

R. Winfrey and others

September 1968 Final Report

This document is available to the public through the National Technical Information Service, Springfield, Virginia 22151

FEDERAL HIGHWAY ADMINISTRATION Offices of Research & Development Washington, D.C. 20590

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the Office of Research of the Federal Highway Administration, which is responsible for the facts and the accuracy of the data presented herein. The contents do not necessarily reflect the official views or policy of the Department of Transportation.

This report does not constitute a standard, specification, or regulation.

22	Dept Of Transportat	ion
JA-	Chinese	Technical Report Documentation Pag
FHWA-RD-73-70	2. Government Accession No. 974	3. Recipient's Catalag Na.
4. Title and Subtitle ECONOMICS OF THE MAXIMUM LI		5. Report Date September 1968
DIMENSIONS AND WEIGHTS, VOL		6. Perfarming Organization Code
7. Author(s) Robley Winfrey and others		8. Perfarming Orgonization Repart Na.
9. Performing Orgonization Name ond Addre		10. Work Unit Na. (TRAIS)
Environmental Design and Co Offices of Research and Dev Federal Highway Administrat	velopment	11. Cantroct ar Grant Na.
		13. Type of Report ond Periad Cavered
12. Sponsoring Agency Name and Address Federal Highway Administrat Department of Transportatio		Final Report
Washington, D.C. 20590	211	14. Sponsaring Agency Cade
		f a two-volume report. The s report No. FHWA-RD-73-69.
16. Abstroct Determining the desirable n	naximum limits of dimension	ns and weights of motor
16. Abstroct Determining the desirable m vehicles is approached on a far as the factors of econo and vehicle length are anal of the rural and urban syst highway systems. The analy in 46 States; operating cos experimental data on pavement	the basis of highway cost a omy are concerned. Axle we lyzed on the basis of six h tems within the Interstate, ysis is based on data on tr st data obtained from truck ents and bridges obtained f	and the operating cost so eight, gross vehicle weight, highway systems consisting , primary and secondary ruck weight studies conducted
16. Abstroct Determining the desirable m vehicles is approached on a far as the factors of econo and vehicle length are anal of the rural and urban syst highway systems. The analy in 46 States; operating cos experimental data on pavement	the basis of highway cost a omy are concerned. Axle we lyzed on the basis of six h tems within the Interstate, ysis is based on data on tr st data obtained from truck ents and bridges obtained f studies also contributed t	and the operating cost so eight, gross vehicle weight, highway systems consisting , primary and secondary ruck weight studies conducted & fleet operators; and From the comprehensive AASHO to the findings of the report.
 16. Abstroct Determining the desirable model vehicles is approached on the far as the factors of econoriand vehicle length are anallof the rural and urban systic highway systems. The analysin 46 States; operating cost experimental data on pavemeroad test. Numerous other The desirable limits of dir 1. Vehicle height of 13.5 2. Vehicle width of 102 in 3. Maximum lengths on all trailers, 55 feet for other combination of version of the second second second second second test. 	the basis of highway cost a omy are concerned. Axle we lyzed on the basis of six h tems within the Interstate, ysis is based on data on tr st data obtained from truck ents and bridges obtained f studies also contributed t mensions and weights were f feet hetes highways of 40 feet for si tractors and semitrailers, ehicles.	and the operating cost so eight, gross vehicle weight, highway systems consisting primary and secondary ruck weight studies conducted a fleet operators; and from the comprehensive AASHO to the findings of the report. found to be the following: ingle-unit trucks and and 65 feet for any
 16. Abstroct Determining the desirable model vehicles is approached on the far as the factors of econoriand vehicle length are anallof the rural and urban systic highway systems. The analysin 46 States; operating cost experimental data on pavemeroad test. Numerous other The desirable limits of dir 1. Vehicle height of 13.5 2. Vehicle width of 102 if 3. Maximum lengths on all trailers, 55 feet for to other combination of vehicles. 4. Axle weight limits of axles respectively. 	the basis of highway cost a omy are concerned. Axle we lyzed on the basis of six h tems within the Interstate, ysis is based on data on tr st data obtained from truck ents and bridges obtained f studies also contributed t mensions and weights were f feet hches highways of 40 feet for si tractors and semitrailers,	and the operating cost so eight, gross vehicle weight, highway systems consisting primary and secondary ruck weight studies conducted a fleet operators; and from the comprehensive AASHO to the findings of the report. found to be the following: ingle-unit trucks and and 65 feet for any or, single and tandem
 16. Abstroct Determining the desirable model vehicles is approached on the far as the factors of econoriand vehicle length are anallof the rural and urban systic highway systems. The analysin 46 States; operating cost experimental data on pavemeroad test. Numerous other The desirable limits of dir 1. Vehicle height of 13.5 2. Vehicle width of 102 if 3. Maximum lengths on all trailers, 55 feet for to other combination of vehicles. 4. Axle weight limits of axles respectively. 	the basis of highway cost a omy are concerned. Axle we lyzed on the basis of six h tems within the Interstate, ysis is based on data on tr st data obtained from truck ents and bridges obtained f studies also contributed to mensions and weights were f feet nches highways of 40 feet for si tractors and semitrailers, ehicles. 22,000 and 38,000 pounds for at least 120,000 pounds, or th control of axle weight a s; load limits; ¹⁸ . Distribution S nomy of truck truck dimensions; through t limits of vehicle nomic vehicle	and the operating cost so eight, gross vehicle weight, highway systems consisting , primary and secondary buck weight studies conducted of leet operators; and from the comprehensive AASHO to the findings of the report. found to be the following: ingle-unit trucks and and 65 feet for any or single and tandem r better yet, no gross and spacing. fourtement No restrictions. This is available to the public the National Technical ion Service, Springfield,

U.S. DEPARTMENT OF TRANSPORTATION FEDERAL HIGHWAY ADMINISTRATION WASHINGTON, D.C. 20590

May 1974

This report should provide useful perspectives to transportation agencies and legislative bodies responsible for recommending changes related to motor vehicle sizes and weights regulations and policies.

This report was originally produced in 1968 but was not released for publication until a thorough review of the findings and methodology was completed. This review, titled "Summary and Assessment of Sizes and Weights Report" (Report No. FHWA-RD-73-67) is a companion volume which is required reading for anyone who seriously considers using the findings reported in the subject report. The assessment extends the analysis, examines assumptions made by Winfrey and others, and points out particular limitations of the "Sizes and Weights" report.

This report demonstrates a substantial economic benefit to be obtained by rebuilding the highway system to higher weight limits and advocates an "immediate" implementation of policies to move in that direction. In addition, vehicles hauling heavier loads would need to be designed with adequate propulsion, braking, steering and suspension systems to operate safely and efficiently with mixed traffic on the upgraded highway system. However, any substantial increase in legal loads without a massive program to update, monitor, and maintain the highway system would create disastrous effects in many States. Many pavements would need to be overlaid and bridges reinforced or posted for limiting maximum loads. These consequences of an immediate increase in legal vehicle size and weight restrictions without an investment to upgrade the capacity of existing pavements and bridges were not analyzed.

Important related questions not addressed in this report:

- 1. Is it in the national interest to encourage further shift of cargo from other transportation modes to highways, even when more economical?
- 2. How are the conclusions affected by increased fuel costs and limited petroleum supplies?

Both of these questions have gained considerable importance in the years following the original preparation of the report and should be considered in evaluation of specific size and weight policies or proposed legislation.

Charles F. Scheffy

Director, Office of Research

PREFACE

This 1968 research report is the direct result of a project started in September 1963 as an outgrowth of the report completed by the Bureau of Public Roads in 1963, revised and resubmitted to the Department of Commerce in January 1964, and finally published in August 1964 as House Document 354, 88th Congress, 2d Session. The 1963 report on the desirable dimensions and weights of motor vehicles came into being as the fulfillment of Section 108(k) of the Federal-Aid Highway Act of 1956.

For many years prior to the beginning of the study of the limits of dimensions and weights of motor vehicles, as a result of the 1956 Highway Act, the Bureau of Public Roads and the American Association of State Highway Officials were active on the subject. The list of references in Appendix A of Volume 2 gives the more important papers appearing since 1920.

This 1968 report does not specifically review the literature on the subject. Further, the report does not discuss the state of the art, the good and bad aspects of

0-2

prior work, opinions, and policies. Rather, the research project which resulted in this 1968 report was designed to accomplish the specific results herein reported.

Two quotations from House Document 354 (1964) will help to place this 1968 report in proper perspective. In the Letter of Transmittal the Secretary of Commerce says,

> The findings of the report do not necessarily represent the ultimate maximum limitations that would be desirable, or any improved methods of governing motor vehicle dimensions and weights. Such improved methods are under study as part of the comprehensive highway research program of the Department. A research plan to realize more modern approaches to size and weight administration is suggested in the report.

On page 2, under Summary and Recommendations, the report states,

The resources of technical research available for this report have been considerable; nevertheless, the field is so complex and the variables so many that each conclusion is subject to important qualifications. Furthermore, the interrelationship between each conclusion requires further exploration to provide overall solutions for a highway system. The conclusions available from present research cannot justify greater standards than those proposed in this report; a more comprehensive program of research and investigation must proceed to enable future standards to be related specifically to technical criteria, and applicable to additional components of the Federal-aid highway systems.

One important factor missing in all prior reports (except the preliminary analysis in House Document 354) is any analyses to show the transportation economy of the limits of vehicle dimensions and weights. Prior studies stressed the design of pavements and structures and traffic safety. Thus, this report is the first to explore thoroughly the economy of the limits of vehicle dimensions and weights, considering both highway cost and motor vehicle transport cost.

About 1945 the Highway Research Board appointed a Committee on Economics of Motor Vehicle Size and Weight. This committee is still in existence, though less active than it was up to about 1962. The long tenure of the committee indicates that there was early and continued interest in the subject and that the objectives have not been achieved. The Highway Research Board committee was the motivating force which produced Highway Research Board Bulletin 9A on time and fuel consumption of trucks on grades and Bulletin 301 on the overall operating cost of line-haul trucks.

This present 1968 report has as its main objectives the development of the economic and technical guides essential to policy and legislative considerations and the procedural techniques for future research application. There is no attempt (at least not a deliberate one) to recommend what public policy should be or to recommend changes in the Federal and State laws. For this reason the AASHO policy on maximum dimensions and weights of motor vehicles as published October 21, 1963, is not discussed.

0-4

House Document 354 (1964) and this 1968 report furnish recently assembled facts for the guidance of policy makers on the probable consequences of increasing limits of vehicle dimensions and weights.

ACKNOWLEDGMENTS AND STAFF

This report on the research project to determine the desirable dimensions and weights of motor vehicles is the result of individual work by some 50 or so persons, including some 30 professionals working as a task force. To all these individuals, whether or not they are named here, full appreciation for their contribution is expressed.

The project as a whole was directed by Robley Winfrey, who is also responsible for the design and the writing of the overall report of the project and this condensed report. Certain sections of these reports, however, were extracted from separate staff reports.

Much of this report is supported by separate staff reports and research on the individual studies into which the main project was divided, studies that were assigned to specialized members of the task force. These staff reports and their authors are listed at the end of these acknowledgments.

Special credit is given to the late Hoy Stevens of the Traffic Systems Division, Office of Research and Development, for his overall counsel on many aspects of the research. Professor Robert G. Hennes of the University of Washington, Special Consultant, offered many suggestions and helpful discussions.

0-6

A special word of appreciation is also due Professor William G. Adkins of the Texas Transportation Institute, Texas A&M University, and Professor Hennes for their comprehensive review of the manuscript. The report benefited from their helpful suggestions.

Elizabeth Samson is especially mentioned for her painstaking efforts in editing manuscript, arranging for the production of all materials, and for supervising the work of the assembly of the report. Her splendid performance freed the project leader to concentrate on analysis of the results and writing of manuscript. Miss Samson also reviewed the State laws and brought up to date the summary of maximum limits given in Chapter 3.

