases it was necessary to run some preliminary calculations to test the validity of the survivor-curve selection, as explained in a later section of this report. Adjustments were made to accomplish approximate agreement of the calculated lane-miles of pavement surviving with the lane-miles surviving as of January 1, 1965 as reported in "Highway Statistics."

The so-called "road life" studies, which have been carried on by several State highway departments, used as their basic references a technique published in 1935 by the Iowa State College Engineering Experiment Station under the title, "Statistical Analyses of Industrial Property Retirements." In this publication, 18 typical survivor curves were developed for a variety of physical properties. These curves are shown in figures 16-1, 16-2, and 16-3.

Figure 16-1. --. The leri-modal type survivo: cuives.
 ¹. §ure 26-2. -- The symetrical type survivor curves.

Figure 16-3. -- Ine riftht modal type uivivoi cuives.

4. PROJECIION TO 1984 OF THE YEARLY LANE-MILES CONSTIRUCTED AND SURVIVING UNDER THE BASE AXIE-WEIGHP LIMITS

By applying the survivor-curve selections to the historical year-by-year construction by surface types, a forecast of the lane-miles of construction prior to 1965 that would survive in service yearly from 1965 through 1984 was obtained. To estimate the total yearly construction from 1965 through 1984 requires an estimate of theyearly extensions of the system in lanemiles existing in addition to the retirements (to be replaced) as obtained from the calculations of the surviving lane-miles.

A. Lane-miles in Service

Yearly 1965 through 1984
In conformity with past experience, the mileage of a given highway system may be expected to increase more or less yearly, 1965 to 1984. This increase in centerline mileage (and lane mileage) would require, in addition to reconstruction and resurfacing, yearly construction replacing retirements. In order to provide for such extensions of the highway systems, a "control lane mileage" was established for each surface type. The overall system mileage for the Federal-aid primary system from 1965 to 1984 was established in approximate conformity with the forecasted increase in vehicle-miles of travel that was used in Chapter 10.

The control lane-miles by surface type, given in table 16-2, were set on the basis that the low and intermediate types would be replaced with high-type pavement and that the mileage of high-type pavement would increase. Some adjustrents of the first estimates of future control lanemiles, selected survivor curves, and past annual construction were necessary in order to produce a reasonable number of existing lane-miles year by year from 1965 to 1984.
B. Control Lane-miles by Surface Types

Surface-type classifications for 1965 to 1985 are based on the overall average for the period 1960 through 1984. In the event that control mileage for a particular surface type tended to decrease, the input control was held constant at the 1964 level. This action was required because of the manner in which the computer program was written. The projected decrease in surface-type mileage was provided for by scheduling the retirements for replacement by surfaces of a higher type without changing the classification used by the computer. Such decreases in control mileage occur in the lower surface-type group (F) and represent changes to higher surface types.

Therefore, these retirements during the 1965 to 1984 projected period are priced at the construction cost of the high type of surface.

TABLE 16－2．－－PMOAECTED LANE－MILSS OF RIOHMAY8 In 8ERVICE DJCEDRER 31， 1964 TEROUGH 1984 BY CENSUS DIVIBION AND 8URTACE TYPEI／

YEAR	SYSTEM 1，INTEKSTATE RURAL									
	I.	$\begin{aligned} & 2 . \\ & M A \end{aligned}$	SAN	CENSLS DIVISION			$\begin{aligned} & 7 . \\ & \text { ESC } \end{aligned}$	is.	9	10
				4.	5.	6.				
				$\begin{aligned} & \text { SAS EPAC WRC } \\ & \text { SURFACE-IYPE GROUP FZ/ } \end{aligned}$						
1964	0	0	0	309	0	0	0	288	873	0
1965	0	0	0	3 C 9	0	C	0	2 R 8	A73	0
1968	0	0	0	3 C 9	0	0	0	28A	873	0
1967	c	0	0	3 C 9	0	0	c	28 日	873	0
1968	C	0	0	3 C 9	0	0	0	288	873	0
1969	0	0	0	3 C 9	0	0	0	288	873	0
1970	0	0	0	3 C 9	0	0	0	2 月8	A73	0
1971	c	0	0	309	0	0	0	288	873	0
1972	c	0	0	309	0	0	0	2 AB	813	0
1973	0	0	0	3 C 9	0	c	0	288	813	0
1974	0	0	0	3 C 9	0	c	0	288	873	0
1975	0	0	0	3 C 9	c	0	0	288	873	0
1976	0	0	0	3 C 9	0	0	0	288	873	0
1977	0	0	0	3 C 9	0	0	0	28 e	813	0
1978	c	0	0	3 C 3	0 －	0	0	288	873	0
1979	c	0	0	309	0	0	0	288	873	0
1980	0	0	0	3 C 9	0	0	0	288	873	0
1981	0	0	0	3 C 9	0	c	0	288	873	0
1982	c	0	0	309	0	0	0	288	873	0
1983	C	0	0	309	c	0	0	288	813	0
1984	0	0	0	3 C 9	0	0	0	288	A 73	0
			SURFACF－IYPE GROUP GO							
1964	1333	516	931	2948	1014	1623	2379	3626	9888	2942
1965	1555	629	1287	3659	1144	2000	3250	418 C	11009	3637
1968	1777	742	$1 \in 44$	4310	1274	2360	3 A 50	4553	12609	4228
1967	1999	854	2 COL	5081	1404	2720	4450	5727	14329	4819
1968	2220	966	233A	5792	1535	3100	5025	6501	15989	5410
1969	2441	1078	2715	6504	1666	3450	5575	1275	17649	6001
1970	2662	1190	3 C 72	7216	1797	3 H 10	6125	$8 \mathrm{C4} 9$	19309	6592
1971	2883	1302	3429	7928	1928	4180	6675	8787	20969	7183
1972	3104	1414	3786	A640	2059	4558	7222	9525	22629	7773
1973	331A	1509	4122	9421	2202	4949	7884	10343	24683	8461
1974	3533	$16 \mathrm{C5}$	4458	$1 \mathrm{C2C1}$	2346	534 C	8546	11161	26737	9148
1975	3749	1701	4791	10979	2489	5733	9212	11984	28790	9837
1976	3839	1749	4850	1123e	2527	5853	9400	12327	29777	10154
1977	382日	1796	4909	11497	2564	5974	9589	12660	30762	10470
1978	4018	1843	4968	11757	2602	6094	9778	12999	31748	10788
1979	410 A	1891	5027	12017	2640	6214	9967	13317	32733	11105
1980	4197	1938	5 C 86	12275	2677	6335	10155	13675	33719	11421
1981	4287	1985	5145	12535	2715	6455	10344	14.13	34704	11738
1982	4377	2033	5204	12794	2753	0576	10533	14351	15691	12055
1983	4466	2080	$52 \mathrm{B3}$	13054	2790	6696	10122	1469 C	36616	12371
1984	4555	2127	5322	1313	2828	6816	10910	15028	37662	12688
			SURFACE－TYPE GROUP J							
1964	458	2087	576	1628	7758	6293	1801	2725	1333	1755
1965	564	2532	7A1	1952	8950	7191	2268	3 C 13	1521	2217
1968	E 60	2976	986	2276	10050	8089	2640	$341 t$	1670	2610
1967	756	3420	1191	2600	11100	8987	2980	3819	1819	3003
1968	852	36t4	1398	2924.	12075	9885	3280	4223	1967	3396
1969	548	43 CB	1601	324 ${ }^{\text {a }}$	13025	10783	3575	$4 \in 21$	2115	1789
1970	1044	4752	1806	3573	13975	11881	3850	SC31	2263	4182
1971	1140	5196	2011	3898	14925	12579	4125	5416	2411	4575
1972	1235	5640	2217	4223	15861	13480	4392	5801	2557	4968
1973	1320	6021	2413	4604	16965	14635	4794	6299	2791	5407
1974	1405	64.2	$2 \in 10$	4986	1806 A	15791	5197	6798	3023	\＄847
1975	1492	6786	2805	5366	19173	16955	5602	7298	3256	6288
1976	1527	6974	2840	5493	19463	17311	5717	7504	3367	6490
1977	1563	1164	2875	5620	19754	17667	5832	7711	3479	6694
1978	1599	7353	2909	5746	20044	18023	5940	7516	3590	6895
1974	1634	7541	2944	5873	20334	18379	6761	8122	3702	7097
1980	1670	7730	2979	6000	20625	18735	6176	8328	3813	7300
1981	1706	1920	3 C 13	6127	20915	19091	6291	8535	3925	1502
1982	1721	81 CB	3048	E 254	21205	19447	0405	E141	4036	7704
1983	1717	H257	3 C 82	63 AO	$2149 t$	19803	6520	2946	4148	1907
1984	1813	A486	3117	6507	21786	20159	0635	9153	4259	6109

[^14]| | SYSTEN 2, INTERSTATE UREAN | | | | | | | | sheet 2 of 4 | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| YEAR | 1 | $2 .$ | $\begin{aligned} & 3 . \\ & S A N \end{aligned}$ | NNStS SAS | $\begin{aligned} & 01 V 1510 \\ & 5 . \\ & \text { ENC } \end{aligned}$ | 6. MNC | $\begin{aligned} & \text { T. } \\ & \text { ESC } \end{aligned}$ | B. | $9 .$ | 10 |
| | SURFACE-IYPE GROUP P? | | | | | | | | | |
| 1964 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1965 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1966 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1967 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 |
| 1968 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1969 | 0 | 0 | 0 | 0 | c | 0 | 0 | 0 | 0 | 0 |
| 1970 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1971 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1972 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1973 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1974 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 |
| 1975 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | c | 0 | 0 |
| 1976 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1977 | c | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1978 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1979 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1980 | 0 | 0 | 0 | 0 | 0. | 0 | 0 | 0 | 0 | σ |
| 1981 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1982 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1983 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | C | 0 | 0 |
| 1984 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| | SURFACE-TYPE GROUP OO | | | | | | | | | |
| 1964 | 414 | 257 | 109 | 481 | 288 | 152 | 226 | 786 | 357 | 398 |
| 1965 | 524 | 316 | 165 | 551 | 350 | 208 | 261 | 929 | 461 | 493 |
| 1966 | 634 | 375 | 221 | 621 | 435 | 249 | 312 | 1112 | 585 | 580 |
| 1967 | 744 | 435 | 217 | 691 | 540 | 290 | 311 | 1296 | 069 | 683 |
| 1968 | 854 | 495 | 333 | 762 | 665 | 331 | 449 | 1480 | 173 | 778 |
| 1969 | 964 | 555 | 390 | 833 | 195 | 372 | 530 | 1664 | 877 | 873 |
| 1970 | 1 Cl 4 | 615 | 447 | 904 | 940 | 413 | 617 | 1846 | 911 | 988 |
| 1971 | 1183 | 675 | 504 | 915 | 1090 | 453 | 709 | 2C25 | 1085 | 1063 |
| 1972 | 1292 | 735 | 561 | 1046 | 1254 | 493 | 801 | 2203 | 1192 | 1162 |
| 1973 | 1392 | 781 | 613 | 1139 | 1355 | 5.35 | 814 | 2387 | 1301 | 1248 |
| 1974 | 1495 | 821 | 664 | 1231 | 1457 | 576 | 948 | 2571 | 1410 | 1335 |
| 1975 | 1596 | 873 | 717 | 1325 | 1558 | 618 | 1021 | 2755 | 1523 | 1421 |
| 1976 | 1634 | 9 CO | 739 | 1392 | 1612 | 635 | 1065 | 2833 | 1581 | 1452 |
| 1977 | 1672 | 928 | 761 | 1460 | 1666 | 652 | 11 co | 2911 | 1640 | 1483 |
| 1978 | 1711 | 955 | 783 | 1527 | 1719 | 669 | 1151 | 2989 | 1699 | 1514 |
| 1979 | 1749 | 923 | 805 | 1595 | 1713 | 680 | 1194 | 3 CbO | 1751 | 1545 |
| 1980 | 1787 | 1010 | 827 | 1663 | 1827 | 703 | 1237 | 3146 | 1816 | 1576 |
| 1981 | 1825 | 1037 | 849 | 1731 | 188 C | 720 | 1280 | 3224 | 1874 | 1606 |
| 1982 | 1863 | 1065 | 812 | 1798 | 1934 | 7.37 | 1323 | 3302 | 1933 | 1637 |
| 1983 | 1902 | 1092 | 894 | 1566 | 1981 | 754 | 1367 | 338 C | 1992 | 1648 |
| 1984 | 1940 | 1120 | 916 | 1933 | 2041 | 171 | 1409 | 3458 | 2050 | 1699 |
| | SURFACE-TYPE GROUP J | | | | | | | | | |
| 1964 | 174 | 934 | 306 | 463 | 1356 | 1065 | 300 | $1 \mathrm{C19}$ | 193 | 1823 |
| 1963 | 231 | 1155 | 450 | 495 | 1586 | 1226 | 419 | 1154 | 234 | 2116 |
| 1966 | 288 | 1376 | 594 | 527 | 1886 | 1343 | 417 | 1328 | 275 | 2409 |
| 1967 | 345 | 1597 | 738 | 560 | 2230 | 1466 | 547 | 1502 | 316 | 2702 |
| 1968 | 402 | 1818 | 882 | 593 | 2600 | 1577 | 627 | 1676 | 357 | 2995 |
| 1969 | 459 | 2040 | 1027 | 626 | 3000 | 1694 | 713 | 1850 | 398 | 3288 |
| 1970 | 516 | 2262 | 1172 | 659 | 3400 | 1814 | 809 | 2C25 | 439 | 3581 |
| 1971 | 512 | 2484 | 1317 | 692 | 3830 | 1928 | 908 | 2193 | 480 | 3874 |
| 1972 | 628 | 2706 | 1462 | 725 | 4269 | 2045 | 1009 | 2361 | 522 | 4172 |
| 1973 | 618 | 2875 | 1596 | 789 | 4615 | 2217 | 1102 | 2558 | 570 | 4483 |
| 1974 | 726 | 3043 | 1732 | 854 | 4959 | 2391 | 1195 | 2155 | 418 | 4793 |
| 1975 | 176 | 3212 | 1867 | 918 | 5306 | 2566 | 1287 | 2952 | 667 | 5103 |
| 1976 | 794 | 3314 | 1925 | 965 | 5488 | 2636 | 1341 | $3 C 36$ | 693 | 5214 |
| 1977 | 813 | 3415 | 1983 | 1012 | 5670 | 2706 | 1395 | 3120 | 118 | 5325 |
| 1978 | 831 | 3516 | 2041 | 1059 | 5854 | 2111 | 1450 | 3204 | 144 | 5435 |
| 1979 | 850 | 3617 | 2099 | 1166 | 6036 | 2847 | 1504 | 3287 | 770 | 5546 |
| 1980 | 869 | 3718 | 2157 | 1152 | 6218 | 2917 | 1559 | 3371 | 795 | 5657 |
| 1981 | 881 | 3820 | 2214 | 1199 | 6401 | 2987 | 1613 | 3455 | 821 | 5768 |
| 1982 | 906 | 3921 | 2271 | 1246 | 6583 | 3068 | 1667 | 3539 | 846 | 5879 |
| 1983 | 924 | 4022 | 2329 | 1293 | 6766 | 3128 | 1721 | $3 \in 23$ | 872 | 5989 |
| 1984 | 943 | 4123 | 2387 | 1340 | 6948 | 3198 | 1778 | 3707 | 898 | 6100 |