Malcolm F. Kent made important contributions in connection with adopting the procedure of calculating equivalent 18,000pound axle weights for the computer program, the analysis of hauling 2,000 tons of payload by different classes of vehicles, and in summarizing the A. T. Kearney report and reducing its results to pavement costs.

Charles Dale contributed to the 2,000-ton study following Mr. Kent's retirement. Duke Niebur computed the truck operating costs to accompany the Kearney-Kent study, as well as refining the early calculations by Mr. Kent and Mr. Dale. Mr. Niebur also did the work on the marginal limits of axle weight, gross vehicle weight, and average daily traffic. He also developed the relationships between empty vehicle weight, horsepower, and

0-7

practical maximum gross vehicle weight.

James R. Link wrote the computer program for the pavement design, motor vehicle operating costs, and the early phases of the computer program for the financial cost of reconstruction and resurfacing. Ezio C. Cerrelli wrote the computer program for calculating the E 18-kip axles for each type of vehicle and completed and perfected the program for the financial studies.

Maude M. Sparagna, William F. Warlick, Lillian Washington, Carol B. French, Barbara A. Price, and Edna Wolf performed hundreds of thousands of general statistical calculations, coding entries, and transfers of data involved in the economy and financial studies.

Typing of the report was done largely by Agnes McHugh, Carol B. French, Marian Higgins, and Linda Cameron, though many other typists, stenographers, and secretaries in the Economics and Requirements Division and elsewhere contributed greatly to this major task.

Special acknowledgment is due the Office of Planning for cooperation and assistance in making available the truck weight study data. Appreciation is expressed specifically to Alexander French, Ted Dickerson, and Alma Clark. The Office of Engineering and Operations and the Office of Administration furnished many construction statistics by highway systems that were important factors in the study. The project leader gratefully acknowledges the support and teamwork of the professional and support members of his Engineering Economy Group, which shouldered the responsibility for Chapters 4, 7, 8, and 10 through 17. The study leaders are especially thanked for their cooperation and fine production in the accomplishment of the objectives of the study as a whole.

STAFF REPORTS AND AUTHORS OF INDIVIDUAL STUDIES OF THE OVERALL PROJECT

Study No.	Title of Staff Report	Authors
l	A Forecast of Highway Traffic by Vehicle Type, 1962-1990	Edmond L. Kanwit Walter H. Bottiny Alma F. Eckartt Beatrice T. Goley
2	Analysis of the Truck Weight Fre- quencies and ADT Composition by Road Systems (Results not written up as a separate staff report, but incorporated directly into the overall project report.)	Principal investigators were R. W. L. Doering Phebe D. Howell
3	Urban Street System Use by Heavy Trucks	This study was not undertaken.
4	A Study of the Effect on Truck Transport Practice of Liberal- izing Weight and Dimensional Limitations of Vehicles	A. T. Kearney & Company under research contract
5A	Braking Performance of Motor Vehicles as Found Operating on Public Highways	Samuel C. Tignor F. William Petring
5B	Offtracking of Vehicles on Turns	Hoy Stevens
5C	Relationship between Gross Weights and Horsepowers of Commercial Vehicles operating on Public Highways	John M. Wright
5D	Analysis of Accident Experience Frequency and Cost of Accidents	Charles M. Billingsley
6	Pavement Design	H. D. Cashell Stuart Williams G. W. Ring, III T. J. Pasko
7	Highway Geometric Design	A. A. Carter J. W. Hess

Study N	o. Title of Staff Report	Authors
8	Design of Structures	E. G. Wiles R. F. Varney C. F. Galambos
8 a	Inventory of Bridges	Charles W. Dale Earle Newman
9	Highway and Structure Construction Costs (Results not written up as a separate staff report, but incorporated directly in the overall project report.)	Principal investigator was John G. Trapnell
10	Line-Haul Trucking Costs in Relation to Vehicle Gross Weights	Hoy Stevens
11	Analysis of the Economy of Motor Vehicle Size and Weight	Robley Winfrey R. W. L. Doering Phebe D. Howell
12	Financing	T. R. Todd James V. Boos
13	Effects of Increased Size and Weight Limitations on Other Modes of Intercity Freight Transport	E. M. Nolan
14	Regulation of Transport Carriers and Tariffs	Josephine Ayre
15	Public Attitudes Toward Increased Size and Weight of Vehicles	This study was not undertaken.

TABLE OF CONTENTS

Preface	Page 0-2
Acknowledgments and staff	0 - 6
Staff reports and authors of individual studies of the overall report	0-10
Table of contents	0-12
List of tables	0-28
List of figures	0-40
Definitions	0-45
Summary	0-50
Volume 1* CHAPTER 1	
BACKGROUND AND THE RESEARCH PLAN	1-1
1. Background	1-1
2. General objectives and content of this report	1-3
CHAPTER 2	
PARTIAL SUMMARY OF THE JANUARY 1964 REPORT "MAXIMUM DESIRABLE DIMENSIONS AND WEIGHTS OF VEHICLES OPERATED ON THE FEDERAL-AID SYSTEMS	2-1
CHAPTER 3	
REVIEW OF 1963-67 LEGAL LIMITS ON VEHICLE DIMENSIONS AND WEIGHTS AND FACTORS TO RECEIVE RESEARCH ATTENTION	3-1
1. State legislation, 1964 through 1967	
 Scate legislation, 1904 through 1907	

*Vol. 1 is published under the same title as Report FHWA-RD-73-69.

Table of contents (continued	Table	of	contents	(continued
------------------------------	-------	----	----------	------------

			Page
3.	ind	mary of State maximum limits and icated scope of research on each tor of dimension and weight	3-12
	A.	Width of vehicles	3-12
	в.	Height of vehicles	3-13
	C.	Length of vehicles	3-16
	D.	Number of towed vehicles	3-24
4.	Leg	al maximun weight limits	3-28
	A.	Enforcement tolerance	3-28
	в.	Single-axle weight limits	3-28
	C.	Tandem-axle weight limits	3-30
	D.	Maximum gross vehicle weight limits	3-32
5.	Con	clusions	3-34
CHA	PTER	4	
		LE MAXIMUM LIMITS ON EHICLE DIMENSIONS	4-1
1.	Wid	th of vehicle	4-2
	A.	Transport factors	4-2
	B.	Effect of vehicle width on traffic	4-4
	c.	Conclusion on vehicle width	4-5
2.	Hei	ght of vehicle	4-6
	A.	Highway overhead clearance	4-6
	B.	Transport requirements	4-7
	C.	Traffic considerations related to vehicle height	4-9
	D.	Summary and conclusions on vehicle height	4-10

3.	Len	gth of vehicle	Page 4-11
	Α.	Factors of vehicle length to consider	4-12
	B.	Length of buses	4-13
	c.	Requirements of length and attitude of transport industry	4-14
	D.	Length of trailers as manufactures	4-16
	E.	Summary of length requirements of the transport industry	4-19
	F.	Vehicle turning movement and offtracking	4-20
		(1) Turning track widths summarized	4-22
		(2) Comparison of four different trailer combinations	4-22
		(3) Discussion and conclusions on vehicle length as related to offtracking	4-26
	G.	Effect of length of vehicle on the traffic stream	4-27
	H.	Summary and conclusions on vehicle length	4-31
CHA	PTER	5	
नगर	ECTS	OF GROSS VEHICLE WEIGHT ON	
		EHICLE PERFORMANCE IN TRAFFIC	5-1
1.		ld surveys of vehicle weight, sepower, and braking performance	5-2
2.	Veh	icle gross weight and net horsepower	5 - 3
	Α.	Results of survey of weight-power ratio	5 - 3
	Β.	Significance of weight-horsepower ratios with respect to desirable maximum weight of vehicles	5-16

0-14

3.	Bra	king performance of commercial vehicles	•	•	•	•	Page 5-20
	A.	Braking performance by vehicle class .	•	•	٠	•	5 - 22
	в.	Capacity groups and weight groups	•	•	٠	•	5 - 25
	с.	Braking performance compared to the uniform vehicle code	•	•	•	•	5 - 25
	D.	Braking performance in relation to axle weight	•	•	•	•	5 - 28
	E.	Braking performance without brakes on the steering axle	•	•	•	•	5 - 30
4.	Sum of	mary and significance the braking factors	•	•	•	•	5-32
CHAI	PTER	6					
HIG	HWAY	SAFETY	•	•	•	•	6-1
1.		lysis of accident experience quency and cost of accidents	•	•	•	•	6-1
	Α.	Accident frequencies and cost related to highway systems	•	•	•	•	6-2
	в.	Accident occurrences of loaded and empty trucks	•	•	•	•	6-4
	с.	Accident frequencies and costs related to gross vehicle weights	•	•	•	•	6-6
	D.	Accident frequencies and costs related to type of accident	•	•	•	•	6 - 6
	E.	Intersectional and nonintersectional accident locations	•	•	•	•	6-8
	F.	Summary and significance of findings .	•	•	•	•	6-11

		Page
2.	Analysis of the probable relationship of increases in vehicle dimensions and	
	weights to accident experience	6-13
	A. Vehicle dimensions and highway safety	6-14
	B. Two- and three- unit combinations	6-15
	C. Weight of the vehicle	6-16
	D. General considerations vehicle and driver	6-17
	E. Effect of highway design on the safety of line-haul freight vehicles	6 - 17
	F. Effects of line-haul vehicles upon the general traffic	6-18
	G. Accident experience with double-trailer combinations on toll turnpikes	6-19
	H. Test operations in Idaho with double and triple-cargo units	6-20
3.	Summary and evaluation of the factor of highway safety	6-22
CHA	PTER 7	
ANA	LYSIS OF THE 1962 TRUCK WEIGHT DATA	7-1
1.	Plan of the truck weight studies	7-1
2.	Axle-weight distribution	7-2
3.	Gross vehicle-weight distribution	7-11
4.	Other data from the 1962 truck weight study	7-18
5.	Trends in truck weights, number of axles, and ADT	7 - 21
	A. Summary of some factors from truck weight studies. 1937 to 1963	7-27

	B.	Significant trends	٠	•	٠	٠	Page 7-27
CHA	PTEF	8 8					
HIG	HWAY	COSTS	•	٠	•	٠	8-1
1.		t elements of the highway affected by anges in vehicle dimensions and weights.	•	•	•	•	8-1
2.	con	lysis of the relationship of highway struction cost to changes in vehicle mensions and weights					8-3
		Right-of-way and clearing					8-3
	в.	Earthwork and small drainage facilities		•	•	•	8-4
	c.	Pavement structure and shoulders	•	•	•	•	8-5
	D.	Bridges, tunnels, and grade- separation structures	•	•	•	•	8-6
3.	Uni	t prices of highway cost elements	•	•	•	•	8-7
	Α.	Unit cost of unclassified excavation .	•	•	•	•	8-7
	B.	Unit prices for the pavement structure	•	•	٠	•	8-10
	С.	Unit price of structural steel	•	•	•	•	8-11
4.	Con	struction cost of structures	•	•	•	•	8 -15
	Α.	Inventory and cost of bridges per highway mile	•	•	•	•	8-15
	B.	Percentage of bridges by span length .	•	•	•	•	8-20
5.		t per highway mile, total struction and reconstruction	•	•	•	•	8-20
6.	Cos	t of maintaining the highway	•	•	•	•	8 - 26
	Α.	Classification of maintenance costs .	•	•	•	•	8-26
	в.	Road maintenance cost resulting from increased vehicle weight	•	•	•	•	8-32

	c.	Bridge maintenance cost resulting	age
	••		-34
	D.	Overall average cost of highway maintenance	-35
CHA	PTER	9	
		JL TRUCKING COSTS IN RELATION CLE GROSS WEIGHTS • • • • • • • • • • • • • • • • • • •	-1
1.	Sou	rces of line-haul operating costs 9	-2
2.	The	operating costs of line-haul vehicles 9	-2
	A.	Meaning of loaded gross weight	-3
	B.	Operating cost per payload ton-mile 9	-8
		 (1) Effect of increasing the gross vehicle weight and reducing the number of trips 9 	-8
		(2) Payload ton-mile cost curves 9	-11
3•		lication of the line-haul trucking cost the analysis of economy of vehicle weights 9	-11
		Volume 2	
CHA	PTER	10	
ECO	NOMY	OF MAXIMUM AXLE-WEIGHT LIMITS 1	0-1
1.	Con	ceptual approach	0-1
2.	Bas	ic procedures and methods	0-2
	Α.	Levels of axle-weight limits to be considered	0-2
	в.	Highway systems and census divisions	0-4
	c.	Vehicle classes	0-5