1/ The projection from 1964 to 1972 are besed on estinted 1972 rybten lase-allee obtalned from the Interstate Reports Branch. Projectione to yeare after 1972 hav been baed on eatimed rehiclo-miles of travel on the syoter fros the Flaming Bervioes Branch.

2/ Type F vee phaed out an rotired and repleced by higher type Nexible pavement.
The original 1964 leno-nilee vero carried formend to avold edjuting the
ocoputer progren.

TARLS 16-2. -- FRONBCTLD LANE-MINES OF BMENAFS IT BERVICE DECBRER 34. 2964 TERPUOR 1984 BY CBREUS DIVIBION AND BURPACE FTPE/

```
SYSTEM 3,FEOERAL -AIO PRIMARY RURAL
```

YEAR	İ	$\begin{aligned} & 2 . \\ & M i \end{aligned}$	$\begin{aligned} & 3 . \\ & S A N \end{aligned}$	CFNSU 4. SAS	$\begin{aligned} & 0 \text { IVI } \\ & 5 . \\ & \text { ENC } \end{aligned}$	ION A. WNC	$\begin{aligned} & 7 . \\ & \text { ESC } \end{aligned}$	s.		10
	SURFACE-TYPE GROUP F2/									
1964	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1965	2786	4302	1573	7560	3266	25371	1409	11368	7622	6405
1966	2786	4302	1573	7560	3266	25311	7409	11368	7622	6405
1967	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1968	2786	43 C 2	1573	7560	3266	25371	7409	11368	7822	6405
1969	2786	4302	1573	1560	3266	25371	7409	11368	7622	6405
1970	2786	4302	1573	7560	3266	25371	1409	11368	7622	6405
1971	2786	4302	1573	7560	3266	25371	7409	11368	7822	6405
1972	2786	$43 C 2$	1573	7560	3266	25371	7409	11368	7622	6405
1973	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1874	2786	4302	1573	$75 \in 0$	3266	25371	7409	11368	7622	6405
1975	2786	4302	1573	7560	3266	25311	7409	11368	7622	6405
1976	2786	4302	1573	7560	3266	25311	7409	11368	7822	6405
1977	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1978	2786	4302	1573	7560	3266	25371	7409	11368	7622	640.5.
1979	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1980	2786	43 c 2	1573	7560	3266	25371	7409	11368	7822	6405
1981	2786	4302	1573	7560	3266	. 25371	7409	11368	7622	6405
1982	2786	4302	1573	75t0	3266	25371	7409	11368	7622	6405
1983	2786	$43 \mathrm{C2}$	1573	7560	3266	25371	7409	11368	7822	6405
1984	2786	4302	1573	7560	3266	25371	1409	11368	7622	6405

1964	7682	16065	12216	25258	37096	37466	23067	32919	32589	18025
1965	7930	16325	12360	25765	37241	38033	23338	33246	33000	18889
1966	8152	16580	12680	26500	37800	38840	23525	$337 C 0$	33600	19900
1967	8340	16830	12975	27700	38625	39140	23690	34240	34300	20875
1968	8500	17049	13385	29225	39650	40590	23830	$3484 C$	35350	21800
1969	8628	17280	13795	$3 C 650$	40800	41350	23950	35475	36850	22710
1970	8733	17520	14160	31975	$4207 C$	41949	24061	36120	38500	23609
1971	8796	17700	14500	33125	42800	42450	24171	36725	40100	24409
1972	8860	17960	14835	34175	43300	42820	24281	37200	41600	25207
1973	8927	18090	15110	35075	43700	43188	24391	37650	43050	25998
1974	8996	18275	15350	35875	$4399 C$	4398	24501	38675	44400	26725
1975	9063	18450	15565	36550	44250	43783	24611	38470	45650	27450
1976	9130	18620	15715	37160	44475	44058	24721	38860	46750	28135
1977	9194	18780	15860	37625	44650	44323	24831	39235	47750	28790
1978	9258	18940	16000	38125	44825	44568	24941	39605	48418	29410
1979	9319	19080	16140	38625	44980	44808	25051	39975	49000	30000
1980	9379	19222	16278	39102	45108	45008	25162	40344	49514	30578
1981	9442	19320	16375	39475	45225	45208	25280	$4 C 550$	50000	31100
1982	9505	19440	16450	39825	45390	45383	25398	$4 C 700$	50410	31590
1983	9568	19520	16520	$4 C 169$	45600	45558	25516	40831	50820	32088
1984	9631	$196 C 0$	16580	40504	45850	45733	25634	40552	51200	32500

SURFACE-TYPE GROUP J

1964	2141	12899	3301	5572	19932	24168	5014	7920	418	2043
1965	2170	12980	3385	5897	20087	24368	5124	-133	442	2078
1966	2198	13160	3450	6137	20525	24763	5149	8390	463	2135
1967	2218	13370	3503	6327	2114 C	25175	5173	8710	484	2192
1968	2238	13620	3552	6497	21850	256CC	5197	$9 \mathrm{C97}$	503	2255
1969	2258	13780	3598	6647	22650	25999	5221	9490	521	2310
1970	2275	13957	3640	6772	23522	26349	5245	9823	535	2381
1971	2289	14070	3682	6897	23850	26525	5269	9978	546	2444
1972	2302	14240	3123	7022	24100	26665	5293	10098	557	2507
1973	2315	14360	3763	7130	24290	26800	5317	10198	567	2568
1974	2327	14490	3803	7230	24450	26925	5341	1 C 285	576	2628
1975	2339	14602	3843	7330	24590	27040	5365	10362	584	2686
1976	2750	14700	3881	1430	24715	27150	5389	10437	592	2740
1977	2361	14800	3917	7515	24825	27260	5413	1 csic	599	2792
1978	2372	14880	3949	7600	24920	27360	5437	10575	606	2841
1979	2382	14950	3979	7675	25010	27456	5461	10637	612	2890
1980	2392	15047	4004	7748	25098	27546	5480	10697	618	2934
1981	2402	15100	4022	7820	25180	27626	5511	10732	623	2978
1982	2412	15160	4039	1880	25300	27700	5536	10765	628	3018
1983	2423	15225	4 C 54	7940	25425	27781	5,62	10795	632	3055
1984	2446	15275	4068	8 CCO	25550	27856	5588	1082 C	636	3090

1/ Eutimated on the besis of projectione reported in Table II-19 of staff report, study haber 1

2/ Typa F wae phased out ae retirod and repisced by higher type Rlaxible paveent. The orlginal 1964 leno-died vere carried forvand to avold adjupting tbe coputer progre
 DECBOER 31, 1964 THROVGA 1904 BY CEREUS DIVISIOM AID BURYACE TTPE//

SYSTEM 4, FEOERAL-AIC PRIMARY URBAN

I/ Ertiated on the basis of projectioes roported in fesle II-19 of ataft rugort, stuly mulere 1.

5. TOTAL CONSTRUCIION EXPENDITURES

YEARLY FROM 1965 THROUGH 1984
One additional input to the computer was required for estimating the total highway construction expenditures from 1965 through 1984: the costs per lane-mile of new construction, reconstruction, and resurfacing. The computer also required instructions on how to compute for each of the 20 years the number of lane-miles of new construction, reconstruction, and resurfacing. These three basic factors were determined next for each of the four highway systems and for each surface type.
A. Base Construction Cost

The base highway construction costs are given in Chapter 8. Tables $8-9,8-10$, and $8-11$ were used for the base costs for the study of financial requirements from 1965 to 1984.
B. Construction Cost of New Highways

New construction cost for each system for 1965 to 1984 is restricted to the yearly increase in lane-miles as indicated by the control lane-miles. Price factors for new construction that are applicable to the Interstate systems are not the same throughout the 20-year project period. After 1972 all new construction was priced at a lower cost than those lane-miles projected from 1965 through 1972.

All Interstate-system new construction costs for the projected years through 1972, were obtained from table 8-10
(Chapter 8) and were divided by four (reducing four lanes to lane-miles) to give the cost per lane-mile at the base axleweight limit. The costs of new construction per lane-mile for the projected period from 1973 through 1984 were obtained in the same manner as those for 1965 through 1972 but include only pavement costs from table 8-9. It was assumed that the Interstate system will be completed during 1972 and that the increased system lane-mileage for each year thereafter will result from increased traffic lanes, not from increased system centerline length.

New construction costs by surface type on the Federalaid primary system were treated in much the same manner as Interstate-system costs were, but with one factor applied throughout the projected (1965 to 1984) period, and a factor of two instead of four used to produce lane-mile cost. The reduced lane mileage factor was required, since the existing Federal-aid primary system averages approximately 2 lanes per mile. See tables 16-3 and 16-4 for the cost per lane-mile of new construction on the Interstate system and table 16-6 for the cost for the Federal-aid primary system.
C. Reconstruction Cost

For flexible and rigid pavements on Interstate systems 1 and 2, a "ratio" of National reconstruction cost per centerline mile was devised by comparing the Nationwide reconstruction
Tables 16-3 - 16-6. -- National average cost of new construction and reconstruction on the Interstate

System	Rigid pavement					Flexible pavement				
	Single/tandem maximum axle-weight limits, kips					Single/tandem maximum axle-weight limits, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
Table 16-3										
Interstate system: Cost of new construction through 1972										
1. Interstate, Rural	1,007	1,440	1,981	2,005	2,027	952	1,367	1,899	1,914	1,929
2. Interstate, Urban	4,047	5,647	8,099	8,116	8,130	3,988	5,571	8,016	8,029	8,043

Interstate system: Cost of new construction (adding lanes only) after 1972
1. Interstate, Rural 2. Interstate, Urban

cost furnished by the Office of Engineering with the corresponding cost taken from table $8-10$. This step was necessary owing to the differences in the cost estimates of these two reports. Since the cost of reconstruction contains little right-ol-way activity, 90 percent of the right-of-way cost was excluded from the costs taken from table $8-10$. The end product of this first step was then applied to the total system costs found in table $8-10$, resulting in total system costs per centerline-mile for each individual census division.

The reconstruction price factors for all systems, surface types, and axle-weight groups that are outlined in this section of the report apply equally to all projected years of the study. See table 16-5 for the lane-mile cost of reconstruction on the Interstate System. The comparable costs for the Federal-aid primary systems are given in table 16-6.

These increments of construction cost for the higher axle-weight limits were added to the base costs to arrive et the results given in tables $16-3$ to $16-6$. The added construction costs include the costs of small drainage and earthwork, pavement structure, shoulders, and bridges.
6. SPLIT OF TOTAL YEARLY CONSTRUCTION INIO NEW CONSTRUCIION, RECONSIRUCIION, AND RESURFACING

A somewhat arbitrary scheme, but realistic in concept, was used to determine separately the amounts of new
construction, reconstruction, and resurfacing for each year from 1965 to 1985. The scheme is based primarily on past construction years.

New construction on the four highway systems from 1965 to 1985 was determined to be the yearly increase in the control lane mileage. Reconstruction and resurfacing combined is equal to the total mileage retired each year. The method used to divide the total retirements (replacements) into reconstruction and resurfacing was based on the age of the retirements (year built) and the surface type.

The Federal-Aid Highway Act of 1956 established a bench mark year in design standards. Although the standards are particularly applicable to the Interstate system, they also have increased the importance of long-range traffic requirements for newly designed primary mileage. The year 1957, when the new design criteria took effect, was selected as the transition year for all four highway systems. For Systems 3 and 4, Federalaid primary rural and urban, an additional transition year, 1946, was used in order to take into account the differences in design and construction before and during the World War II years.

On Systems 1 and 2, Interstate rural and urban, all retirements of all surface types constructed before 1958 are classed as reconstruction. All retired lane-miles from construction vintages of 1958 and later are classed as resurfacing. The
percentage breakdown between reconstruction and resurfacing for the Federal-aid primary rural and urban systems varies for each surface-type group as follows:

Surface type	Vintages of 1946 and earlier		Vintages of 1947-1957		Vintages of 1958-1984	
	Recon- struction	Resur- facing	Recon- struc- tion	Resur- facing	Recon- struc- tion	Resur- facing
	100	0	90	10	10	90
Group GO	90	10	60	40	0	100
Group J	85	15	50	50	0	100

7. SELECIION OF SERVICE LIVES AND SURVIVOR

CURVES FOR INCREASED AXIE-WEIGHT LIMITS
One of the concepts of this analysis is that, under higher axle-weight limits for the period of 1965 to 1985, the pavements constructed before 1965 would reach a state of physical wear warranting reconstruction or resurfacing some years sooner than they would without the increase in axle-weight limits. For all vintages before 1965, the average service life was adjusted for each axle-weight level above the base condition by the ratio of the E $18-k i p$ axle application at the base condition to the E l8-kip axle application at each increased level of axle-weight limits. These reduced service lives are given in table 16-1. Because the pavement design is a function
of the total E 18-kip axle applications over a specific period, it is reasonable to adjust this specific period of time used in design proportionally to any change in the total E 18-kip axle applications.

For all vintages 1965 to 1985, no adjustment in service lives is required. The analysis method provides for determining separately the 20-year capital outlays for each axleweight level. Therefore, all construction, reconstruction, and resurfacing within the 20-year period reflected pavement designs for a particular axle-weight limit. The final comparison, then, was between levels of capital outlay required from one axleweight limit to another. The effects of increased axle-weight levels show up in the increased construction cost of the complete highway.

The pavements from 1965 to 1985 with 20-year service lives are perhaps of higher structural quality than are many of the older pavements existing on the highway systems. It would follow, then, that some of the existing pavements would perhaps experience a greater shortening of service life than that given in table 16-1. But no adjustments were made to correct for any possible error in this procedure, because no easily applied method of doing so was conceived. Not knowing the structural quality of existing pavements of their present serviceability index (PSI) precluded making any adjustments on the basis of these factors.

8. COMPUTER CALCULATIONS AND PRINT-OUTS

The main computer print-out is table 16-8 (for East Noxth Central census division only) showing the total dollars of capital outlay for each highway system, census division, and axle-weight level for each year from 1965 through 1984.

The minus differences on the lefthand side of table 16-8 occur when the more rapid retirements in the early years at the increased axle-weight levels bring about greater construction activities during the early part of the projected period and lesser amounts in the later years than would have been the case had the present pavement design and resulting retirement rates prevailed. These pavements that are retired more rapidly in the early years with increasing levels of axle-weight limit are replaced with 20 -year pavement of a high type designed for the specific axle-weight limit--pavement having a much slower rate of retirement than that of earlier vintages. Thus, under the higher axle-weight limits, replacement construction is speeded up in the early years and then slowed down in the middle and later years, as compared to the replacement schedule under the base condition.

The yearly totals of capital outlay from 1965 through 1984 in table 16-8 are summed to get the 20 -year totals shown on the left-hand side of table 16-9. On the right-hand side of table 16-9 are shown the 20 -year totals of the present worth at 6 percent of each of the yearly capital outlays. These present
TABLE 1608. - - AOOITIONAL CONSTRUCTION COST ANO TOTAL CAPITAL OUTLAYS FOR HIGHWAYS,
 1 BASEO UPON ADOITIONAL HIGHWAY CONSTRUCTION COST INCURREO WITH EACH PROJECTEO INCREASE IN AXLE WEIGHT LIMITS. CAPITAL OUTLAY COST FOR THE BASE AXLE WEIGHT LIMITS ARE ESTIMATEO FROM A FORECAST OF
THE LANE-MILES WHICH WILL BE REQUIREO TO BE CONSTRUCTEO, RECONSTRUCTEO OR RESURFACEO EACH YEAR. - 2 INCLUOES- PAVEMENT, SHOULOERS. EARTHHORK, ORAINAGE AND BRIOGE COSTS.

- based upon acoitional highwar construction cost incurred with each projected increase in axle weight
LIMITS. CAELES HHICH WILL BE REOUIRED TO BE CONSTRUCTEO, RECONSTRUCTED OR RESURFACEC EACH YEAR
2 includes- pavement, shouloers, earthwork, orainage ano brioge costs.
3 base axle meight limits are- $22 / 38$ for ne e ma . $20 / 35$ for san 6 Sas. all
other Census civisicn are 18/32.
 SYSTEM 3 FEOERAL-A10 PRIMARY RURAL CENSUS CIVISION 5 EAST NORTH CENTRAL AOCED CONSTRUCTICN COST 2 - DOLLARS
FRON THE BASE SIAGLE/TANCEM AXLE WEIGHT LIMITS 3 26/44 209647421 41139952 . $82712171 \quad 124927307 \quad 163719042$ $32377218 \quad 63547148 \quad 94349844 \quad 122175055$ $25542893 \quad 51241343 \quad 77256899 \quad 99181728$ $23234482-44178262 \quad 62084031-73937160$ $\begin{array}{llll}17528727 & 31608075 & 39824037 & 38665024\end{array}$ $11223767 \quad 14477490 \quad 9012457 \quad-1593076$ $1769518-4149018-17064966-25854301$

	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
1955	49345896	101677180	156769343	209647421	522378277	571724173	624055457	679147620	732025698
1900	41139952	82712171	-124921307	163719042	631109209	672249161	213821380	756036516	124828258
1967	32377218	63547148	94349844	122175055	686494354	718871572	750041502	780844198	808669409
1969	25542893	51241343	77256899	99181728	711925592	737468485	763166935	789182491	811107320
1969	23234482	44178262	62084031	73837160	126792120	750026602	770970382	188876151	800629280
1976	17528727	31608075	39824037	38665024	742412983	759941710	774021058	782237020	781078007
1971	11223767	14477490	9012457	-1593076	505258836	516482603	519736326	514271293	503665760
1972	1769518	-4149018	-17064966	-25854391	422951693	424721211	418802675	405886727	397097302
1773	-6221235	-18324619	-27616661	-31666939	365844736	359623501 "	347520117	338228075	334177797
1374	-11332059	-21301721	-23947400	-32458973	310357075	299025016	289055354	286409675	277898102
1775	-10168594	-14177125	-25178026	-38770402	275769690	265601096	261592565	250591664	236999288
1976	-6235327	-13532326	-27212356	-46363071	242839715	236604388	229307389	215627359	196476644
1777	-6164020	-17969560	-35638810	-51931263	211401666	205237646	193432106	175762856	159470403
1978	-9412966	-25001634	-44084355	-53820744	193117473	183704507	168115839	149033118	139296729
1979	-11989356	-29528987	-43610028	-49912203	171916177	159926821	142387190	128306149	122003974
194C	-14587913	-32047896	-41024811	-46206297	152015994	137428081	119968098	110991183	105809697
1981	-16530450.	-29380672	-36416662	-39954908	134789320	118258864	104908648	98372658	94834412
1982	-16354636	-25050053	-30627372	-32222746	138420422	122065786	113370369	107793050	.106197676
1983	-13870520	-19742993	-22577577	-23672161	135948872	122078352	116205879	113371295	112276711
1984	-8804040	$=13391279$	-14781902	-14758245	-133157152	134353112	119765873	118375250	118398907

SYSTEM 4 FEOERAL-AIO PRIMARY URBAN

'ABLE 16-9.-- THENTY-YEAR CAPITAL OUTLAYS AND PRESENT WORTH VALUES FOR HIGHWAYS.
1965 THROUGH 1984, BY AXLE-WEIGHT LIMITS AND CENSUS OIVISION *I

If DOILARS										
CENSUS DIVISION	Single/tandem axle height limits, kips					PRESENT WORTH AT 68 Of 20-yEAR CAPITAL OUTLAYS				
1. NE			1991603582	2002580049	2012881335			1360173867	1377711718	1395269402
2. MA			5271013120	5310498787	5344305323			3563544622	3626199270	3684858493
3. SAV		2493485794	2525735800	2551450993	2574176577		1716665308	1766438286	1807912965	1842936461
4. SAS		$46362821 / 5$	4651223691	4664991408	4678912742		3145296908	3159839176	3174169864	3188106777
5. ENC	1414901356	7485392687	7540245142	7589344348	7632941374	5019571919	5132987651	5233442742	5325434907	5403301667
6. WNC	4555760551	4581120534	4006646035	4630707779	4653430466	3093119744	3119568940	3147095275	3174287451	3200244692
7. ESC	1558900403	1588126977	1549863763	1563261043	1577281532	1101477392	1131681745	1164804986	1150251234	1171654321
8. WSC	2774883256	2809735308	2836476066	2860555651	2886901642	1884550481	1934069383	1977573836	2017130718	2065485927
9.4	2697794819	2701943522	2706711020	2711139823	2716C67391	1768265505	1772472313	1777201614	1782026580	1786978466
10. P	3811344927	3845586407	3876694081	3926230807	3933672696	2502549332	2543218549	2580057144	2614880361	2646524000

[^15]
worth totals afford a better comparison of the effects of axleweight limits, because they are expressed in terms of an equivalent conmon year: 1965.

Tables 16-10 and 16-11 for the East North Central census division give the dollar capital outlays year by year separately for new construction, reconstruction, and resurfacing. It may be noted from table 16-11 that over the 20-year period the dollars of capital outlay shift from reconstruction in the early years to resurfacing in the later years.
9. DISCUSSION OF RESULIS--

20-YEAR FINAICCIAL REQUIREMIENTS
Construction costs at the five levels of axle-weight limits were given in table 16-8 for the East North Central census division and for the rural and urban Interstate and primary highway systems.
A. Interstate Systems 1 and 2

From table 16-8, it may be observed that the annual construction outlays for the Interstate rural system at all axleweight limits are bighest for the year 1965 and that they decrease to 1972, when they suddenly fall to a much lower figure. The construction program on Interstate rural and urban systems was set to provide for completion of the system by the end of 1972. After 1972 the construction on the Interstate system is only that necessary for adding some additional lanes and for resurfacing retired mileages of prior vintages.