3.	Metl		Page 10 - 8
4.		hod lCensus-division-to- sus-division transference of	
			10-11
	A.	Basic concept	10-12
	в.	Axle-weight distribution by State maximum weight limits	10-12
	C.	Distribution of ADT by vehicle class, by census division, and	
		by highway system	10-14
	D.	Distribution of axle weights	10-16
	E.	distribution of axle weights	10-16
	F.	distribution and number of	10-23
5.	Dest	ign of pavement structures	10 - 25
	A.	General provisions	10 - 26
	в.	The second	10-26
	C.	Rigid pavement design	10 - 26
	D.	Base design for rigid pavements	10-30
	E.	Flexible pavement design	10-30
	F.	Subbase for flexible pavements	10 -3 2
	G.	····	10 -3 2
	H.	Calculation of the pavement structure depths and construction cost	10 - 33

6		age
6.		10 - 34
	A. Pavement geometric design	10-34
	B. Unit price and construction cost of the pavement structure	10 -36
	C. Construction cost of bridges related to increments of maximum axle weight	10 -36
	D. Cost of construction of earthwork and small drainage structures).0 - 50
7.	Cost of highway maintenance as related to maximum axle-weight limits	10-51
	A. Pavement maintenance cost attributable to increase in axle-weight limits	10-51
	B. Bridge maintenance cost attributable to increases in maximum axle weights	10 -5 2
8.		10 - 54
9.	Calculation of the benefit-cost ratio for the economy of axle-weight limits	10 - 58
	A. Average daily traffic	10-58
	B. Computed depths of pavement structure and construction cost	10 -5 8
	C. Calculation of the equivalent uniform annual highway cost	10 <i>-</i> 62
	D. Calculation of the equivalent uniform annual motor vehicle operating cost	10 -6 2
	E. The benefit-cost ratios	LO -6 4
10.		10 -6 5

11	Madal	and 1 M account of and a mainthe limit					Page
11.		nod 1-Meconomy of axle-weight limit n using a minimum depth of pavement	•	•	•	•	10 -6 6
12.		nod 2extrapolation by practical as weight relationships	•	•	•	•	10-80
	Α.	Payload weight vs. practical maximum gross vehicle weight	•	•	•	•	10-80
	в.	E 18-kip axles vs. practical maximum gross vehicle weight	•	•	•	•	10-82
	C.	Results of Method 2	•	•	•	•	10-85
13.	29-1	nod 3repeat of Method 2, but omitting percent increase in payload per vehicle 2 to 1990			•	•	10-85
14.	Com	parison of the economy of axle-weight its as determined by analysis Methods					
	1, 1	1-M, 2, and 3	•	•	٠	•	10-86
	Α.	Brief summary of table 10-35	•	•	٠	•	10-87
	B.	Results of Method 1-M analysis	•	•	•	•	10- 94
	c.	The transition period	•	•	•	•	10-95
	D.	Effect of the 29-percent increase in payload per vehicle, 1962 to 1990	•	•	•	•	10-97
	E.	Rigid and flexible pavement comparisons		•	•	•	10-105
	F.	Comparison of Methods 1 and 2 of determining the economy of axle-					
		weight limits	•	•	•	٠	10-106
15.	con	nterinteracting effects on pavement struction cost of increasing the ber of E 18-kip axle applications	•	•	•	•	10-112
CHA	PTER	11					
ECO	NOMY	OF VEHICLE LENGTH METHOD 4	•				11-1

1. Vehicle length and its significance ll-l

2.	Limi	itations of the truck weight studies	Page 11-3
3.	Proc	cedure used in Method 4	· ·
J .		nomy of vehicle length	11-4
	Α.	Selection of length limits	11-4
	в.	Assignment of payload total weight to vehicle classes	11 - 6
	с.	Assignment of average payload per vehicle within a fleet and determining the ADT of each vehicle class	11-6
	D.	Determining number of E 18-kip axle applications	11-11
4.	Rest	ults of the analysis by Method 4	11-13
5.	Disc	cussion of results of Method 4	11-23
CHAI	PTER	12	
		OF SIMULTANEOUS INCREASES IN THE OF AXLE WEIGHT AND OF VEHICLE LENGTH	12-1
1.	Plar	n of Method 6	12 -1
2.	Proc	cedure used in Method 6	12 -2
3.	Rest	ults of Method 6	12-3
4.	Disc	cussion of the results of Method 6	12-10
CHAI	PTER	13	
DIM	ENSIC	AND ANALYSIS OF THE ECONOMY OF VEHICLE ONS AND WEIGHTS BASED ON STUDIES MADE BY EARNEY AND COMPANY UNDER RESEARCH CONTRACT	13 - 1
1.	Plar	n of study	13-1
2.	Cori	relation of vehicle-mile estimates	13 - 6
3.	Vehi	icle-mile estimates	13-8

4.	Second study	Page 13-10
	A. Developing possible liberalization universal application	13 - 10
	B. Developing possible liberalization separate highway systems	13-13
5.	Application of the Kearney findings	13 - 15
6.	Economy of higher axle-weight levels	13-17
7.	Increased vehicle width	13-19
8.	Summery	13-22
CHAI	PTER 14	
2,0	NSPORTATION FACTORS IN HAULING OO TONS OF PAYLOAD ONE MILE AND MARGINAL LIMITS OF VEHICLE WEIGHTS	14-1
		TAAT
1.	Empty weight of vehicles related to axle-weight and gross weight limits	14-1
	A. Tare weight of tractors	14-2
	B. Weights of empty trailers	14-2
	C. Empty weights of various vehicle classes at a range of axle-weight limits	14-2
	D. Practical maximum gross vehicle weights	14-6
2.	Equivalent 18-kip axle applications and vehicle operating costs resulting from	
	hauling 2,000 tons of payload in different classes of vehicles and fleets	14-9
	A. Concept and basic provisions	14-9
	B. Scheme 1: Hauling 2,000 tons of freight by one vehicle class	14-14
	C. Schemes 2, 3, and 4; Hauling 2,000 tons of freight in fleets made up of	
	several classes of vehicles	14-16

Page

(1) Distribution of the 2,000 tons among the various vehicle classes	14-17
(2) Comparison of number of vehicles and E 18-kip axle applications	14-24
(3) Comparison of vehicle operating costs	14-24
3. Marginal axle-weight limits based on economy	11.00
of transportating 2,000 tons of payload	14-26
A. Concepts and procedures	14-26
B. Results of the analysis	14-30
4. Marginal gross weight limits based on	
economy of transporting 2,000 tons of payload	14-36
A. Concepts and procedures	14-37
B. Results of the analysis for	
marginal gross vehicle weight	14-38
C. Concluding analysis with respect to marginal gross vehicle weight	14-40
5. Marginal ADT for economy of	
increased axle-weight limits	14-41
A. Scope of study	14-41
B. Concept and approach to solution	14-42
C. Results	14-43
CHAPTER 15	
DISCUSSION, SUMMARY, AND CONCLUSIONS WITH RESPECT TO DIMENSION AND WEIGHT LIMITS	15 - 1
1. Lack of uniformity of State laws	15 -1
2. Tolerances and enforcement	15 - 2
3. Basic factors supporting the research	15-2

.

		Page
4.	The gross vehicle weight limits	15-3
5.	Implication of higher axle-weight limits, gross weight limits, and vehicle lengths	15-4
6.	Higher limits for access- controlled highways	15 - 5
7.	Economy of axle weight	15 - 6
8.	Sensitivity of factors	15 - 6
9.	Marginal limits of weight and ADT	15 - 7
10.	Minimum pavement depth and marginal limits	15-8
11.	Ramp width for 102-inch vehicle width limit	15 - 9
12.	Truck ADT	15-10
13.	Probable actual use of higher limits	15 - 11
14.	Feasibility of double- and triple-cargo combinations	15-12
15.	Effect on passenger cars	15-12
16.	The beneficiaries of higher limits on vehicle dimension and weight	15-13
17.	Shortening of service life of pavement, resulting from	
	increased axle-weight limits	15-14
18.	National summary of Method 1-M	15-16
19.	Annual reductions in truck operating costs by highway systems	15-16
CHAI	PTER 16	
	HWAY FINANCING REQUIREMENTS UNDER	16-1

1. Basic concept and approach 16-1

_		Page
2.	Assembly of historical data on pavement construction to 1964	16-4
3.	Selection of survivor curves and service lives	16-4
4.	Projection to 1984 of the yearly	
	lane-miles constructed and surviving under the base-axle-weight limits	16 - 14
	A. Lane-miles in service yearly 1965 through 1984	16-14
	B. Control lane-miles by surface types	16- 34
5.	Total construction expenditures yearly from 1965 through 1984	16 - 20
	A. Base construction cost	16-20
	B. Construction cost of new highways	16 - 20
	C. Reconstruction cost	16 - 21
6.	Split of total yearly construction into new construction, reconstruction, and	
	resurfacing	16-23
7.	Selection of service lives and survivor curves for increased axle-weight limits	16 - 25
	curves for increased date-weight finites	10-27
8.	Computer calculations and print-outs	16-27
9.	Discussion of results 20-year financial requirements	16-34
	A. Interstate systems 1 and 2	16-34
	B. Primary systems 3 and 4	16-43
	C. Percentage of capital outlays required for new construction, reconstruction,	
	and resurfacing	16-44
	D. 20-year total capital outlay	16 -5 1
	E. Capital outlays on a National basis	16-51

.

	Page
10. Probable construction programs and replacement of bridges	16-55
11. AASHO report on the pavement evaluation survey1962	16-56
12. Twenty-year capital outlays compared to reductions in truck operating costs	16-59
13. Comparison of reported capital outlays for 1964, by highway system, with requirements	
under higher axle-weight limits	16-62
A. Assembly of basic information	16 -6 2
B. Comparative 1964 capital costs for the six systems	16-64
CHAPTER 17	
GENERAL SUMMARY AND EVALUATION	17-1
1. General summary	17 - 1
2. Evaluation	17-4
APPENDIX	
References to the literature	A-1

LIST OF TABLES

CHAPTER 3	rage
3-2. Summary of State legislation changing the limits on motor vehicle dimensions and weights, January 1964 through December 1967	3-3
3-3 Comparative length limits for two-cargo combinations in States permitting the operation of three-unit combinations more than 55 feet long	3 - 26
CHAPTER 4	
4-1. Trends in trailer lengths	4-17
4-2. Turning track widths for various classes and lengths of vehicle combinations on city street intersections and interchange ramp loops	4-23
4-3. Comparison of turning track widths on 90-degree turns required by various practical trailer combinations	4-25
4-4. Comparison of turning track widths on 270-degree turns required by various practical trailer combinations	4-25
CHAPTER 5	
5-3. Range and average of the gross weight, net horsepower, and weight-power ratio for all commercial vehicles weighed in the 1963 test	5-4
5-4. Comparison of percentile values from cumulative frequency distributions of weight-power ratios for all commercial vehicles weighed in 1955 and 1963	5 - 8
5-5. Percentile values from cumulative frequency distributions of weight-power ratios for loaded vehicles in 1963	5-12
5-6. Comparison of average weight-power ratios for all vehicles, by vehicle class, for 1949, 1950, 1955, and 1963	5-15

List of tables (continued)