Figures $16-4$ and 5 for the Interstate rural system in census division 5, East North Central, show the total capital outlays from 1965 to 1985 as a percentage of what they are
Table 16-10. -- Cost of new construction, reconstruction, and resuriacing, census division, for five levels of axle-weight limits. (thousand dollars) Sheet 1 of 3

Year	System 1. Interstste rural					Systern 2. Interstate uetzn				
	Sinsle/tankem axle weisht imum limits, kios					Single/tandem axle woicht maximun limits, kins				
	18/32	20/35	$22 / 38$	$24 / 41$	26/44	18/32	20/35	22/38	$24 / 41$	26/44
New construction costs										
1965	269,269	271,055	272,76.	27\%,478	275,975	261,629	261,955	262,276	262,592	262,8, ${ }^{3}$
1965	2.50, 4.64	252,132	253,729	255,263	256,719	344,934	345, 364	3!5,703	310,204	346,608
1967	240,244	241,843	214,332	244,850	246,253	402,234	102,750	103, 230	103,716	404, 107
1968	225,111	226,620	223,052	229, 4.57	230,759	$4,43,330$	$413,93!$	$4 \%, 479$	445,016	415,535
1969	220,001	221,478	222,889	224,247	225,526	454,756	475, 3!9	475,932	475,507	477,062
1970	220,001	221,478	222,889	224,247	225,526	4,88, 1115	488,726	1439, 226	489,918	490,490
1971	220,001	221,478	222,889	224, 24,	225,525	519,491.	520, 141	520,780	521, 409	522,017
1972	217,140	218,593	219,991	221,333	222,596	540,037	540,713	541,377	512,032	542,605
1973	68,564	69,571	70,507	71, 35!	72, 774	24,065	24,263	24, 454	24,637	$24,805$
1974	68,556	69,564	70,501	71,378	17,163	24,003	24,201	24,391	24,574	24,742
1975	68,620	69,628	70,564	71,4,42	72,232	24,120	24, 31.9	24, 510	24,694	24,862
1976	18,032	18,297	18,543	18,774	18,032	12,701	12,806	12,906	13, 003	13,092
1977	18,039	18,304	18,549	18,780	18,937	12,701	12,806	12,905	13,003	13,092
1978	18,032	18,297	18,543	18,774	18,932	12,763	12,868	12,959	13, 066	13,156
1979	18,032	18,297	18,543	18,774	18,982	12,701	12,806	12,905	13,003	13,092
1980	18,039	18,304	18,549	18,780	18,987	12,701	12,806	12,906	13,003	13,092
1981	18,032	18,297	18,543	18,774	18,982	12,703	12,812	12,913	13,010	$13,099$
1982	18,032	18,297	18,543	18,774	18,982	12,701	12,806	12,906	13,003	$13,092$
1983	18,039	18,304	18,549	18,780	18,957	12,708	12,812	12,913	13,010	13,099
1984	18,032	18,297	18,543	18,774	18,982	12,701	12,806	12,906	13,003	13,092

Table 16-10. -- Cost of new construction, reconstruction, and resurfacing, 1964 to 1984, on the Interstate system, East Worth Central census division, for five levels of axle-reigat limits. (thousand dollars)

(thousand dollars)										
Year	Systen 1. Interstate ruxal					Syster 2. Interstate urban				
	Sincle/tanden arle netght morimux limits, kins					Sinole/tonden axie weinat maximum limits, kips				
	18/32	20/35	22/38	$24 / 47$	26/44	18/32	20/35	22/35	$24 / 2+1$	$26 / 44$
Reconstimuction costs										
1965	6,645	8,246	9,886	11,744	13,565	12,765	12,956	14,093	15,241	16,474
1965	7,847	9,929	12,038	14,505	17,009	13,1.72	14,935	16,380	17,901	19,538
1967	9,239	12,530	14,438	17,564	20,533	15,153	16,447	18,302	20,303	22,421
1.968	10,772	13,718	1.6,305	19,440	22,432	16,639	18,632	21,168	23,393	25,728
1959	1.1,974	14,662	17,633	20,404	22,731	18,657	20,825	22,758	24,689	26,367
2970	12,820	15,584	17.931	19,686	22,145	19,576	2?,210	22,529	23,554	24,117
2971	13,304	15,520	17,1067	20,659	24,876	19,221	20,025	20,191	20,827	22,415
1972	13,320	14,979	29,052	22,631	24,363	17,320	17,916	19,277	23,547	26,713
1973	12,867	16,500	20,257	21,402	16,731	15,956	13,721	22,704	26, 304	30,240
1974	13,377	18,102	19,772	14,762	8,22!	18,425	22,072	25,064	29,771	28,635
1975	15,210	18,003	14,134	7,891	3,671	20,254	23.973	27,242	23,517	18,434
1976	16,065	14,753	8,355	2,672.	1,665	22,633	24,953	20,665	14,675	9,1.40
2977	15,274	10,2,:	4,013	1,891	118	22,653	13,496	13,200	6,755	3,270
2978	11,933	5,844	2,454	570	-	17,111	12,000	6,385	3,271	1,777
1979	8,858	3,094	3,137	113	--	12,254	6,098	2,779	1,163	518
1980	5,431	2,083	306	--	--	6,740	2,791	1,728	486	456
1931	2,815	918	292	--	--	3,462	1,880	461	433	390
1982	1,987	331	--	--	--	1,896	438	417	376	319
1983	1,220	175	--	--	--	910	401	370	317	494
1984	568	235	--	-	--	389	352	320	594	--

 01
à
à

(thousand dollars)										
Year	Systen 1. Interstate ruxal					Syster 2. Interstate urban				
	Sincle/tanden arle netght morimux limits, kins					Sinole/tonden axie weinat maximum limits, kips				
	18/32	20/35	22/38	$24 / 47$	26/44	18/32	20/35	22/35	$24 / 2+1$	$26 / 44$
Reconstimuction costs										
1965	6,645	8,246	9,886	11,744	13,565	12,765	12,956	14,093	15,241	16,474
1965	7,847	9,929	12,038	14,505	17,009	13,1.72	14,935	16,380	17,901	19,538
1967	9,239	12,530	14,438	17,564	20,533	15,153	16,447	18,302	20,303	22,421
1.968	10,772	13,718	1.6,305	19,440	22,432	16,639	18,632	21,168	23,393	25,728
1959	1.1,974	14,662	17,633	20,404	22,731	18,657	20,825	22,758	24,689	26,367
2970	12,820	15,584	17.931	19,686	22,145	19,576	2?,210	22,529	23,554	24,117
2971	13,304	15,520	17,1067	20,659	24,876	19,221	20,025	20,191	20,827	22,415
1972	13,320	14,979	29,052	22,631	24,363	17,320	17,916	19,277	23,547	26,713
1973	12,867	16,500	20,257	21,402	16,731	15,956	13,721	22,704	26, 304	30,240
1974	13,377	18,102	19,772	14,762	8,22!	18,425	22,072	25,064	29,771	28,635
1975	15,210	18,003	14,134	7,891	3,671	20,254	23.973	27,242	23,517	18,434
1976	16,065	14,753	8,355	2,672.	1,665	22,633	24,953	20,665	14,675	9,1.40
2977	15,274	10,2,:	4,013	1,891	118	22,653	13,496	13,200	6,755	3,270
2978	11,933	5,844	2,454	570	-	17,111	12,000	6,385	3,271	1,777
1979	8,858	3,094	3,137	113	--	12,254	6,098	2,779	1,163	518
1980	5,431	2,083	306	--	--	6,740	2,791	1,728	486	456
1931	2,815	918	292	--	--	3,462	1,880	461	433	390
1982	1,987	331	--	--	--	1,896	438	417	376	319
1983	1,220	175	--	--	--	910	401	370	317	494
1984	568	235	--	-	--	389	352	320	594	--

 (
Table 16－10．－－Cost of new construction，reconstruction，and resuriacing， 1965 to 1984，on the Interstate system，East North Central census division，for five levels of axle－welght limits． （thousand dollars） Sheet 3 of 3

Year	Syster 1．Interstote rural					Systen 2．Interstate urban				
	Stnale／tanden exle wethht maximura inmts，kios					Sinsle／tandem axle weight mexrmun limits，kips				
	38／32	20／35	22／38	24／42	26／44	18／32	20／35	22／38	24／41	26／44

テベッグo

へin	

	in	

응요웅

$$
\begin{array}{r}
\text { surfacing } \\
\hline 4 \\
38 \\
152 \\
459 \\
1,257
\end{array}
$$

	$\begin{aligned} & \text { Hagos } \\ & \text { जrisco } \\ & \text { rimin } \end{aligned}$		

Year	Systen 1．Interstate mural
	Single／tandern axle wethht maximua Itr

Table 16-11. -- Cost of new construction, reconstruction, and resurfacing,

em 3. Federal-aid primary rural						System 4. Federal-aid primary urban				
Year	Single/	em axl	ight	mum lin	, kips	Single/tander axle weight maximum limits, kips				
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
New construction costs										
1965	59,682	59,968	60,247	60,517	60,768	149,112	149,790	150,433	151,050	151,627
1966	197,145	198,173	199,173	200,142	201,038	92,583	93,003	93,402	93,785	94,143
1967	284,470	285,972	287,433	288,849	290,157	62,629	62,912	63,180	63,438	63,679
1968	342,265	344,106	345,896	347,630	349,232	34,000	34,166	34,323	34,473	34,612
1969	384,709	386,777	388,786	390,734	392,532	20,851	20,947	21,038	21,125	21,207
1970	422,483	424,762	426,975	429,121	431,101	16,215	16,296	16,373	16,446	16,514
1971	207,081	208,310	209,501	210,655	211,718	29,607	29,711	29,812	29,910	30,004
1972	147,068	147,922	148,750	149,552	150,291	53,292	53,520	53,738	53,948	54,145
1973	115,590	116,268	116,926	117,563	118,150	64,574	64,861	65,135	65,398	65,644
1974	88,396	88,898	89,386	89,858	90,293	72,044	72,374	72,688	72,989	73,271
1975	78,540	78,989	79,424	79,845	80,234	81,612	81,980	82,330	82,665	82,979
1976	68,761	69,151	69,530	69,896	70,234	94,762	95,200	95,615	96,013	96,384
1977	56,119	56,428	56,729	57,020	57,288	98,574	99,027	99,458	99,871	100,256
1978	53,022	53,325	53,618	53,902	54,164	100,519	100,977	101,413	101,830	102,221
1979	48,172	48,442	48,705	48,959	49,194	109,933	110,440	110,921	111,382	111,813
1980	42,604	42,834	43,057	43,274	43,473	114,461	114,991	115,493	115,974	116,424
1981	39,266	39,476	39,681	39,879	40,063	94,046	94,477	94,886	95,278	95,645
1982	56,275	56,574	56,864	57,146	57,406	104,408	104,877	105,322	105,750	106,151
1983	65,898	66,266	66,623	66,969	67,288	110,010	110,010*	110,987	111,444	111,871
1984	73,534	73,961	74,375	74,776	75,145	115,689	116,218	116,719	117,200	117,650

Table 16-11. - Cost of new construction, reconstruction, and resurfacing,
1965 to 1984, on the Federal-aid primary system East North
Central census division, for five levels of axle-weight limits.