	Page
5-7. Percentage of all vehicles weighed in the 1955 and 1963 tests that could not meet indicated performance levels	5 - 17
5-8. Percentage of loaded vehicles weighed in 1963	
that could not meet the indicated performance levels	5 - 18
5-9. Net horsepower required for a weight-power ratio of 400 pounds per horsepower for different classes of vehicles and a range of maximum	5 10
axle-weight limits	5 - 19
5-12. Turnpike or toll-highway exceptions to normal limits on vehicle length and gross weight	5 - 21
5-13. Average vehicle weight and brake system application and braking distance for vehicles	
tested in 1955 and 1963	5-26
5-14. 1963 brake test results compared to the Uniform Vehicle Code	5-27
5-16. Braking performance with and without brakes on the steering axle	5 - 33
CHAPTER 6	
6-1. Accident-involvement and direct-cost rates for	
passenger cars, single-unit trucks, and vehicle combinations, classified by rural and urban accident location and highway system	6 - 3
6-2. Accident-involvement and direct-cost rates	
for loaded and empty trucks, by vehicle class and rural and urban location	6-5
6-3. Number of trucks involved in traffic accidents, direct costs of truck accidents, and involvement and cost rates, classified by severity of accident and registered gross weight	
severity of accident and registered gross weight of trucks	6-7
6-4. Accident-involvement and direct-cost rates for single-unit trucks and vehicle combinations, classified by type of accident and by highway	
system	6-9

List of tables (continued)

CHAPTER 7	rage
7-llA. Summary of axle weighings above legal limits for the primary highway system (system 3), by vehicle class and legal weight group	7 - 6
7-11B. Summary of vehicle axle weights above legal limits grouped according to excess	7 - 10
7-12A. Numbers and percentages of vehicle gross weights that are above legal limits, grouped according to excess weight, by vehicle class and legal maximum weight, for the primary rural highway system (system 3) and all census divisions	7-14
7-19. Total tons of cargo, percentage hauled by each vehicle class, and number of vehicles by class in the total ADT, based on the 1962 truck weight data for the primary rural system (System 3)	7-17
7-20. Average weight in pounds of trucks as weighed in the 1962 truck weight survey, by axle classification (Primary rural highway system)	7-19
7-21A. Percentages of trucks with 3 or more axles counted in the 1962 truck weight study, primary rural highway system, by vehicle class and census division	7-20
7-23A. Total number of axles weighed in the 1962 truck weight study distributed according to the relation between their operating weights and the maximum legal axle limits, by vehicle class and census division, system 3	7 - 22
7-24. Average empty weights of vehicles and vehicle combinations developed from the 1962 truck weight data and expanded to higher axle- weight limits, by vehicle class and highway	
system	7-25

0-30

0-31

Page

List	of	tables	(continued)
------	----	--------	-------------

7-25. Summary of data on trucks and combinations for all main rural highways, 1937-1963	7-28
7-26. Average gross weight by class of trucks and combinations, loaded and empty, on all main rural highways, 1937-1963	7-29
7-27. Percentage distribution of trucks and combinations by class on all main rural highways, 1937-1963	7-30
CHAPTER 8	
8-1. Unclassified roadway excavation	8-8
8-2. Price of paving materials per cubic yard in place	8-12
8-3. Ratio of average census division cost of paving materials to National average	8-13
8-4. Average bid price per pound of structural steel by census divisions	8-14
8-5 8-7. Number, length, and cost of bridges	8-17
8-5. Interstate system	8-18
8-8. Percentage distribution of the span lengths of bridges, by highway system and census division	8-21
8-9. Estimated cost of grading and small drainage structures per mile for Federal-aid primary and Interstate projects	8-27
8-10. Cost of complete new highway, construction or reconstruction, in dollars per mile, by highway system and census division	8-28

List of tables (continued)		Page
8-11. Cost of bituminous-concrete resurfacing per highway mile on portland-cement-concrete and bituminous-concrete old surface		. 8-31
8-12. Incremental study of maintenance costs: estimated 1964 costs for Federal-aid systems in the 48 contiguous States and the District of Columbia		. 8-36
	• • •	. 0-10
CHAPTER 9		
9-2. Operating cost in cents per vehicle-mile for line-haul vehicles, by loaded gross weight		. 9 - 6
in kips	• • •	. 9=0
9-3. Loaded gross vehicle weight and operating cost of selected vehicle classes	• • •	. 9 - 12
9-4. Loaded gross vehicle weight and operating cost of selected vehicle classes (For Method 1 including 29-percent increase in payload, 1962 to 1990		. 9-14
CHAPTER 10		
10-4. Number of each class of vehicle in the ADT for 1962 and 1990 for each highway system and census division as used in the analysis of the		10.15
economy of maximum axle-weight limits	• • •	. 10-17
10-4A. Average payload, empty, and gross weights of each class of vehicle in Method 1East North Centralprimary, rural		. 10 - 2 ¹
10-5. Average daily traffic-volume guide to number of lanes	• • •	. 10-27
10-6. Summary of number of lanes for each highway system and census division		. 10-28
10-7. Representative average soil support values used for the design of pavements		. 10-29
10-8. Granular base thickness and		

List of tables (continued)	0=33
10-11. Structural steel required per linear foot of 2-lane bridge for proposed higher axle-weight limits: increments of pounds of steel per bridge above the H20-S16 design loading, weighted by span length and shown by highway system and census division	Page 10-40
<pre>10-12. Total length of bridges in feet per mile and construction cost in dollars per mile of highway, by highway system and census division</pre>	10-43
10-13. Pounds of structural steel per mile of highway, excess over standard H20-S16 design	10-46
10-14. Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H20-S16 design	10-48
10-16. Annual cost per highway mile of patching pavement and shoulders as a result of effects from axle-weight applications	10-53
10-17. Unit cost per ton of structural steel of repainting steel bridges	10-55
10-18. Annual highway cost per mile of repainting steel bridges: excess above the standard H20-S16 design	10-56
10-19. Practical maximum gross vehicle weight with a range of maximum axle weights	10-59
10-22. Number of each class of vehicle in the ADT for 1962 and 1990 for each census division, as used in the analysis of the economy of axle weight (Method 1 with payload increase)	10-61
10-23A. Computer printout on pavement design and pavement construction cost as affected by axle-weight maximum limits by highway system and census division	10-63
10-26. Minimum pavement depth most frequently used by the States in each census division for each of six highway systems	10-67
10-27. Daily E 18-kip axle applications corresponding to minimum design depth of rigid and flexible pavement surface	
for each census division	10-71

List of tables (continued)	Page
10-28N. Comparison of highway cost and motor vehicle operating cost for five levels of axle- weight maximum limits, for the 20-year period 1965 through 1984National average	10-74
10-35. Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits with transition, by highway system, census division, and analysis method: Methods 1 and 1-M.	10-88
10-37. Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits with transition, by highway system, census division, and analysis method: Methods 1-M, 2, and 3	10-98
10-38. Comparison of the benefit-cost ratios for rigid and flexible pavements for Method 1 with transition, New England and East North Central census divisions	10-107
CHAPTER 11	
11-1. Combinations of vehicle lengths used in Method 4, analysis of the economy of vehicle length	11-5
<pre>11-2. Average payload, empty and gross weights of each class of vehicle in Method 4East North Centralprimary rural</pre>	11-7
11-3. Number of each class of vehicle in the ADT for 1962 and 1990, by highway system and census division used in analyzing the economy of vehicle	
length	11-14
11-4N. Comparison of highway cost and motor vehicle operating cost for five levels of maximum length of vehicles and combinations, for the 20-year period 1965 through 1984	
National average	11-15
11-6. National averages for Method 4, economy of vehicle length - rigid pavement	11-21
CHAPTER 12	
12-1N. Summary of highway and truck operating cost, truck ADT, and pavement depth under a range of axle-weight limits and of vehicle length limits;	

List of tables (continued)	0-35
	Page
<pre>12-2N. Differences and ratios of highway cost and ADT, indicating the relative economy of increases in axle-weight limits and in vehicle length limits</pre>	12-11
12-4. Comparison of highway cost and motor vehicle operating cost for five levels of axle-weight maxi- mum limits by each of four maximum lengths of vehicle for the 20-year period 1965 through 1984: National average	12-18
	10 10
CHAPTER 13	
13-1. Liberalized levels of vehicle dimensions and axle-weight limits studied by A. T. Kearney	
and Company	13-2
13-2. Commodity density levels	13-3
13-3. Line-haul tonnages transported in highway vehicles, by special classification, United States, 1960	13-5
13-4. Estimated line-haul tonnage, miles of vehicle travel and ton-miles that would likely be affected by vehicle weight and size limit liberalization by special classification, 1960	13 - 7
13-5. Estimated percent of miles of vehicle travel in line-haul transportation of freight that would not have been required in 1960 under 30 levels of increased vehicle dimension and weight limits	13-11
13-6. Projection from 1965 to 1990 of the	
potential decrease in accumulated vehicle-miles of travel resulting from line-haul transportation of freight in maximum payloads	13 - 12
13-7. Liberalized levels of highway freight vehicles showing ratio of relocation in pavement damage as determined by A. T. Kearney and Company	13-14
13-9. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost between axle- weight levels for primary rural system	13-18
13-10. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost resulting from an increase in vehicle width from 96 to 102 inches on the primary	
rural highway system	13-20

	Page
CHAPTER 14	-
14-1. Net horsepower and tare weight of tractor related to practical maximum gross vehicle combination weight based upon truck weight studies, manufacturers' data, and judgment	14-3
14-2. Weight in pounds of empty trailers for use in combinations of vehicles at the 18/32 single/ tandem axle-weight limits	14-4
14-3. Empty weights of different classes of vehicles and combinations for different length limits and combinations of vehicles	14-5
14-4. Empty weights of various vehicle classifications for axle-weight limits up to 60/95 kips	14-7
14-5. Practical maximum gross weights of several classes of vehicles for axle-weight limits up to 60/95 kips	14-8
14-6. Empty weights of each of eight classes of vehicles and combinations hauling 2,000 tons of freight at various axle-weight limits	14-12
14-7. Average payloads in pounds carried in eight classes of vehicles for four different schemes of hauling 2,000 tons of freight at various axle- weight limits	14-13
14-8. Scheme 1: Average payloads, number of vehicles, number of E 18-kip axles, and dollars of transport cost necessary to move 2,000 tons of freight in each of eight classes of vehicles and at various axle-weight limits	14-15
14-10. Scheme 2: Shipping density in pounds per cubic foot at which cargo can be stowed visibly fully loaded at various axle-weight limitations in highway vehicles with single cargo-body dimensions of 40-feet length and 96 inches width	14-18
14-11. Shipping density in pounds per cubic foot at which cargo can be stowed visibly fully loaded at various axle-weight limits in highway vehicles with double cargo bodies with dimensions of 27 feet and	
40 feet length and 96 inches width	14-19

	rage
14-12. Distribution of 2,000 tons of payload by 5-pound shipping density groups and an estimate of the total cubage required to haul the 2,000 tons of payload	14-20
14-13. Number of vehicles, dollars of transport cost, and E 18-kip axles necessary to move 2,000 tons of freight at various axle-weight limits for schemes 2, 3, and 4	14.05
14-14. Average payloads per vehicle for the	14-25
axle-weight limits of 28/47 kips and above	14-28
14-17. Loaded gross weight and operating cost per mile for selected vehicle classes	14-29
14-18. Number of vehicles, transport cost, and E 18-kip axles for hauling 2,000 tons of payload one mile on system 3, primary rural, East North Central census division - rigid pavement	14-31
14-19. Analysis of the marginal maximum axle-weight limits based on hauling 2,000 tons of freight over a mile of 4-lane rigid pavement, primary rural high- way system: East North Central census division	14-34
14-20. Marginal ADT's based on Method 1-M, rigid pavement, and the concept of minimum pavement design depth - National average, or composite of 10 census divisions	14-44
14-21. Marginal ADT's for various minimum pavement design depths based on Method 1-M, for the East North Central census division, rigid pavements, and the primary rural highway system, using the average ADT for the study period 1965 - 1985	14-45
CHAPTER 15	
15-2. Shortened years of average service life with increase in axle-weight limits for Method 1-M with transition	15-15
15-3. Comparison of highway cost and motor vehicle operating cost for five levels of axle- weight maximum limits, for the 20-year period 1965	
through 1984: National averages	15-17