Year	System 3. Federai-aid primary rural					System 4. Federal-aid primary urban				
	Single/tandem axle weight maximun limits, kips					Single/tandem axle weight maximum limits, kips				
	18/32	2c/35	22/38	24/41	26/4	18/32	20/35	22/38	24/41	26/4
Reconstruction costs										
1965	444,470	491,482	541,338	593,804	644,056	115,092	127,372	139,782	152,406	164,090
1966	414,142	451,848	489,740	528,070	563,046	102,574	112,194	122,064	131,762	141,398
1967	380,608	408,636	435,170	460,930	483,730	95,816	104,288	112,538	121,050	129,092
1968	346,522	366,894	387,008	406,928	422,764	89,864	97,486	106,176	114,244	120,982
1969	317,068	334,362	348,916	360,108	365,340	86,304	94,152	101,022	105,460	107,382
1970	292,884	303,944	311,228	312,386	304,514	84,374	89,960	92,984	91,986	89,860
1971	269,256	274,888	272,296	260,968	245,506	80,290	82,574	79,792	77,970	75,982
1972	245,252	241,770	230,600	213,268	201,146	73,700	70,942	69,706	67,418	64,166
1973	218,024	206,884	190,638	178,140	172,352	64,774	63,096	60,796	57,352	53,434
1974	188,204	172,840	159,774	155,328	147,298	58,022	56,192	52,986	49,218	43,368
1975	162,220	148,780	142,674	131,830	120,392	52,240	49,648	45,232	39,530	33,706
1976	138,048	129,302	121,426	109,486	93,666	46,328	43,232	38,046	30,938	27,338
1977	118,328	110,700	99,820	85,018	72,920	40,806	35,460	28,494	23,640	22,102
1978	102,274	92,586	78,972	63,592	58,038	33,690	27,840	20,828	18,550	17,702
1979	85,288	74,168	59,380	49,486	46,478	27,274	20,302	15,994	14,484	13,712
1980°	70,524	57,648	43,652	38,516	35,346	20,962	14,556	11,998	10,786	9,694
1981	56,348	42,130	32,530	28,878	25,806	15,076	9,748	8,638	7,168	5,666
1982	42,568	28,954	23,572	19,560	17,320	9,926	6,476	4,752	3,958	3,300
1983	29,996	19,124	15,782	13,076	10,736	5,086	3,664	2,912	2,010	1,352
1984	19,014	13,054	9,782	7,318	5,866	3,270	1,944	1,230	694	620

and resurfacing

Table 16－11．－－
（thousand dollars）

Sheet 3 of 3		
ral－aid primary urban		
eight maximum limits，kips		
22／38	24／41	26／44
3，077	3，417	3，747
3，448	3，920	4，414
3，950	4，604	5，293
4，586	5，422	6，270
5，223	6，172	7，140

	N～NO… స－ㅇm 			
＋	웅숭 － 6∞ ヘN Nกmm	○○ㅇํㅇN のヨのベ ベポボベも		드엉ㅇㅇ $\infty^{\circ} \infty^{\circ} 0^{\circ} \infty^{\circ} 0^{\circ}$
－				
	さNすが $\infty \infty 000$ ざ べヅが	뚱웅응 N N ㅇoN N 夺笋が式	べさがが ぶさNぺ M＂mimis	
			に 욺 N N子Moin in 	

Cost of new construction，
System 3．Federal－aid primary rural

Year	System 3．Federal－aid primary rural					System 4．Federal－aid primary uriban				
	Single／tandem axle－weight maximum limits，kips					Single／tandem axle weight maximum limits，kips				
	18／32	20／35	22／38	24／41	26／44	18／32	20／35	22／38	24／41	26／44

N N	
$\begin{aligned} & \mathrm{N} \\ & \infty \\ & \end{aligned}$	
∞_{n}^{∞}	

1

nio
oi

8
0
m

－

n

Figure 16-4 and 5. -- Total annual capital outlays, 1965 to 1984 , for aach increased axle velght limit expressed as a percentage of the base axle weight limit (18/32) for the Interstate and rederal-eid primary rural oystems, Censue Division 5, Bast North Central.
forecasted to be on the basis of the existing axle-weight limits--18/32-kips. For the 20-year period, capital outlays at the base axle-weight limits are shown at 100 percent levels on a horizontal line.

The highest percentage increase in construction costs for the period from 1965 to 1985 is for the $26 / 44-k i p$ axleweight limit. Beginning with 1976 on the rural system and 1975 on the urban system, there is a decrease in total construction costs as compared with the prior years. In the comparison of the base axle-weight limit with the $20 / 35$ increased axleweight limit, this decrease occurs in 1977. The maximum increase in construction costs --139 percent of the base costs-occurs in 1973 on the urban system for the 26/44-kip limit. The minimum costs --51 percent of the base costs-- occurs in 1977 on the urban system.

The total Interstate-system costs for the 20-year period are first controlled by the arbitrary scheme of completing the construction of the system by the end of 1972 at a uniform yearly rate. Thereafter, the annual construction cost, which is largely for resurfacing, is controlled by the shape of the survivor curve and the 20-year service life applied to the prior construction vintages. Some construction of additional lanemiles after 1972 is assumed to accommodate the increase in traffic volume on the Interstate system.
B. Primary Systems 3 and 4

The Federal-Aid primary rural system in the East North
Central census division is shown in table 16-8 to have increasing capital outlays from 1965 through 1970 when a decrease starts, continuing to about 1981 before a second increase sets in. Again the cyclical behavior is a result of the increasing and decreasing rates of retirements of old pavements according to the retirement distribution based on the frequency curve and mileage of the original construction of the early vintages. Unlike the plan for the Interstate system, the primary system construction, 1965 to 1972, is a direct result of the retirement of the earlier vintages and the schedule of controlled existing mileage provided for in the computer input. These controlled mileage inputs provide for a general increase in the existing lane-miles on the system from 1965 through 1984. All of the increase in controlled mileage is considered new construction. Reconstruction is largely the replacement of retirements from construction of the Vintages before 1957.

The greater amounts of reconstruction compared with the overall outlays explain a change from the trends noted for the Interstate system. The result is that, for the rural system, the increased axle-weight limits produce their greatest effects on construction cost in the early years. The highest percentage increase over the base condition is 140 percent in 1965 , with the
percentage trend decreasing to a low of 70 percent of the base level in 1980. The decreasing cost begins in 1973 for the 20/35-kip axle-weight level and 1971 for the 26/44-kip level.

On the Federal-aid primary urban system, the trends are similar. Greater cost effects are found at the higher (26/44) axle-weight limits. The percentage is lowest in the early years, increasing to a high of 127 percent of the cost at the base axle-weight limit in 1968 and then progressively decreases to a low of 87 percent in 1977. This difference from the trend on the rural system where the greater cost effects were found in the first years is assumed to be due to the higher design standards of the urban pavements and less mileage of early vintage on this system as compared with the ruxal system.

Table $16-8$ as well as figures 16-4 and 5 show the pronounced shorteaing of average service life of existing pavement starting in 1965 to account for the probable more rapid. reduction in the structural adequacy of the pavements under axle-weight limits increasing to $26 / 44$ kips. But once the system mileage bas been paved with pavement having a 20-year life and designed for the higher axle-wel.ght limits, the capital outlays naturally decrease.
C. Percentage of Capital Outlays Required for New Construction, Reconstruction, and Resurfacing

Figures 16-6, 16-7, 16-8, and 16-9 for the East North Central census division and the four highway systems show the

percentages of the total capital outlays, year by year, divided between new construction, reconstruction, and resurfacing. The percentages for the primary system are somewhat different than for the Interstate system.

Each additional lane-mile of the Interstate system being a "new" mile of road designed to a high standard, there is relatively little reconstruction activity on either the mural or urban system (0 to 41 percent on the rural and 0 to 64 percent on the urban) as compared with the Federal-Aid primary system (5 to 88 percent on the rural and 1 to 81 percent on the urban). New construction activity is heavy throughout the projected period on both the Interstate and Federal-Aid primary systems but at different periods of time.

The 1972 planned completion date of the Interstate system results in the domination of new construction during the first ten years with a period of low activity in 1975, when because of increased projected traffic on the system, new lanes for added traffic capacity would be built, thereby increasing new construction activity. During the midpoint of the projected period, reconstruction contributes the most to the total capital outlays.

On the Federal-Aid primary system, reconstruction of old highways is the emphasis in the early years (1965-1972), particularly on the urkan system. New construction on the rural system is on the rise in the early years and tends to
stabilize between 1962 to 1981, when projected traffic would require new construction for increased traffic capacity. For the urban system, the trend of new construction is a decreasing one between 1965 and 1971, when the projection of urban versus rural travel results in a reversal of this downard movement in new construction outlays that holds throughout the remainder of the projected period.

Resurfacing activities on the Interstate rural and urban and Federal-Aid primary rural and urban systems are generally similar, both requiring small amounts of total capital outlay (0 to 47 percent for the Interstate and 3 to 26 percent for the Federal-Aid primary system). In both cases there is a continuous upward trend in the early years and a leveling out or decreasing movement in the closing years of the projected period.

These general trends are merely more rapid as the axleweight limits are increased. In other words, where increased axle-weight limits result in greater amounts of reconstruction and resurfacing in the early years, because of the decreased service lives of these early vintage mileages, a lesser amount of reconstruction and resurfacing is required in the later years.

The effects of increased axle-weight limits on new construction are negligible, since only the pricing of the construction is increased, not the service lives, as is the case

With mileage already existing (reconstruction and resurfacing activities).
D. 20-Year Total Capital Outlay

Table 16-9 sums up the yearily capital outlays in table 16-8 for the full 20 years for each of the four highway systems and ten census divisions. The left half of the table is the forecasted actual capital outlay and the right hand section of the table is the present worth, at 6 percent per year interest rate, of the yearly capital outlays summed up for the 20 years.

A comparison of the 20-year totals for the higher axle-weight limits with 20-year totals for the base axle-weight limits indicates the additional financing required over the 20-year period, should the higher axle-weight limits be adopted. It should be recognized that in table 16-9 the first four census divisions have no capital outlays for the 18/32-kip limit because their existing base axleweight limit is higher. Likewise, the New England and Middle Atlantic census divisions have no base capital outlays for the 20/35 axle-weight limits because their limit is approximately $22 / 36$ kips.

E. Capital Outlays on a National Basis

Table 16-12 gives on a pationsl basis the 20-year totals of the 10 census divisions from table 16-9 and the outlays at the higher axle-weight limits expressed as a
Table 16-12.-Twenty-Year Total National Capital Outlays and Present Worth Values for Highways
$1065-1984$. By System and Axle-Weight Linits Expressed in Absolute Values and Percentage of Bese

percentage of the base limits. These aational totals of capital outlays for the 20 years from 1965 through 1984 for the increased axle weights range from 100.2 to 104.0 percent of the base capital outlays without axle-weight limit increases. On a dollar basis, these increases would amount to $\$ 46,354,000$ for Interstate uriban $20 / 35 \mathrm{kip}$ limits, and $\$ 738,088,000$ for the Interstate rural, $26 / 44 \mathrm{kip}$ limits. On a yearly basis, these increases in 20-year totals would average from $\$ 2,317,700$ to $\$ 36,904,000$.

Another comparison of the financing required under the four increased axle-weight levels is afforded by reducing the 20-year total capital outlays for each system to outlays per year per lane-mile of highway. The comparisons are given in table 16-13, showing the extreme differences in system cost and the relatively insignificant effects on total outlays obtained by increasing axle-weight limits. The greatest cost is found for the $26 / 44$ axle-weight limit for all systems. By system, the Interstate urban requires the greater outlays. The greatest incremental differences are found between the 22/38 and 24/41 axle-weight limits. The only deviation from this trend is on the Federal-aid primary rural system, where the increase in axle-weight limit from $24 / 41$ to $26 / 44$ produces the highest incremental cost, \$22.

Table 16-13.--Dollars cost of construction per lane-mile per year for the 20-year period 1965-1984 for each axle-weight 11mit--National averages by highway systex

Based on lane miles in service December 31, 1984
(in dollars)

System	Single/tander axle weight limits, Kips				
	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$
System 1. Interstate Rural	4,523	4,567	4,609	4,661	4,705
System 2. Interstate Urban	19,418	19,465	19,516	19,573	19,620
Subtotal	7,411	7,455	7,499	7,552	7,597
System 3. Federal-Ald Primary Rural	3,654	3,672	3,693	3,711	3,733
System 4. Federal-A1d Primary Urban	8,754	8,785	8,817	8,866	8,910
Subtotal	4,309	4,330	4,352	4,374	4,398
Grand Total	5,243	5,270	5,298	5,330	5,361

10. PROBABLE CONSIRUCIION PROGRAMS AND REPLACEMENT OF BRIDGES

Table 16-8 illustrates a year-to-year variation in the financial requirements for different axle-weight levels, including the base level. It is not likely that any State highway department would want to provide such unequal year-toyear construction money immediately as higher axle-weight limits are permitted, with decreasing requirements in later years. As a practical expedient, the highway departments would carry on a program of gradual upgrading through reconstruction and resurfacing, as money became available. Further, it is probable that some additional maintenance expenses would be required to improve temporarily the quality of service of many miles of pavement pending the year when they could be reconstructed or resurfaced to adequate structural quality, as provided for in this analysis.

It is probable that the construction outlays indicated in tables 16-8 and 16-9 may be somewhat deficient in provision for the replacement of structures of older vintages or for strengthening their structural quality for service under conditions of increased axle-weight limit. However, provision is made in the base construction cost per mile for construction of completely new bridges on all mileage of new construction and reconstruction.

What and how many bridges would need to be replaced or strengthened for safe movement of traffic operating under bigher axle-weight limits cannot be determined without a more detailed inventory of the bridges on the system. It is reasonable to expect that, under the increased axle-weight limits up to 22/38-kip limits, no bridges on the Interstate system and few on the primary system would require replacement or strengthening. At the $24 / 41-k i p$ and $26 / 44-k i p$ levels, a large number of bridges would need to be replaced or strengthened.

Certain bridges of inadequate structural strength for the higher axle-weight limits could be expected to be posted against higher loads until they could be brought up to standard. This practice would be comparable to present general practice of the States in protecting bridges of unsatisfactory structural strength against prossibly damaging loads. Such posting would not greatly interfere with truck transport, however, because the heavier trucks are more apt to travel on roads having bridges of adequate design. This condition could be expected at all limits probable except for the $24 / 41$ and $26 / 44-k i p$ limits.
11. AASHO REPORT ON THE PAVEMENT EVALUATION SURVEY--1962

In November 1962, the Committee on Highway Transport of the American Association of State Highway Officials submitted
its "Report on the Pavement Evaluation Survey." I This report was intended to show the effects of increased axle-weight limits in decreasing the remainjng life of existing pavements and to show the added dollars required to resurface the pavements as needed. The study was made by 39 States in accordance with the Manual of Instructions issued by the Committee on Highway Transport in August 1962.

The AASHO study was restricted to resurfacing, the need for which was predicated on the PSI (present serviceability index) at the time of the study and as forecasted for ten years, with and without increases in axle-weight limits. Each State made the study for its State bighways on a lane-mile basis. The axle-weight limits used were as follows: present base limits, $20 / 35 \mathrm{kips}, 22 / 38 \mathrm{kips}$, and $24 / 42 \mathrm{kips}$.

The concepts and factors in the AASHO study vary so widely from those in this 1966 study of the desirable dimensions and weights of motor vehicles that any comparison of the final dollar requirements would probable lead to wrong conclusions. Some of these differences are set forth as follows:

1) American Association of State Highway Officials. Pavement Evaluation Survey, by Committee on Highway Transport.
R. R. Bartelsmyer, Chairman. 917 National Press Building, Washington, D. C. 20004. November 1962.

AASHO STUDY	BPR 1966 STUDY
1. For each axle-weight limit, all route sections below a PSI of 2.0 were resurfaced in 1963.	1. The first year (1965) was assumed to be a normal. construction program. No catch up of deficiencies was provided for.
2. Highway costs include resurfacing only.	2. Highway costs include new construction, reconstruction, and resurfacing.
3. Study made State by State for 39 States on State highways grouped by basic axle-weight limits.	3. Study made on Federal-Aid systems grouped by census division.
4. Enforcement tolerance not considered.	4. Enforcement tolerance included in determining current axle-weight limits.
5. Resurfacing needs based upon the decrease in the PSI.	5. Reconstruction and resurfacing needs based upon retirement of prior construction as calculated from survivor curves.

12. TWENTY-YEAR CAPITAL OUTLAYS COMPARED to REDUCTIONS IN TRUCK OPERATING COSTS

The truck operating costs presented in table 15-4B permit comparisons of 20 -year truck operating costs with the 20 -year highway capital outlays given in table 16-12. The first of two types of comparisons is shown in the left section of table 16-14 for each of four highway systems and the four systems combined. This section of the table shows the reduction in 20-year accumulated total truck operating cost compared with the 20-year accumulated incremental capital outlay for highway construction resulting from an increase in axle-weight limits. The figures are based on increases from the $18 / 32-k i p$ single/tandem axle-weight limits to each of four higher axleweight limits. The ratio of the truck operating-cost reduction to the increment of capital-outlay increase was shown for each of the increases in axle-weight limit.

A second comparison is shown in the right section of table 16-14. Here the reduction in truck operating costs and the increase in capital outlays for each of the 20 years, caused by an increase in axle-weight limits, have been discounted at a 6 -percent interest rate to present-worth values and the results totaled. The ratio of the truck operating-cost reduction to the capital-outlay increase was then calculated for each change in the axle-weight limit from the base 18/32-kip single/tandem axle-weight limit.
Table 16-14Ratio of the 20-year total truck operating cost reductions at higher axleweight limits - National total by highway system.

Highway System and Item	Single/Tandem Axle Weight Limits in Kips				Single/Tandem Axle Weight Limits in Kips			
	$\begin{gathered} 18 / 32 \\ t 0 \\ 20 / 35 \end{gathered}$	$\begin{gathered} 18 / 32 \\ \text { to } \\ 22 / 38 \end{gathered}$	$18 / 32$ to $24 / 41$	$\left\lvert\, \begin{aligned} & 18 / 32 \\ & \text { to } \\ & 26 / 44\end{aligned}\right.$	$18 / 32$ to $20 / 35$	$\begin{gathered} 18 / 32 \\ \text { to } \\ 22 / 38 \end{gathered}$	$\begin{aligned} & 18 / 32 \\ & \text { to } \\ & 24 / 42 \end{aligned}$	$\begin{aligned} & 18 / 32 \\ & \text { to } \\ & 26 / 44 \end{aligned}$
	Direct Dollar Basis				'Basis of Present Worth at 6\% Interest			
Syster 1. Interstate rural Total incremental truck operating cost reductions Total incremental highway capital outlay increases Ratio of truck cost reductions to capital outlay increases System 2. Interstate urban Total incremental truck operatig cost reductions Total incremental highway capital outlay increases Ratio of truck cost reductions to capital outlay increases	2,208	4,913	7,778	10,244	1,168	2,596	4,103	5,404
	179	3406	557	738	236 8.6	277	456	615
	123	142	24.0	13.9	8.6	94	9.0	8.8
	1,168	2,427	4,234	5,734	- 617	1,281	2,232	3,020
	46	96	151	197	42	87	$山 7$	201
	254	25.3	28.0	29.1	$山 7$	147	152	15.0
System 3. Primary rural								
Total incremental truck operating cost reductions	5,494	11,599	17,911	23,236	3,111	6,569	10,148	13,171
Total incremental highway capital outlay increases	190	400	584	805	264	575	895	1,230
Ratio of truck cost reductions to capital outlay increases	28.9	29.0	30.7	28.9	128	214	12.3	10.7
System 4. Primary urban								
Total incremental truck oper ating cost reductions	3,099	6,376	10,180	13,045	1,693	3,475	5,556	7,125
Total incremental highway capital outlay increases	47	95	168	234	64	130	232	323
Ratio of truck cost reductions to capital outlay increases	559	671	60.6	55.7	26.5	26.7	23.9	22.1
All systems combined								
Total incremental truck operating cost reductions	11,969	25,315	40,103	52,259	6,588	23,921	22,039	28,720
Fotal incremental highway capital outlay increases		937	1,460	2,974	506	1,069	1,730	2,369
Ratio of truck cost reductions to capital outlay increases	25.9	27.0	27.5	26.5	130	130	12.7	12.1

The ratios shown in table 16-14 are not directly comparable to the benefit-cost ratios in Chapters 10, Il, and 12. In these chapters a mile of highway construction was the basis for determining the benefit-cost ratio. Here in chapter 16 we are dealing with yearly capital outlays and with both operating costs and capital outlays related to highway systems on a nationwide basis.

In table 16-14, the capital outlays late in the analysis period are charged out ageinst the motor vehicle cost reductions without regard to service life. In other words, the analysis would not include construction outlays from which benefits will be derived after the study period. Also, at the end of the 20-year period, the systems would be in a condition of high quality under the design standards required for each axleweight limit. From then on, the rate of capital outlays to highway-system renewal will be much less than for the 20 -year study period.

Note that, in table 16-14, the ratios are high, varying from 12.3 to 65.9 for the direct capital outlays (top section) and from 8.6 to 26.7 on the present-worth basis. These ratios are in harmony with those for Method I-M in Chapter 10, and they serve as an additional check on the reliability of findings.

This analysis includes only axle-weight increase.
Should the increase in vehicle length to Step 1 (Chapter II) also be included, the resulting ratios would be at least 50 percent greater.

13. COMPARISON OF REPORTED CAPITAL OUTLAYS FOR 1964, BY HIGHWAY SYSTEM, WITH REQUIREMENIS UNDER HIGHER AXLE-WEIGHI LIMITS

A comparison of what highway construction would cost under increased axle-weight limits with what the construction cost under the existing limits for the year 1964 is presented in this section. The approach is simply to compare, for each of six highway systems and 10 census divisions, the total dollars of actual outlay for construction in 1964 with the cost of constructing the same number of miles at the per-mile cost computed by analysis Method 1-M for economy of axle-weight limits.
A. Assembly of Basic Information

Table 16-15 gives the miles of rigid and flexible pavement built in 1964 and the estimated incremental cost for this same mileage if it had been designed for each of the four levels of axle-weight limits above the base limits for each of the six highway systems and 10 census divisions. These incremental costs are the result of Method l-M on economy of axle weight preseated in Chapter 10. The costs include the pavement structure, shoulders, bridges, and earthwork. Table 16-15 also gives the total capital outlay for highway construction in 1964 under the then existing axle-weight limits.

Table 16-15 does not present a true relationship of the miles built and total capital cost in 1964, because the
Table 16-1. -- Additional 1964 highway construction cost by axle-weight limits and the percentage
ctual capital outlays had higher axle-weight limits been provided for y
Dollar amounts in thousands

System	Miles built		Total added construction cost 3 computed from the base siugle/ tander axle-weight limit 3 to increased linits				Actual cost of 1964	Total syst	tem capital ulated cost axle-weight	cost at increa limits		Total system capital cost at increased limita as a percentage of 1964 actual cost			
	nevement	1ewnin	20/35	$22 / 38$	$24 / 41$	26/44	limits	20/35	22/38	24/41	26/44	20/35	22/38	24/41	26/44
J. Interstate: Rural	1,00	918	7.410	1.5,525	25,581	34.	1,814,426	1,306,149	1,606,731	1,840,007	1,849,224	100.6	101.0	101.4	101.9
2. Interstate. Urban	185	116	1,131	2, 5	4.199	5.950	1,381.787	859.722	1,007,383	1,385,986	1,387,737	100.1	100.3	100.3	100.4
Subtotal	1.272	i. 034	Ci. 541	12.8059	29.780	40,748	3,196.213	2.165.871	2,614,114	3,225,993	3,236,961	100.4	100.7	100.9	101.3
3. Federal-aid Primary. Rural	1.093	10,3.96	11.939	27.076	43.341	59.077	1,251.451	345:495	1.053,240	1,294,993	1,310,528	101.4	102.6	103.5	104.7
4. Federal-aid Primary: Urkan	330	164	2.125	4.	7.7	10,614	733.59	500.808	1	41,313	06	100.4	100.8	101.1	101.4
Subtotal	1.431	1.1.,060	14.064	31,764	51.062	69,691	1,905.043	1.346.303	1,624,051	2,036,306	2,054,734	101.1	102.0	102.6	103.5
5. Federal-aid secondary. Rure]	243	18.564	4.360	10.096	16.222	22.441	717.142	409,708	637,610	733,364	739,583	100.9	101.6	102.3	103.1
6. Federal-gid gecondary. Urlan	31	462	197	2,0	3.690	5.303	75,59	52,26	70.124	79,290	80,894	101.5	103.0	104.9	107.1
Subtotal	324	17.0\%6	ヶ,15?	1ว 1n34	14,9?1	27.744	792.137	541,910	70\%.734	812,654	820,477	101.0	101.7	102.5	103.5
Trital Aill Syatams	6.0?	31.200	2?.762	62.00?	300.753	133.18 ?	5,973.439	4.054.144	4,945,899	6,074.953	6.112,172	100.7	101.3	101.7	102.3

[^16]reported capital cost includes projects for which no paving was constructed. This discrepancy is on the conservative side, because the total miles assumed to have been paved in 1964 at the higher axle weights produce a higher total incremental cost above the actual cost than would the correct mileage of paving.