Page

<pre>15-4. Centerline miles, truck ADT, daily truck- miles and daily operating costs, by axle-weight limits and road system: 1965 and 1984 Method 1-M, National totals</pre>	15-24
15-5. Annual average truck traffic, annual truck- miles, and annual truck operating costs at base axle-weight limits and differences between the base and higher axle-weight limits: 1965 and 1984Method 1-M, National totals	15 - 25
15-6. Centerline miles, truck ADT, daily truck- miles, and daily truck operating costs, by vehicle length steps and highway system: 1965 and 1984Method 4, National totals	15-26
15-7. Annual average truck traffic, annual truck- miles, and annual truck operating costs at length step 0 and differences between the base step 0 and steps 1, 2, 3, and 4: Method 4, National totals	15 - 27
CHAPTER 16	
16-1. Estimated lane-miles of highway construction and related type survivor curves for five axle- weight limits	16-5
16-2. Projected lane-miles of highways in service December 31, 1964 through 1984 by census division and surface type	16 - 16
16-3 - 16-6. National average cost of new construc- tion and reconstruction on the Interstate and Federal- aid primary systems, expressed in thousands of dollars per lane-mile	16 - 22
16-8. Additional construction cost and total capital outlays for highways, 1965 through 1984, by axle-weight limits	16 - 28
16-10. Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Interstate system, East North Central census division, for five levels of axle-weight limits	16-35
TIC TCACTO AT GVTC-ACTURA TTUTOD	TO-11

	Page
16-11. Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Federal- aid primary system, East North Central census	
division, for five levels of axle-weight limits	16- 38
16-12. Twenty-year total National capital outlays and present worth values for highways 1965-1984, by system and axle-weight limits, expressed in	
absolute values and percentage of base	16-52
16-13. Dollar cost of construction per lane-mile per year for the 20-year period 1965-1984 for each axle-weight limitNational averages by	
highway system	16-54
16-14. Ratio of the 20-year total truck operating cost reductions to increased total highway capital outlays from 1965 to 1984 at higher axle-weight	
limits - National total by highway system	16-60
16-15. Additional 1964 highway construction cost by axle-weight limits and the percentage increase	
over 1964 actual capital outlays had higher axle-weight limits been provided for	16-63

LIST OF FIGURES

Page

CHA	PTER	5

5-2. Cumulative frequency distributions of weight- power ratios for all commercial vehicles, 1955	
brake test	5-6
5-3. Cumulative frequency distributions of weight- power ratios for all commercial vehicles, 1963	
brake test	5 - 7
5-4. Cumulative frequency distributions of weight- power ratios for all 3-S2 and 2-S1-2 trailer	
combinations, 1963 brake test	5-10
5-5. Cumulative frequency distributions of weight- power ratios for loaded commercial vehicles, 1963	5-11
brake test	2+11
based on average data for all types of commercial vehicles	5-13
5-7. Cumulative frequency distributions of minimum)- 1)
brake system application and braking distances and decelerations	5-23
5-8. Percentile levels of brake system application	/ -5
and braking distances for vehicles by year	5-24
5-10. Brake system application and braking distances by vehicle axle weights, by test years	5-29
5-11. Brake system application and braking distances by tandem axle weights for 2-S2 and 3-S2 vehicles	5-31
CHAPTER 6	
6-3. Truck involvement and direct-cost rates for	

6-3. Truck involvement and direct-cost rates for	
intersectional and non-intersectional accidents	
occurring on the Federal-aid primary system and	
on all other highway systems	6-10

0-41

Page

List of figures (continued)

CHAPTER 7

7-1. Distribution of axle weight by vehicle class in California	7 - 3
7-2. Distribution of axle weight by vehicle class in Maryland	7-4
7-3. Distribution of gross weight by vehicle class in California	7-12
7-4. Distribution of gross weight by vehicle class in Maryland	7-13
7-5. Total number of axles per 1,000 trucks on all main rural highways; average of 20 States	7-31
7-6. Average gross weight of 3A and larger trucks on all main rural highways; average of 20 States	7 - 32
7-7. Average daily traffic on main rural roads for 3A and larger trucks, 1952 to 1963	7-33
CHAPTER 9	

9-1. Operating cost per vehicle-mile by cost element for gasoline and diesel-engine-powered	
trailer combinations	9-4
9-2. Operating cost per vehicle-mile for gasoline-and diesel-engine-powered trailer combinations by subtotals of the six basic	
cost elements	9 - 5
9-3. Line-haul motor vehicle operating cost per vehicle-mile and per payload ton-mile as related	
to loaded gross vehicle weight	9-9

CHAPTER 10

10-1.	Axle	arrangeme	nts a	nd	code	designations					
for	typical	l vehicles	and	veh	icle	combinations	•	•	•		10-6

List of figures (continued)

Page

10-2. Distribution of axle weights of the 3-S2 vehicle class on the primary rural system as summarized from the 1962 truck weight study	10-15
10-3. Equivalent 18-kip axle applications for highway system 3, for 8-inch rigid pavement	10-9
10-4. Geometric cross section of roadways used in the axle-weight economy analyses	10-35
10-5. Design rigid pavement slab depth related to daily E 18-kip axle applications resulting from Methods 1, 2, and 3 plotted for use with Method 1-M	10-67
10-6. Design depth of flexible pavement surface course related to daily E 18-kip axle applications resulting from Methods 1, 2, and 3 plotted for use	·
with Method 1-M	10-70 10-81
10-12. Equivalent 18-kip axles for 8-inch rigid pavement for the six vehicle classes and the 1962 truck weight study, as related to practical maximum gross vehicle weight	10-83
10-13. Equivalent 18-kip axles for flexible pavement (SN=3) for the six vehicle classes and the 1962 truck weight study as related to practical maximum gross vehicle weight	10-84
10-14. Curves to show the interrelationship of E 18-kip axle applications, rigid pavement design depth, and cost of pavement per cubic year for highway system 3, primary rural, and the east north central census division	10-113

	0-43
List of figures (continued)	Page
CHAPTER 11	Large
11-1. Accumulated percentage of the ADT of vehicle combinations based upon increasing practical gross vehicle weights of 2-Sl and larger classes of combinations; highway system 3, primary rural, based on 1962 truck weight study	11-9
<pre>ll-2. Accumulated percentage of the ADT of vehicle combinations arranged by increasing practical maximum gross weights vs. the accumulated percentage of total payload carried by the ADT</pre>	11-10
11-3. Sample set of curves for the primary rural system to illustrate how the number of E 18-kip axles per vehicle by vehicle class was determined from plotting the data of Method 1 for two axle weight limits for each census division	11-12
CHAPTER 14	
14-1. Incremental benefit-cost ratios related to the axle-weight maximum limits as calculated for the transport of 2,000 tons of payload on the primary rural system of the East North Central census division; rigid pavement and a 20-year analysis period	14-35
14-2. Motor vehicle operating cost per payload ton-mile versus practical maximum gross weight	14-39
CHAPTER 16	
16-1. The left-modal type survivor curves	16-11
16-2. The symmetrical type survivor curves	16-12
16-3. The right-modal type survivor curves	16-13
<pre>16-4 16-5. Total annual capital outlays, 1965 to 1984 for each increased axle-weight limit expressed as a percentage of the base axle-weight limit (18/32) for the Interstate and Federal-aid primary rural systems, census division 5, East North Central</pre>	16-41
16-6. Percentage of total yearly capital outlays required for new construction, reconstruction, and resurfacing, 1965 to 1985, on the Interstate rural system, census division 5. East North Central	16 - 45

List of figures (continued)

16-7. Percentage of total yearly capital outlays required for new construction, reconstruction,	Page
and resurfacing, 1965 to 1985, on the Interstate rural system, census division 5, East North Central	16-46
16-8. Percentage of total yearly capital outlays required for new construction, reconstruction, and resurfacing, 1965 to 1985, on the Federal-aid primary rural system, census division 5, East North Central	16-47
 16-9. Percentage of total yearly capital outlays required for new construction, reconstruction, and resurfacing, 1965 to 1985, on the Federal-aid primary urban system, census division 5, East 	
North Central	16-48

DEFINITIONS

<u>Vehicle</u> - An assembly of wheels and axles with connecting frame and with or without a body for containing goods or people, which may be towed or moved under its own power over the highway. A passenger car, a bus, a truck, a trailer, a tractor are separate individual vehicles. Also, the word <u>vehicle</u> as used generally includes any combination of two or more separate vehicles such as a tractor and semitrailer or a truck and full trailer.

<u>Vehicle Combination</u> - Two or more vehicles combined so as to move over the highway as one train of connected vehicles.

Unit - A single vehicle; one of the vehicles within a vehicle combination.

<u>Truck</u> or <u>motor truck</u> - A single self-propelled commercial motor vehicle carrying its load on its own wheels and primarily designed for the transportation of property or commodities. When used as a general term, "truck" may refer to any type of commercial motor freight vehicle or combination of vehicles.

<u>Single-unit motor truck</u> - A self-propelled motor truck constructed to carry only its own cargo and not equipped to pull a trailer.

<u>Power unit</u> or <u>power vehicle</u> - A general term referring to any vehicle equipped with an engine for propulsion and arranged to pull a trailer.

<u>Tractor</u> - A self-propelled motor vehicle designed primarily for pulling semitrailers and constructed so as to carry part of the weight and load of a semitrailer. (A tractor is basically a motor truck with a short wheelbase and no cargo body.)

<u>Tractive truck</u> - A motor truck constructed to carry a cargo body and to pull a trailer. (A trailer pulled may be either a semitrailer or a full trailer depending on whether the tractive truck is equipped with a semitrailer fifth wheel or a full trailer pintle hook.)

<u>Trailer</u> - A commercial motor vehicle designed to carry cargo and to be pulled by a tractive truck or a tractor. When used as a general term it may mean either a semitrailer, a full trailer, or a pole trailer, and may be equipped with any one of the various types of cargo bodies. (Trailers built as mobile living quarters are known as trailer coaches and mobile homes, but frequently are called house trailers.)

<u>Semitrailer</u> - A trailer equipped with one or more axles and constructed so that a substantial part of its weight and load is carried by the tractor or tractive truck which pulls the semitrailer. A semitrailer may have one or more loadcarrying axles located under the rear half of the vehicle.

A semitrailer with two axles grouped under the rear half of the vehicle frequently is known as a tandem-axle semitrailer.

Full trailer - A trailer constructed so that its weight and load rests on its own wheels. It may have two or more load-carrying axles.

<u>Trailer converter dolly</u> - A short chassis assembly consisting of axle and wheel assembly, tires, springs, frame for lower fifth wheel, drawbar, and other parts designed to slip under the front end of a semitrailer to convert it to a full trailer.

<u>Trailer combination</u> or <u>combination</u> - A general term used to describe two or more vehicles, one of which is a power vehicle, that are connected together for operation on the road. In general, the name of each combination indicates the types of vehicles that are connected together in the combination.

<u>Double-trailer</u> or <u>tandem-trailer</u> combination - A tractor, semitrailer, and full trailer. This combination frequently is called a "double bottom" because it has two cargo bodies.

Line-haul service - also called over-the-road service--A general term designating truck operations over intercity and rural highways. Such operations may include some minor auxiliary off-highway operations, especially where the payload is picked up from a loading area off the public highway. Tandem axle - Axle groups having two or more axles spaced more than 40 inches apart and no more than 96 inches apart. More generally, tandem axles are two axles spaced about 48 inches apart.

<u>Cargo</u>, <u>payload</u>, and <u>freight</u> - The material contents, commodities, or goods in the truck body which are being hauled and upon which the freight tariff is paid in common or contract carriage.