Table 16 -15 also gives the computed total system capital cost for each of the four higher axle-weight limits. In the last four columns, these final costs are compared on a percentage basis with the reported 1964 capital costs.
B. Comparative 1964 Capital

Costs for the Six Systems
On a census division basis, the ranges of percentage increase in construction costs in 1964 over actual costs for increased axle-weight limits are as follows:

System	Single/tandem axle weight limits, kips				
	$18 / 32$	$20 / 35$	$22 / 38$	$24 / 41$	$26 / 44$
1. IR	$-\infty$	0.3 to 0.9	0.3 to 1.8	0.3 to 2.7	0.6 to 3.5
2. IU	$-\infty$	0.0 to 0.3	0.0 to 0.6	0.1 to 0.9	0.1 to 1.1
3. FAPR	$-\infty$	0.3 to 3.4	0.6 to 6.9	0.4 to 10.4	0.9 to 13.7
4. FAPU	$-\infty$	0.2 to 0.5	0.4 to 1.2	0.3 to 2.4	0.6 to 3.6
5. FASR	$-\infty$	0.2 to 2.4	0.3 to 4.8	0.1 to 7.4	0.3 to 10.0
6. FASU	$-\infty$	0.5 to 3.1	1.1 to 6.3	1.2 to 9.5	2.1 to 13.5

The above tabulation indicates that on a percentage basis the least affect of increased axle-weight limits is found on Systems 1 and 2, Interstate miral and urban. The percentage increases in cost are the greatest on Systems 5 and 6, Federal.Aid secondary rural and urban, with the urban having the greater percentage increase. The reason for this trend can be assumed to be the much higher standards of design for the Interstate system compared to the secondary system, thus creating greater need for improvement on the secondary system when higher axleweight limits are applied. Lane for lane, in the axle-weight economy study, all six systems have the same basic design, varying only by the E 18-kip axle applications. The higher 1964 construction costs on the Interstate system provide for a much higher dollar amount for the percentage base than do the lower 1964 costs on the secondary system.

A review of table 16-15 indicates no general trend on a census-division basis. It is noted that the greater costs, on a percentage basis, are found in those census divisions (5 through 10) having the $18 / 32-k i p$ limits. This is disproved to some extent for the East South Central census division, where the general trend indicates the least effects of increased axle-weight limits on rural. systems. As would be expected, the greater the axle-weight limit increase, the greater the cost differential.

On a national basis the comparative construction costs in table $16-15$ are summorized as follows to show the dollars of added cost in 1964 if the construction had been designed for the higher axle-weight limits:

Increase in Kational Construction Cost for 1964 Compared with Actual Costs for Higher Axle-Weight Limits

In 1,000 Dollars

Highway System	Single/tandem axle-welght limits				

The total dollars for each highway system in this tabulation are relatively small sums, considering the total mileage involved. Should all the 1964 construction have been designed for the $22 / 38-k i p$ axle-weight limits--the approximate maximum limits now legal in any state--the increased construction outlay would have been only $\$ 62,006,000$, of which $\$ 27,076,000$ would have been for the Federal-Aid primary rural system.

CHAPIER 17

GENERRAL SUMMARY ARD EVALUATION

At the risk of some repetition, a few final coments are presented in this chapter to add to the reader's under. standing of the subject and to aid him in evaluating the results of the research reported upon.

With only minor exceptions, this report on the desirable maximum dimensions and weights of motor vehicles fulfills the initial research plan for it. The several studies included in it not only developed suitable methods of research, but achieved both qualitative and quantitative results for each of the variable factors related to the desirable dimen= sions and weights. This statement does not mean, however, that there are not many factors still needing study.

1. GENIERAL SUMMARY

The analysis of the State laws and the truck weight studies indicate two significant factors needing improvement. The first is lack of uniformity among the States in maximum limits on dimension and weight, and its unfavorable consequences to the costs of highway transportation. The second.
factor is the high percentage of vehicles with overweight axles and excessive gross weights. Overloading combined with liberal enforcement tolerances, higher legal limits for certain commodities, and unprecedented issuing of special permits for trips made by overdimension and overweight vehicles actually have nearly the same effects on the pavement as would be expected from an increase in legal limits without tolerance and without legal exceptions for hauling of certain local comodities. Without doubt, unexpectedly high economy can be realized by increasing axle-weight limits, gross weight limits, and vehicle lemgth limits. The indicated economy is so high that its existence should not be questioned. The additional annual outlay for highway capital construction occasioned by immediate increase in motor vehicle weight limits would be small-perhaps one percent--in the expenditures for highway construction.

The fear on the part of many individuals and the public at large that increased vehicle weight limits would quickly destroy existing pavements is not in agreement with past experience. Axle-weight limits have been raised over the last 45 years from about 8,000 to 23,500 pounds per single axle and, during this time, the number of heavy axle applications and their average weights applied to the pavements have increased. Yet over the 45 years that these increases have been experienced, improvement and reconstruction of highways for this reason alone has been a gradual yearly factor. The highways have been

Pinanced from year to year without pinpointing any particular part of the financing that has resulted from increasing axle and gross weight limits.

In the event that the State laws were altered to provide for higher axle-weight and gross weight limits, it is not likely that an increase in the rate of deterioration of highway pavements would be specifically noticed. The analysis, however, shows that any expected increase in the rate of reconstructing pavements that might result from increased weight limits would be many times offset by a decrease in the cost of highway trucking operations.

It may be taken for granted that the highway trucking industry will continue to grow, both to meet the demands of increasing population and to provide improved quality of service. The rate of growth might be retarded or prevented by changes in technology or through the development of improved modes of transport that are more competitive with highway truck transportation. It was not the purpose of this report to investigate such matters, but they are mentioned here only to emphasize the potential and the fact that there is no immediate foreseeable end to the need for providing increased facilities for highway trucking operations, with or without changes in axle-weight limits.

The research findings in this report point to a high economy for the 3-unit combination with a length limit of 65 or

70 feet and a gross weight limit of about 110,000 pounds. A gross weight-limit increase does not necessarily mean an increase in highway costs, provided that a control is placed upon axle weight and axle spacing together with the overall length of the vehicle.

With approximately 14 States legalizing the 65-100t long combination in 1965, 1966, and 1967, it may be concluded that other States will follow in 1968. So ideal a vehicle from the point of view of transport operation is the $65-$ foot long combination that its eventual spread to the eastern and southern States may be taken for granted, especially since such vehicles could be permitted without increasing highway costs and perhaps with no net detriment to traffic as a whole. The move to the eastern seaboard has begun with recent (1967) legislation in Delaware and Maryland.

2. EVALUATION

Again it is emphasized that unless overall highway transport costs per payload ton-mile are reduced or the service values of highway transport are greatly increased, there is no solid besis for increasing the legal maximum dimension and weight limits. A sizeable economy to be obtained by increased vehicle length and weight limits would still remain, even after discounting heavily the reductions in truck operating costs to be achieved with the increased Ilmits arrived at in this
research and increasing somewhat the estimated hJghway costs that would result. In other words, although the policy followed herein was conservative (low benefits and high costs), even should the trucking benefits be cut in half and the incremental highway costs doubled, worthwhile economy would still be found. This statement is made because of some uncertainty as to just what would be the trucking practice and fleet composition under increased limits of dimension and weight. These factors were determined by sound logic and careful procedures, but other analysts may come up with different results. A more thorough examination of the effects on bridges may be in order, particularly for the longer combinations with variation in axle arrangements.

Because in many instances, the AASHO pavement design formulas produced pavement design depths materially less than are now being used by the States, some question may be raised as to whether the analysis by Method 1-M reaches the correct answer. But here again the margin of economy is so great that the question is only academic.

The analyses in Chapter 16 leading to an estimate of the highway financing required for the period from 1965 to 1985, with and without increases in axle-weight limits, may justiy be questioned. Although the total dollar requirement may depart from what other analysts would estimate, the differentials between the requirements with and without increases in
axle-weight limits are sound. The yearly distribution of reconstruction and resurfacing over the 20 mear period is just one of many probable results, depending upon the procedures adopted to estimate the yearly needs for reconstruction or resurfacing.

Continued studies of the subject of the desirable dimensions and weights of vehicles will no doubt lead to improvements in methodology and greater proof of certain conclusions, but this report offers a substantial and reliable basis upon which to consider highway-department and other public policies and State and Federal laws affecting the dimensions and weights of motor vehicles.

1. MOTOR VEHICLE CONFERENCE COMIITTEEE State Restrictions on the Size and Weights of Motor Vehicles, p. 3. 366 Madison Avenue, New York City. July 1, 1920.
2. MOTOR VEHICLE CONFERENCE COMMTTIEE. State Restrictions on Motor Vehicle Operation, pp. 2-2. 366 Madison Avenue, New York City.
3. JOINT COMAITTEE OF RAILROAD AND HIGHWAY USERS. Regulation and Taxation of Highway Transportation. 380 Seventh Avenue, New York City. January 30, 1933.
4. BUREAU OF PUBLIC ROADS, U.S. Department of Agriculture. Uniform Motor Vehicle Code, Act V: Uniform Act Regulating Traffic on Highways, pp. 36-37. Washington, D.C. 1934.
5. WESTERN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Proceedings, 17th Annual Convention, pp. 99-101. August 1938.
6. FEDERAL COORDINATOR OF U.S. TRANSPORTATION. Public Aids to Transportation. U.S. Government Printing Office, Washington, D.C.

Vol. I. General Comparative Analysis and Public Aids to Scheduled Air Transportation. 1940.

Vol. II. Aids to Railroads and Related Subjects. 1938.
Vol. III. Public Aids to Transportation by Water. 1939.
Vol. IV. Public Aids to Motor Vehicle Transportation. 1940.
7. INTERSTATE COMNERCE COMMSSION, Bureau of Motor Carriers. Sizes and Weights of Motor Vehicles in Relation to Highway Safety, Report No. 3 in Ex Parte No. NC-15. Washington, D.C. 1940. See Reports 1, 2, and 4 or more.
8. INTERSTATE COMMERCE COMNISSION, Bureau of Motor Carriers. Sizes and Weights of Motor Vehicles in Relation to Highway Safety. Washington, D.C. June 1940.
9. O. K. NORMANN. Progress in Study of Motor Vehicle Passing Practices. Public Roads, A Journal of Highway Research, Vol. 20, No. 12, pp. 221-227. Washington, D.C. February 1940.