<u>Empty weight</u> - The weight of the entire vehicle or vehicle combination with driver on the road without any cargo, or payload, but with any packing material, racks and tools usually hauled for convenience and not for revenue. Vehicles carrying empty drums, pallets, crates, and other cargo containers or leveling devices are classed as with load.

<u>Tare weight</u> - The weight of the entire vehicle or vehicle combination, exclusive of driver, passengers, packing material, cargo containers, cargo handling devices, and all objects not a fixed part of the vehicle.

<u>ADT</u> - The average daily traffic expressed in numbers of vehicles of all classes unless specifically stated differently. The daily average is for the year unless stated otherwise.

<u>Benefit-cost ratio</u> or <u>B. C. ratio</u> - An index of the relative economy of one alternative as compared to another, expressed as the quotient resulting from dividing the equivalent uniform annual benefit in dollars by the equivalent uniform annual cost in dollars required to obtain the benefit. <u>E 18-kip axles</u> - The number of single axles weighing 18,000 pounds which would be equivalent to another number of axles weighing more or less than 18,000 pounds, as measured by their effect on the pavement structure. A kip is 1,000 pounds.

Motor vehicle operating cost - The total cost of operating the vehicle in road service, including costs of repairs and servicing, tires and tubes, fuel, driver, overhead, depreciation, and interest, but excluding terminal costs of handling cargo, and road-user taxes.

SUMMARY

Key Words: economy of truck transport; trucking cost; truck dimensions; truck axle weights; legal limits of vehicle dimensions and weights; economic vehicle dimensions and weights; highways and truck limits

Determining the desirable maximum limits of dimensions and weights of motor vehicles is approached on the basis of the highway cost and the operating cost of motor trucks, so far as the factors of economy are concerned. Vehicle operations on the highway are concerned with the factors of gross vehicle weight per net horsepower, braking distance, traffic accident frequency and severity, and highway capacity. The placement of the vehicle on the roadway so far as the highway geometrics are concerned is a factor considered. Earthwork, the pavement and shoulder structure, and individual structures are the three items of construction cost affected by any change in vehicle axle weight or gross weight. Other items of the total highway, such as right-of-way, engineering, and traffic facilities, are considered to be unaffected by the maximum legal limits of dimension and weight.

In the economy studies, axle weight, gross vehicle weight, and vehicle length are analyzed on the basis of six highway systems consisting of the rural and urban systems within the Interstate, primary and secondary highway systems. The work

is further divided by the ten census divisions, which approximates a grouping of the States having the same limitations of dimensions and weights, even though these limits vary considerably among all States.

The main basis of the analysis is the 1962 data on the truck weight studies conducted in 46 States. The axle weights, gross weights, frequency distribution by class of vehicle, number of empty vehicles, and the payload carried per vehicle are the main data utilized in these studies.

Considering all the factors involved in determining the desirable limits of maximum vehicle dimensions and weights, the following general conclusions were reached:

1. From the standpoint of economy of transportation, there are no major benefits to be gained by a vehicle height in excess of 13.5 feet, so that any higher limit than 13.5 feet does not need to be seriously investigated at this time.

2. A vehicle width of 102 inches as a maximum is desirable for the reasons that it would improve the loading facilities for certain modular-dimension products, and that it would provide additional desirable space at the rear axle for improvement of the differential and the braking system.

3. Existing highways will accommodate vehicle combination lengths up to 65 feet including two trailers. On the Interstate system with full access control, combinations 100 feet long are feasible utilizing two 40-foot trailers.

4. There is considerable economy in overall transportation to be gained by axle-weight limits up to at least 26,000 pounds single and 44,000 pounds tandem. The benefit-cost ratio of such increases is significantly large-say, somewhere between 3.0 and 20.0--depending upon the highway system, the census division, and the character of the traffic involved.

5. Increasing the maximum length of vehicles up to 65 feet and permitting the combination of tractor, semitrailer, and full trailer results in a decrease in truck operating cost up to 30 percent with no measurable increase in highway costs.

6. Gross vehicle weight for combination vehicles is economical up to 25,000 pounds.

7. During the 20-year period from 1965 to 1984, for the 22/38-kip designs, highway construction on the Interstate and Federal-aid primary systems would cost 0.5 to 1.9 percent more than the estimated totals under existing axle-weight limits. The above percentages amount to \$95,537,000 and \$348,370,000, respectively, for the 20-year period.

8. On all highways, the use of the 22/38-kip axleweight limits would result in a truck operating cost decrease of \$36 billion for the 20-year period, 1965 to 1984.

A FEW FINDINGS IN BRIEF

The desirable limits of dimensions and weights

were found to be the following:

- 1. A vehicle height of 13.5 feet
- 2. A vehicle width of 102 inches
- 3. Maximum lengths on all highways of 40 feet for singleunit trucks and trailers, 55 feet for tractor and semitrailer, and 65 feet for any other combination of vehicles
- 4. Axle-weight limits of 22/38 kips, single/tandem axles for universal use
- 5. A gross weight limit of at least 120,000 pounds, or better yet, no gross weight limit at all with control of axle weight and axle spacing.

CHAPTER 10

ECONOMY OF MAXIMUM AXLE-WEIGHT LIMITS

In determining the economy of axle-weight limits, two basic factors must be considered: (1) the cost of operating motor vehicles at various levels of maximum axle-weight limit and (2) the cost of constructing and maintaining the highways for the use of the vehicles operating at these levels of axle-weight limit. The key to the analysis governing both the motor vehicle running cost and the pavement design is the composition of the trucking fleet (traffic) by axle classification of the vehicles comprising it and the weight distribution of single and tandem vehicles.

1. CONCEPTUAL APPROACH

The economy of transportation as related to maximum legal limits of vehicle axle weights is dependent upon the following factors: (a) the limits, (b) the highway costs incurred, (c) transport requirements, and (d) the character and use of transport. For the purpose of this study of the economy of axle-weight limits, the basic data available consisted of the results of the truck weight studies by the several States, the AASHO guides for pavement design, and highway construction costs from Federal-aid project records.

The procedures involved a forecast of truck usage of the highways to 1985, a forecast of the distribution of axle weights by vehicle class, an estimate of the payload to be hauled, and choice of specific axle-weight limits to be studied. A critical factor involved in this procedure is the method of determining the axle-weight distribution under axle-weight limits higher than now exist.

2. BASIC PROCEDURES AND METHODS

In the general study of the economy of maximum axle-weight limits, the basic procedure used was to estimate the axle-weight distribution for the assumed traffic composition, to design the pavement for these conditions, and to calculate the resulting highway and motor vehicle costs. It should be noted that upgrading of existing construction is not included in the highway cost on the ground that, if there is general transport economy in constructing new highways for increased axle weights, logically there would be economy in upgrading the structural quality of existing highways.

A. Levels of Axle-Weight Limits To Be Considered

The selection of the levels of axle-weight limits to be used is the fundamental first step in the study of the economy of maximum axle-weight limits, by whatever method it is to be accomplished. As shown in Chapter 3, the laws of the several

States usually set forth maximum limits for the axle weights of motor vehicles and also for their gross weights.

For this analysis of the economy of exle-weight limits, 18,000/32,000 pounds were selected as the lower weight limits for single and tandem axles. respectively, on the basis that they were the lowest in effect. Axle weights of 26,000/44,000 pounds were selected as practical upper limits that are above those now existing, with the single exception of the 44,000pound limit in Florida. Still higher limits were used in the special study to determine the upper axle-weight limits beyond which no further gains in transportation economy can be expected (Chapter 14).

The five levels of maximum axle-weight limits shown below cover the current legal levels and two levels above. These five

Single axle	Tandem axle
weight,	weight,
pounds	pounds
18,000	32,000
20,000	35,000
22,000	38,000
24,000	41,000
26,000	44,000

levels were used throughout this study of the economy of limits of vehicle dimensions and weights.

B. Highway Systems and Census Divisions

In order to provide a measure of any effects on the economy of axle-weight limits that could be due to geographical location, existing State laws, and regional trucking practices, the study was applied separately to six highway systems in each of the ten U. S. census divisions. The highway systems are the following:

Code	System name
1	Interstate, rural
2	Interstate, urban
3	Primary, rural
4	Primary, urban
5 5	Federal-aid secondary, rural, State jurisdiction
<u>7</u>	Federal-aid secondary, rural, local jurisdiction
6 8	Federal-aid secondary, urban, State jurisdiction Federal-aid secondary, urban, local jurisdiction

The ten census divisions and the States included in each are as follows:

<u>No.</u>	Abbreviation	Census division	States included
l	NE	New England	Connecticut, Maine Massachusetts, New Hampshire, Rhode Island and Vermont
2	MA	Middle Atlantic	New Jersey, New York, and Pennsylvania
3	SAN	South Atlantic (North)	Delaware, Maryland, Virginia, West Virginia, and District of Columbia

<u>No.</u>	Abbreviation	Census division	States included
4	SAS	South Atlantic (South)	Florida, Georgia, North Carolina, and South Carolina
5	ENC	East North Central	Illinois, Indiana, Michigan Ohio, and Wisconsin
6	MNC	West North Central	Iowa, Kansas, Minnesota, Missouri, Nebraska, North Dakota, and South Dakota
7	ESC	East South Central	Alabama, Kentucky, Mississippi, and Tennessee
8	WSC	West South Central	Arkansas, Louisiana, Oklahoma, and Texas
9	М	Moun tai n	Arizona, Colorado, Idaho, Montana, Nevada, New Mexico, Utah, and Wyoming
10	Р	Pacific	California, Oregon, and Washington

C. Vehicle Classes

Figure 10-1 shows by axle arrangement 18 classes of cargo-hauling vehicles and vehicle combinations representing the more common types found on the public highways. Other classes found in traffic classifications do not appear in significant numbers.

The following vehicle types were used throughout the analysis as those vehicles that would be affected by an increase in legal dimensions and/or weights:

Figure 10-1. Axle arrangements and code designations for typical vehicles and vehicle combinations

Single-unit trucks	Tractor- semitrailers	Other combinations
2D 3A	2-S1 (3 axles) 2-S2 (4 axles) 3-S2 (5 axles)	2-3, 3-2 (5-axle truck-trailers) 2-Sl-2 (5-axle tractor- semitrailer-full-trailer)

D. Adjustment for Increase in Average Payload Per Vehicle and for a Transition Period

Owing to the increase in average payload per vehicle in past years, an increase in typical payload per vehicle of 29 percent from 1962 to 1990 (28 years) was included in the forecast of traffic. The 29-percent figure was arrived at by studying the trends of truck weights and loading practices over the last several years.

In all of the analyses for the economy of increased dimensions or weights of vehicles, the total tonnage of payload to be transported was increased from the base tonnage in 1962 and forecasted to 1990 on the basis of a straight-line increase. The 1962 tonnage is that tonnage determined from the truck weight studies. The 1990 tonnage is based on the projected population and the share of total intercity freight to be carried by the motor vehicle. The period of analysis was the 20 years beginning January 1, 1965 and ending December 31, 1984.

The 29-percent payload increase per vehicle merely controlled the number of vehicles required to transport the total tonnage, fewer vehicles being required to haul a specific number of tons in 1990 than in 1962. In all of the analyses of

the economy of axle-weight limits, the same number of payload tons was used at each axle-weight limit. Therefore, as the axle-weight limits were increased, fewer vehicle trips were required to transport the given number of tons of payload.

Because it is not reasonable to expect that the truck traffic would adjust to the higher limits overnight, if the laws should be changed to permit higher weights, a 5-year transition period from 1965 to 1969 was included. Figure 10-3 shows how this transition period was applied to each axle-weight limit.

To show the effect of the 29-percent increase in payload per vehicle and the transition period, complete studies were made with and without these two factors. Each factor noticeably reduces the indicated gain in economy with increased axle-weight limits. Because these two factors are logical and because they do affect the calculated economy, both of them were always included in subsequent calculations and, unless specifically stated, are included in all results given in this report.