$$
A-1
$$

10. REX M. WHITTON, Chairman. Report of Committee on Permits for Oversize and Overweight Vehicles. Proceedings, Highway Research Board, Vol. 21, pp. 305-310. 1941.
11. INTERSTATE COMMERCE COMMISSION. Federal Regulation of the Sizes and Weights of Motor Vehicles. House Document No. 354, 77 th Congress, let Session. Washington, D.C. 1941.
12. A. A. JAKKULA. An Analysis of Highway Loads Based on the Special Loadometer Study of 1942. Agricultural and Mechanical College of Texas. January 1944.
13. THOMAS H. MCDONALD. Recommended Policy on Sizes and Weights to Permit Free Movement of Motor Vehicles between the States. Address before the Federal-State Conference on War Restriction. Washington, D.C. May 5, 1942.
14. THOMAS B. DIMMICK. Heavy Axle Load Frequency. Proceedings, Highway Research Board, Vol. 25, pp. 354-363. 1945.
15. HIGHWAY RESEARCH BOARD. Special Papers on the Pumping Action of Concrete Pavements. Research Report No. l-D. 1945.
16. G. S. PAXSON. Factors Influencing the Stress in Concrete Pavement from Applied Loads. Proceedings, Highway Research Board, Vol. 25, pp. 59-71. 1945.
17. FRED B. LOUTZENHISER. Effect of the AASHO COde on Truck Design. Commercial Car Journal. July 1946.
18. HIGHWAY RESEARCH BOARD. Special Papers on the Pumping Action of Concrete Pavements. Research Report No. l-D, Supplement. 1946.
19. U.S. BUREAU OF PUBLIC ROADS. Traffic Trends on Rural Roads. Public Roads, A Journal of Highway Research, Vol. 24, No. 10 and Vol. 25, Nos. 3, 7, and 12. (October 1946, March 1948, March 1949, and February 1950). Washington, D.C.
20. PUBLIC ROADS ADMINISTRATION, Federal Works Agency. Preliminary Report on the Economics of Motor Vehicle Size and Weight. Washington, D.C. October 1946.
21. NATIONAL CONFERENCE ON STREET AND HIGHWAY SAFETY. Model Traffic Ordinance. U.S. Government Printing Office. Washington, D.C. 1946.
22. K. B. WOODS, F. H. GREEN, and H. S. SWEET. Pavement Pumping Correlated with Traffic Loads. Proceedings, Highway Research Board, Vol. 27, pp. 209-231. Washington, D.C. 1947.
23. HIGHWAY RESEARCH BOARD. Maintenance Method for Preventing and Correcting the Pumping Action of Concrete Pavement Slab. Current Road Problems, No. 4-R, Revised. September 1947.
24. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Who Shall Use the Highway and How. Washington, D.C. Probably 1947.
25. HAROLD ALLEN. Final Report of Committee on Maintenance of Concrete Pavements as Related to the Pumping Action of Slabs. Proceedings, Highway Research Board, Vol. 28, pp. 281-309. 1948.
26. HIGIWAY RESEARCH BOARD. A Survey of Pumping in Illinois. Research Report No. l-D, 1948 Supplement.
27. NATIONAL CONFERENCE ON STREET AND HIGHWAY SAFETY. Uniform Vehicle Code, Act V: Uniform Act Regulating Traffic on Highways. U.S. Government Printing Office, Washington, D.C. 1948.
28. H. S. FAIRBANK. Sizes and Weights of Motor Vehicles Require Economic Study. Civil Engineering, p. 40. June 1949.
29. THE FOUR WHEEL DRIVE AUTO CO. Truck and Trailer Size and Weight Restrictions. Clintonville, Wisconsin. 1949.
30. SAMUEL C. HADDEN. The Problem of Highway Vehicle Size and Weight Distribution. Presented at the Midwestern Regional Conference of the Council of State Governments at Davenport, Iowa, July 26, 1949.
31. N. E. LANT. Overloads Injure Roads and Are Menace to Sefety. Louisiana Hi ghways, Vol. 3, No. 12, pp. 3-6. December 1949.
32. JOHN T. LYNCH and THOMAS B. DIMMICK. Axle Load and Gross Load Trends. Proceedings, Highway Research Board, Vol. 29, pp. 301-303. 1949.
33. THOMAS H. MCDONALD. Highweys in the Public Service. Presented at the American Roadbuilders Association Conference and 46th Annual Meeting, Washington, D.C., February 1949.
34. P. E. MASHETER and H. E. MARSHALL. Foundations for Pavements. Presented at the American Roadbuilders Association Conference and 46th Annual Meeting, Washington, D.C., February 7, 1949.
35. OHIO STATE HIGHWAY DEPARIMENT. Effect of Increased Truck Weight Limitations on Highway Pavements Proposed in Ohio State Senate Bill No. 163.
36. PORTLAND CEMENI ASSOCIATION. A Charted Summary of Concrete Road Specifications Used by State Highway Departments. Caicago, Illinois. 1949.
37. TRUCK-TRAIIER MANUFACIURING ASSOCIATION, INC. State Size and Weight Limits for Trucks and Truck-Irailers. Washington, D. C. 1949.
38. K. B. WOODS. Effect of Heary Loads on Pavement Design. Presented at the Fighway Division of ASCE meeting, Oklahoma C1ty, Oklahoma, April 21, 1949.
39. HIGHWAY RESEARCH BOARD. The Truck Weight Problem in Highway Transportation. Bulletin Ho. 26. Washington, D. C. July 1950.
40. CARL SAAL. Time and Casoline Consumption in Motor Truck Operation as Affected by the Weight and Power of Vehicles and the Rise and Fall in Highways. Research Report No. 9-A, Highway Research Board. Washington, D. C. February 1950.
41. BURRAU OF PUBLIC ROADS, U. S. Department of Commerce. A Factual Discussion of Motortruck Operation, Regulation, and Taxation. Washington, D. C. 1951.
42. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Policy Concerning Maximum Dimensions, Weights, and Speeds of Motor Vehicles to Be Operated over the Highways of the Uaited Statea. Adopted April 1, 1946. Published by the Association (sixth printing), February 1953. Also June 1953.
43. C. C. SAAL and F. W. PEIRING. Braking Performance of Motor Vehicles. Bureau of Public Roads, U. S. Department of Commerce. Washington, D. C. 1954.
44. F. WILIIAM PEIRIMG. Improvement in Stopping Ability of Trucks in Use on the Highway. SAE Iransactions, Vol. 63, 1955.
45. ROBERT F. BAKER and EMMEYT H. KARRER. A Study of the Relationship of Pavement Cost to Vehicle Weight. Bagineering Experiment Station Bulletin No. 161. Ohio State University. 1956.
46. ROBERT F. BAKER. Fundamental Factors in Incremental Cost Studies of Pavements. Proceedings, Highway Research Boerd, Vol. 36, pp. 33-43. 1957.
47. R. CHImRUZZI. Earthwork Incremental Cost Study. Proceedings, Eleventh Annual Ohio Eighway Engineering Conference. Columbus, Ohio. 1957.
48. JOHN L. LINDLEY. An Incremental Cost Study of Highway Structures in the State of Ohio. Proceedings, Highway Research Board, Vol. 36, pp. 44-50. 1957.
49. F. W. PETRING. Stopping Ability of Motor Vehicles Selected from the General Traffic. Public Roads, A Journal of Highway Research, Vol. 29, No. 8, June 1957; also SAE Transactions, VoL. 65, 1957.
50. C. C. SAAL. Relation between Gross Weights of Motor Trucks and Their Horsepower. Public Roads, A Journal of Highway Research, Vol. 29, No. 10, October 1957.
51. ROBERT F. BAKER and R. CHIERUZZI; R. W. BLET ZACKER. Highway Costs and Their Relationship to Vehicle Size. Engineering Experiment Station Bulletin No. 168. Ohio State University. 1958.
52. MALCOLM F. KENT. The Freight's the Weight. Proceedings, Highway Research Board, Vol. 37, pp. 21-44. 1958.
53. ROBERT F. BAKER. Fundamental Problems in Relating Vehicle Size to Highway Costs. Bulletia No. 222 (Highway Investment and Financing), Highway Research Board. Washington, D. C. 1959.
54. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Transport. Pavement Evaluation Survey. November 1962.
55. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Transport. A Policy on Maximum Dimensions and Weights of Motor Vehicles to Be Operated over the Highways of the United States: Part II -- Supporting Data. November 1962.
56. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Design. AASHO Interim Guide for the Design of Rigid Pavement Structures. February 1962.
57. IRDUSTRY ADVISORY COMMITTEE TO THE AASHO COMMITTEE ON HIGHWAI TRANSPORT. Recommendations for Coumercial Vehicle Sizes and Weights. (A booklet and IIlm produced in cooperation with the Motor Truck Committee, Automobile Manufacturers Association). 1962.
58. HENSON K. STEPRENSON, JAMES S. NOEL, and A. DWAIN MAYFIRLD. Truck Weight Trends Related to Highway Structures. Texas Iransportation Institute. College Station, Texas. July 1962.
59. HOY STEVENS. Line-Haul Trucking Costs in Relation to Vehicle Gross Weights. Bulletin 301, Highway Research Board, 1962.
60. AMERICAN ASSOCLATION OF STATE BIGHWAY OFFICIALS, Committee on Eighway Transport. Policy on Maximum Dimensions and Weights of Motor Vehicies to be Operated over the Highways of the Uaited States. 1963.
61. MALCOLM F. KENT and HOY STEVENS. Dimensions and Weights of Highway Trailer Combinations and Trucks -o 1959. Highway Research Record No. 26 (Motor Vehicle Use Characteristics). Highway Research Board. 1963.
62. BUREAU OF PUBLIC ROADS, U. S. DEPARTMENT OF COMMERCE. Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems. House Document Mo. 354, 88th Congress, 2d Session. Washington, D. C. 1964.
63. IDAHO DEPARTMENI OF HIGHWAYS, Research Division. A Study of Highway Operations with Truck Trailer Double and Triple Units. September 1964.
64. I. M. CLAUSON. Policy on Maximum Dimensions and Weights of Motor Vehicles to be Operated over the Eighways of the United States. American Highways, July 1965. American Association of State Highway Officials. Washington, D. C.
65. SOCIETY OF AUTOMOTIVE ENGINEERS HANDBOOK. Turning Ab1lity and Off Tracking -- SAE 1965, pp. 913-918. 485 Lexington Avenue, New York City 10017. 1965.
66. HOY STEVENS. Line-Haul Trucking Costs and Weighing Vehicles in Motion. Highway Research Record No. 127, Highway Research Board. Washington, D. C. 1966.
67. HOY STEVERS, S. C. TIGNOR, and J. F. LOJACONO. Offtracking Calculations for Irailer Combinations. Public Roads, A Journal of Highway Research, Vol. 34, No. 4 (October 1966), pp. 89-100.
68. S. C. TIGNOR. Braking Performance of Motor Vehicles. Public Roads, A Journal of Highway Research, Vol. 34, No. 4 (October 1966), pp. 69-81.
69. TRUCK TRAILERS MANUFACIURERS ASSOCIAIION. A Panel Discussion on Doubles. 1413 K Street, N. W., Washington, D. C. March 1966.
70. J. M. WRIGHT and S. C. TIGHOR. Relations of Gross Weights and Horsepowers of Commercial Vehicles. Public Roads, A Journal of Highwey Research, Vol. 34, No. 4 (October 1966), pp. 84-88.
71. NATIOHAL HIGHMAY USERS CONFERENCE. Motor Vehicle Law Series, Service No. 1: State Restrictions on Sizes and Weights. Washington, D. C. Current loose leaf.

FHWA

R\&D

[^0]: *Vol. 1 is published under the same title as Report FHWA-RD-73-69.

[^1]: 4. Annual operating cost of vehicles
 a. For 1965 AbI • •
[^2]: EUARC--Equivalent Uniform Annual Highway Cost.
 EUAMVOC--Equivalent Uniform Annual Motor Vehicle Operating Cost.
 Uniform costs calculated at 6 percent per year interest rate for 20 years 1965 through 1984.
 Basis of Step 0 is the 1962 legal limits of length and axle weight.

[^3]: 1 Includes cost of paverent nad shoulders, bridge atructures, and carthwork and drainage.
 2/ Calculated at 6 percent intercat rate per annum and 20 years, 1965 through 1984.
 3/ Includes annuml cost of maintenance on surface and base, shouldcrs, and structures.
 4/ Number iacludes only trucks from class 2D upward through two trailer combinations; step 0 through 2-trailer, 5 axle and other oteps through 2 -trailer, 9 axle.
 $5 /$ First rigure is maximum lenoth in feet of a single unit truck/uccond, tractor simitrailer combination/third, tractive truck and full combination/fourth, trector, semitraller and full trailer combination.

[^4]: $1 /$ Includes cost of pavement and shoulders, bridge structures, and earthwork and drainage.
 2/ Calculated at 6 percent interest rate per annum and 20 years, 1965 through 1984.
 203
 $3 /$ Includes annunl cost of maintenance on surface and base, shouldcrs, and structures.
 4) Number includes only trucks from clase 2D upward through two trailcr combinations; step 0 through 2-tizailer, 5 axie and other steps through 2-trailer, 9 axle.
 $5 /$ Pirst figure is maximum length in fect of a aingle unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitralier and full trailer combination.

[^5]: conbination fourth. Leotor, emitreiler and fuls treller oowbinition.
 2) Wighey conatruetion cost decrese, therefore, tho reulte orv highly favoreble.

[^6]: oombintion/fourth, trotor, ealtralior foll trellor comblintion.
 9/ Wighey conatruction cost decrense, therefore, the reaulte are Mlghly favorsble.

[^7]: oobination/fourth, tracor, eemikriler ond full traller oombination.
 3) hldovey conetruotion coet decrease, therefore, the realto oxe nlebly revoreble.

[^8]: coabination/fourth, treotor, eaitreller ad full treiler oombination.
 if highmy oonotruotion conl aecrease, thorofore, the resulte ero alghly fevorable

[^9]: trailer combination/fourth, tractor, semitrailer, and full trailer combination.

[^10]: braller combination/fourth, tractor, semitrailer, and full traller combination.

[^11]:

[^12]:

[^13]: 1) Dased on sumnary report of A. T. Kearney and Co.
[^14]: 1／The projections from 1964 to 1972 are based on atimated 1972 sybtea lans－ailes obtained from the Interstats Report，Branch．Projections to years after 1972 have bean beed on estimed rebicle－milee of travel on the oysten from the Planaing Servicea Branch．

 2／Typa F vas phaed out as retired and raplaced by higher type f．exible pavement． The original 1964 lane－alles vere carriod romerd to spold adjusting the computer progrem．

[^15]: SYSTEM 4. FEDERAL-AIO PRIMARY UREAN

[^16]: Based upon add tional hichwy conctruction cost incurred with eqch projected incrase in axle-weignt limits as applied to 1964 constructed centerline pavement, shoulders, earthwor, drainage, and bridges.

 Bese axle weight limitr are as follows: (1) $22 / 38$ for NF, and MA; (2) $20 / 35$ for San and SAS; (3) all other census divisions are $18 / 32$. The added cost is that increase from the cost ot the hase limits to the cost at the hider axle weirat limits