3. METHOD OF ANALYSIS

Three basic methods were used in determining the distribution of axle weights and the number of equivalent 18,000pound axle applications to the pavement under each of the five levels of axle-weight limits. Method 1 transferred the axleweight distribution found in the 1962 truck weight studies in those States having the 20,000- and 24,000-pound axle limits to

¹⁰⁻⁹

the other States having lower limits and vice versa. Then, with axle-weight distribution for each vehicle class determined for the 18-, 20-, and 22-kip limits, these distribution curves were extrapolated to the 24-kip and 26-kip limits.

Method 1-M was a repeat of Method 1, except minimum pavement depths were imposed. For the lighter traffic volumes, it was found that Method 1 resulted in design pavement depths much less than the States were currently using. These differences resulted not from Method 1 but from the inherent character of the AASHO design formula. Method 1-M was revised, therefore, to produce a pavement depth equal to current designs at current axle-weight limits.

In Method 2 the first step was to plot the 1962 truck weight data by States to show the coordinate relation between the practical maximum gross vehicle weight and the average payload per vehicle by vehicle class. The second step was to plot, by State, the coordinate relation between the 1962 E 18-kip axles by vehicle class and the practical maximum gross vehicle weight. These two curves were extrapolated when necessary.

The data from these two curves were available for calculating the total number of vehicles required to haul the required number of tons of payload, and the number of 2 18-kip axle applications applied by each class of vehicle.

Method 8 was the work by the A. T. Kearney Company for the Bureau of Public Roads adapted to the general concept of Method 1 so that equivalent benefit/cost ratios could be compared. The final benefit-cost ratios produced by Methods 1-M, 2, and 8 were in acceptable agreement with the results obtained by Method 1. But since Method 1-M more nearly reflects current design practices, the 1-M results are preferred to the others. The work by Method 2 is not given in this condensed report.

4. METHOD 1 -- CENSUS-DIVISION-TO-CENSUS-DIVISION TRANSFERENCE OF AXLE-WEIGHT DISTRIBUTIONS

Testing the economy of increasing the legal maximum axle weights of commercial motor vehicles resolves itself into the problem of estimating one basic critical factor: the composition of commercial vehicles (number and type) in the traffic stream under increased axle-weight limits as compared to the composition of traffic at existing limits. Within this factor are two subfactors: (1) axle-weight distributions by single and tandem axles and (2) the gross weight of each vehicle class.

The axle-weight distribution is the necessary factor in calculating the number of equivalent 18,000-pound (E 18-kip) axles, the factor influencing the design of the pavement structure. Gross weight is the key factor in determining the motor vehicle operating cost. The number of vehicles in each vehicle class is required, of course, to compute the total E 18-kip axles and the total operating cost for the ADT (average daily traffic) considered.

A. Basic Concept

Since there is no known procedure by which to estimate the composition of traffic under increased permitted axle-weight limits, logic must be applied to what is now known about existing traffic in order to obtain an estimate. Since there is a range of legal maximum axle weights among the several States, one method of arriving at the traffic composition under increased axleweight limits is to transfer transport practice in States having high limits to those having lower limits. This procedure of transference was used for axle weights from 18,000 pounds for a single axle and 23,000 pounds for a tandem axle to 22,000 and 38,000 pounds, respectively. By extrapolation the traffic composition and axle-weight distribution were extended to 26/44-kip limits.

B. Axle-Weight Distribution by State Maximum Weight Limits

The axle-weight distributions for each vehicle axle-weight group were assembled by States from the 1962 truck weight study. Based on the legal maximum single-axle weight limit, including tolerances, the States may be grouped as follows:

Single-axle weight groups, pounds	Weight range, pounds	Number of States
18,000 19,000 20,000	18,000 18,500 - 19,000 19,500 - 20,340	20 10 5
22,000 23,000		7 and D. C. 4

Gro	uping of States by Approxim Single-Axle Weight Limits					
((*with enforcement tolerance)					
	18,000 pounds (20 States)					
Arizona California Idaho Illinois Kansas Louisiana Michigan	Minnesota Mississippi Missouri Montana North Dakota Oklahoma Oregon	South Dal Tennesse Virginia Washingto Utah Wyoming	9			
	19,000 pounds (10 States)					
Arkansas (18,500*) Iowa (18,540*) Indiana (19,000*)	Kentucky (18,900*) Nebraska (18,900*)	Ohio Texas West Virginia	(19,000) (18,900*) (18,900*)			
	20,000 pounds (5 States)					
Alabama (19,800*) Delaware (20,000)		Wisconsin	(19,500*)			
22,0	00 pounds (7 States and D.	c.)				
District of Columbi Florida Maine Maryland	a (22,000) (22,000*) (22,000) (22,400)	Massachusetts New Mexico New York Rhode Island	(21,600) (22,400)			
	23,000 pounds (4 States)					
Connecticut New Jersey	(22,848*) (23,520*)	Pennsylvania Vermont	(23,072*) (23,520*)			
It was decid	ed to use three major weigh	t groups inste	ad			
	d charge (mag 10,000, and	02 000 manual m				

of the five mentioned above. The 19,000- and 23.000-pound groups did not supply sufficient axle-weight data consistent enough to

¹⁹⁶² data for Colorado (18,000) and New Hampshire (22,400) was not available.

warrant making them separate groups. The three major weight groups selected were made up in the following manner:

18,000 pounds -- The 20 States tabulated above.
20,000 pounds -- 15 States - combining the 19,000-pound and 20,000-pound groups listed above.
22,000 pounds -- 11 States and the District of Columbia - combining the 22,000-pound and 23,000-pound groups

listed above.

The axle-weight distribution curves for the single-axle weight groupings of 18,000, 20,000, 24,000, and 26,000 pounds are given in figure 10-2 for the 3-S2 combination for the primary rural highway system (System 3). This set of curves is representative of those for other classes of vehicles and highway systems. The curves for the 24,000- and 26,000- pound axle groups are extrapolated from the three curves for the lower limits. These curves were prepared for each of the seven classes of vehicles and the six highway systems.

C. Distribution of ADT by Vehicle Class, by Census Division, and by Highway System

Since the economy of maximum axle weights depends upon the number of vehicles in the traffic stream and the number of each class of vehicle, it becomes necessary to make the analysis for specific ADT's and for the vehicle-class distribution within

the ADT. The truck weight studies report the classification of the vehicle stream (vehicles counted) at each weigh station, which may not give the average ADT and vehicle distribution for a specific highway system within a State. For the purposes of this study, the average ADT by highway system was developed for each census division for 1962, as shown in table 10-4.

D. Distribution of Axle Weights

For the most part, computations were based on whole vehicles and whole axles. However, fractional vehicles were used in many instances to compute the number of axles, average payload, and number of vehicles.

As previously stated, the procedure of Method 1 was to adjust the axle-weight distribution for each vehicle class in a census division having a lower maximum limit--such as 18/32 kips-to the distribution found in a census division with a higher limit--such as 20/35 kips. The number of vehicles in each class was then adjusted so that the same total tons of payload were carried by a particular class of vehicle at the limits (base condition) prevailing during the period for which the 1962 truck weight studies were done.

E. Adjustment of the 1962 Base Distribution of Axle Weights to Higher Axle-Weight Levels

The next step was to determine for 1962 the number of vehicles necessary to carry the 1962 total payload at

			foi	each hig	f the ec	onomy of	census (division axle-w	ighway system and census division as used in t of the economy of maximum axle-weight limits.	for each highway system and census division as used in the analysis of the economy of maximum axle-weight limits.	ysis	Sheet 1	or 6
Census division	Year	Pass. car	Buses	Panel and pickup	প্থ	ର	3A	2-S1	2-S2	3-S2	Comb. 5 axle	2-trailer 5-axle	Total
						1. 1	Interstate rural	te rural					
1. NG	1962 1990	6,001 14,057	5 4 3 3 5	347	137	216 423	21.0 48.0	126.0 201.0	320.0 804.0	8.5 22.0		1 1	6,907.5 16,085.0
2. MA	1962 1990	6,876 16,101	F.83	183 478	ਲ਼ੈੈ	271 530	32.0 75.0	189.0 300.0	764.0	67.0 177.0	• •		8,491.0 19,784.0
3. SAN	1962 1990	7,63 ⁴ 18,591	F%3	369 1,005	68 186	338 688 688	53.0 128.0	202.0 336.0	1,034.0	23.0 61.0	• •		9,798.0 23,825.0
4. SAS	1962 1990	5,289 14,557	35 8	374 1,154	149	267 616	53.0 146.0	87.0 164.0	319.0 940.0	40.0 110.0	1 1		6,497.0 17,871.0
5. ENC	1962	6,763 15,823	53	286 751	क्ष श्र	307 605	62.0 146.0	197.0 318.0	601.0 1,511.0	316.0	30 12	833	8,661.0 20,393.0
6. WINC	1990	3,315 7,214	また	162 395	3 ⁴	139 254	25.0 55.0	0.70 67.0	131.0	192.0 532.0	8 8		4,066.0 8,941.0
7. ESC	1962	4,638 9,733	47	704 960	10 H	301	38.0 79.0	81.0 116.0	472.0 1,064.0	49.0 131.0	1 1	8 8	6,064.0 12,765.0
8. WSC	1962 1990	4, 265 9,959	23%	1,271	33	439 439	25.0 59.0	129.0 208.0	330.0 829.0	424.0 1,273.0		1 1	5,949.0 14,180.0
9. M	1962	3,207 8,794	ର ଝ	890 890	፠େଷ	112 259	19.0 53.0	30.0 56.0	26.0 71.0	135.0 478.0	8 7 8	18 51	3,915.0 10,865.0
10. P	1962 1990	7,884 24,059	61 123	. 917 3,142	36 124	348 892	62.0 190.0	104.0 219.0	70.0 228.0	278.0 1,099.0	225 720	320 978	10,305.0
													70

Table 10-4. -- Number of each class of vehicle in the ADT for 1962 and 1990

0-17

10-18 9 8	Total.		16,509.2 53,069.0	24,637 79,250	22,769.0 76,424.0	. 14,496.0 55,052.0	25,885.0 84,111.0	11,123.0 33,773.0	16,322.0	17,384.0 57,200.0	13,055.0 50,026.0	27,895.0 118,728.0
Sheet 2	2-trailer 5-axle		8 8	8 8	1 1	8 8	8 25	8 8	1 1	8 8	12 45	190 807
1 1990 rsis	Comb. 5 axle		• •	1 1	8 8	1 1	10 25	8 8	8 8	1 1	65 240	142 627
for 1962 and 1990 in the analysis mits.	3-S2		5.2	27.0 86.0	23.0 84.0	29.0 115.0	217.0 908.0	132.0 498.0	70.0	169.0 685.0	257.0 1,187.0	218.0 1,187.0
of each class of vehicle in the ADT for 1962 and 19 system and census division as used in the analysis economy of maximum axle-veight limits.	2-S2		158.0 546.0	475.0 1,640.0	558.0 2,002.0	212.0 858.0	295.0	100.0 324.0	661.0 2,053.0	179.0 629.0	35.0 140.0	114.0 510.0
Number of each class of vehicle in the ADT h highway system and census division as used of the economy of maximum axle-veight lin	2-S1	ce urban	109.0 238.0	168.0 364.0	175.0	57.0 143.0	176.0 386.0	50.0	202.0 1403.0	97.0 217.0	71.0 185.0	181.0 522.0
census d census d maximum	3A	Interstate urban	79.0	140.0	84.0 282.0	83.0 313.0	132.0 429.0	77.0 233.0.	105.0 303.0	54.0	118.0	198.0 842.0
each cla stem and conomy o:	ର	5	811 2,192	1,284	881 2,491	516 1,646	867 2,363	431 1,097	921 2,238	546 1,498	478	1,205 4,285
umber of ghway syc of the ec	SS		289 1,046	402 1,452	389 1,469	114	293 1,066	156 529	953 3,098	243 889	245	173 827
U	Panel and pickup		938 3,386	1,256 4,548	1,038 3,912	991 4,221	1,121 4,082	643 2,183	997 3,238	1,499 5,505	1,652 7,001	2,776 13,194
Table 10-4 for ea	Buses		112	118 253	185 412	137	· 114	. 33	104	125	#8	125 356
	Pass. car		14,006 45,148	20,767 66,985	19,436	12,439 47,134	22,652 73,558	9,501 28,738	12,357 35,733	14,538 47,481	10,091 38,083	22,573 95,571
	Year		1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962	1962 1990	1962 1990
	Census division		1. NE	2. MA	3. SAN	4. SAS	5. BNC	6. WNC	7. ESC	8. WSC	9. M	10. P

o <u>r 6</u>	Total		3,562.0 4,382.0	4,084.0	4,162.0 5,347.0	2,803.0 4,072.0	3,221.0 4,006.0	1,563.0 1,815.0	2,196.0 2,441.0	2,328.0 2,930.0	1,280.0 1,876.0	3,286.0	10-19
Sheet 3	2-trailer 5-axle			1 1	84 8	• •	6	0 0	0 0		N M	. ଅନ୍ତ	
1 1990 7sis	Comb.5 axle		1 1	0 0	1 1	1 1	Mat		8 8	••,	11	54 7	
for 1962 and 1990 in the analysis mits.	3-82		6.0 6.0	6.0 9.0	9:0 13.0	11.0	85.0 136.0	50.0 73.0	19.0 26.0	87.0 139.0	32.0 60.0	127.0 263.0	
	2-32		0.711 0.711	275.0	270.0 373.0	175.0 273.0	135.0 180.0	33.0	145.0	92.0 123.0	8.0 13.0	16.0 29.0	
Number of each class of vehicle in the ADT ighway system and census division as used of the economy of maximum axle-veight lin	2-31	rural	52.0 45.0	64.0 54.0	52.0 46.0	0.0 8 8 9	46.0 40.0	13.0	33.0 26.0	36.0 31.0	8.0 8.0	25.0 27.0	
ss of vel census d f maximum	3A	Primery	18.0	29.0 36.0	35.0	23.0 34.0	22.0	15.0	14.0	13.0 16.0	5.0	24.0 39.0	
each cla tem and conomy o:	র	ů	150	180	215	156 190	142 148	65 63	136	101	군국	121	
mber of hway sys f the ec	28		38 25	61 85	45 60	8.£	35 49	14	103 128	% %	8 13	ដឋ	
Table 10-4 Rumber for each highway of the	Panei and pickup		146 201	184 253	247 356	217 352	143 198	95 123	142	227 317	141 229	307 553	
Table]	Buses		នដ	16 13	18 15	00	92	54	<u>д</u> ®	40	5	17 17	
	Равв. саг		3,024 3,732	3,269 4,026	3,274 4,206	2,156 3,123	2,596- 3,211	1,273 1,466	1,620	1,735 2,154	1,019 1,473	2,575	
	Year		1962 1990	196 2 1990	1962 1990	1962 1990	1962 1990	1962	1962	1962 1990	1962 1990	1962 1990	
	Census division		1. NE	2. MA	3. SAN	4. SAS	5. ENC	6. WNC	7. ESC	8. WSC	9. M	10. P	

10-20 9 5	Total		10,839 17,560	11,877 19,252	12,169 20,586	.8,497 16,262	10,743 17,593	6,029 9,222	7,555 11,064	8,935 14,815	7,574 14,625	20,264 43,472
Sheet 4	2-trailer 5-åxle			0 0	• 2	•	ц	0.9	• •		13	138 295
1990 sis	Comb. 5 axle		1 1		1 1		45	1 1		• •	38	103 230
r 1962 and the analy 3.	3-82		ωıν	85	នេន	17	88	72 135	883	87 176	149 365	158 434
Table 10-44Number of each class of vehicle in the ADT for 1962 and 1990 for each highway system and census division as used in the analysis of the economy of maximum axle-weight limits.	2-52		10 ⁴ 180	672 672	298 539	124 253	123	88 88	306 479	92 163	23	83 186
icle in t Ivision a axle-vei	2-51	urban	12 17	88	46 01 601	33 42	£.%	23	まま	8,8	44	132 191
s of veh census d maximum	34	Prieary	852	10 8 8	45	492 92	2 28	42 63	8 1 20	85 45	130	144 308
of each class system and (economy of	ລ	4.	532 725	619 843	44 67	303 1486	360 494	£7 &2	1,26 522	281 388	277	875 1,569
nber of a nvay syst f the ecc	83		190 346	193 353	208 396	67 143	122	25 TF 05	121 144	125 232	142 303	126 303
le 10-4Number for each highway of the	Panel and pickup		616 1,120	606 1,104	555 1,053	581 1,247	465 853	349 596	462 757	1,424	958 2,047	2,016 4,831
fable l' for	Buses		75 80	51	99 111	10 M	14 51	18 18	54	8 M	18 23	91 130
	Pass. car		9,196 14,941	10,011	10,387 17,610	7,291	9,401	5,150	5,720 8,337	7,472 12,299	5,855	16, 398 34, 995
	Year		1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990	1962 1990
	Census division		1. NB	2. MA	3. SAN	4. SAS	5. ENC	6. WINC	7. ESC	8. WSC	9. M	10. P

for 1962 and 1990	ysis	
962 ar	analy	
for 1	in the	mits.
he ADT	s used in the analysis	ght 11
e in tl	đ	of the economy of maximum axle-weight limits
vehicl	divis	ALL BY
38 Of	census	f max1:
h clas	and o	to Amo
of eac	system	e econ
Table 10-4Number of each class of vehicle in the ADT f	for each highway system and census division	of th
+-0-	each	
Table]	for	

Sheet 5 of 6

0 10	Total		1,154.8 1,594.0	555.9 8 50. 6	681.0 1,221.0
ancer 2 of 0	Comb.5- 2-trailer axle 5-axle		: :	11	
	Comb.5- axle		: :	: :	4 401
	3-S2		::	11	mω
	2-S2		20.0 30.2	11.9 19.5	4°0
	2-S1	ry rural	13.3 12.1	4.5 4.5	4.0 4.0
	3A	5 & 7. Secondary rural	7.5 8.7	4.5 7.6	3.0 7.0
	2D	5 & 7.	64 75	37 49	33 47
	28		16 25	96	96
	Panel and pickup		94 146	71 123	107 22 0
	Buses		7 6	ოო	7 5
	Pass. car		933 1,291	418 637	608 898
	Year		1962 1990	1962 1990	1962 1990
	Census division		1582	3 & 4	5 to 10

10-22 9	Total		4,017.6	3 , 334 - 5 4, 399 - 3	4,383.7 6,038.6	7,650.0 5,683.0	3,177.0 4,235.0	1,644.0 2,053.0	1,944.0 2,311.0	3,439.0 4,640.0	5,246.0 8,246.0	5,723.0 9,985.0
Sheet 6	2-trailer 5-axle		1.1	1 1	ð 1	1 1	1 1	1 1	1 1		04	38 65
1990 1s	Comb.5 axle			1 1	1 1	1 1	нн				£93	34 60
1962 and he analys	3-82		• •	04 0.04	4.0	5.0 2 4	6.0 10.0	6.0	0.0 0.0 0	10.0 14.0	24 .0 48 .0	10.0
Table 10^{-44} Number of each class of vehicle in the ADT for 1962 and 1990 for each highway system and census division as used in the analysis of the economy of maximum axle-weight limits.	2-52		25.0 34.2	0.17	68.0 99.0	34.0 55.0	23.0 32.0	0.0 12.0	51.0 63.0	22.0 32.0	9.0 14.0	15.0
icle in t vision as axle-vei	2-S1	ry urban	20.0 18.0	18.0 15.0	26.0 24.0	13.0	17.0	6.0 4.0	19.0	15.0 13.0	22.0 23.0	29.0 34.0
s of veh ensus di maximum	ЗА	Secondary urban	14.0 18.0	13.0	11.0 15.0	15.0	12.0	8.0 10.0	9.0	8.0 10.0	34.0	29.0
each clas cem and c	SD	6 & 3.	151 166	134 147	130	130	88 62	49 51	87 83	&4	150	192 280
mber of e hway syst of the ec	SS		97 143	E.1	103 159	07	50	45 45	161 208	101 101	138 240	82
-4Num each high	Panel. and Pickup		212 314	159 235	186 289	232 1405	128	89 124	711 711	2114 172	627 1,095	534 1,043
able 10 for e	Buses		3 ⁴	19 17	 <u></u>	17 17	17	4	00	13	16	32 36
E4	Разв. Саг		3,464 4,573	2,873 3,796	3,813	3,195	2,841 3,790	1,439	1,543	2,942 3,946	4,192 6,511	4,760
	Year		1962 1990	1962 1990	1962 1990	1962 1990	196 2 1990	1962	1962 1990	1962 1990	1962 1990	1962 1990
	Census division		1. NE	2. MA	3. SAN	4. SAS	5. ENC	6. WINC	7. ESC	8. WSC	9. M	10. P

respectively higher axle-weight limits, keeping in mind that heavier empty weights will be employed at these higher weight limits.

The average payload per vehicle computed at this higher weight level was adjusted upward or downward slightly to provide for the same number of tons of payload carried at the base condition. This adjustment was made by arbitrarily shifting axles in the weight distribution from one weight level to another to arrive at the total base payload. Average payloads per vehicle for the various vehicle classes are shown in table 10-4A.

The total payload carried by all vehicles of the class was then divided by the average payload per vehicle to arrive at the number of vehicles at the higher weight level.

This same procedure was continued for each vehicle type, census division, weight level, and highway system.

F. Calculation of the Axle-Weight Distribution and Number of Vehicles for 1990

The procedure for computing the payload and gross weights carried in the year 1990 was similar to that used for the 1962 computation but with a slightly different method for adjusting the payload. First of all, the tables in the series on average payloads expected in 1990 for all vehicle classes show a 29percent increase in average payload per vehicle. This payload increase was used throughout the analysis for all computations to 1990.

			Method	od 1 (year 1962)	1962)			Methy	Mathod 1 (year 1990)	(0661	
Vehicle	Weight	Single,	Single/tandem maximum axle-veight limits,	imm axle-v	eight limit	s, kips	Single	Single/tandem maximum	imum axle-veight	eight limits,	s, kipe
CIASS	rounds	18/32	20/35	22/38	24/42	26/44	18/32	20/35	22/38	24/41	26/44
ର	Payload Empty veight	4,235 9,220	3,986 9,510	3,855 9,800	3,735 10,090	3, 594 10, 390	4, 235 9, 220 -	4,003 9,510	3, 873 9, 800	3, 753	3,612
	Gross weight	13, 455	13, 496	13,655	13,825	13, 984	13, 455	13, 513	13,673	13, 843	14,002
34	Payload	9,227	10, 155	11, 328	11,953	12,675	11, 903	12, 856	13,974	15, 305	16.070
	Bapty veight Gross veight	15, 635 24, 862	27,950	31,278	34,058	24, 260 36, 935	15,635 27,538	17,795 30,651	19,950 33,924	37, 105	24,260
2-81	Payload	8, 365	8,951	9, 390	10,116	10,675	10,791	11,665	12, 331	13,079	8
	Empty weight Gross weight	18,950 27,315	20,200 29,151	21, 450 30, 840	22,700 32,816	23,950 34,625	18,950 29,741	20, 200 31, 865	21, 450 33, 781	22,700	23,950
00-0	Berland	le mu	1e ene	17 mB	18 4.80	10 660	an ees	0.017	1		
20	Empty velept	23,550	\$°8 \$8,4	26,050	21,300	28, 550	23,550	24.800	26.050	23, 846 27, 300	25,30
	Gross weight	39, 570	41,305	43, 348	45,782	148, 209	44,216	46,057	16, 325	51, 146 .	53, 855
3-82	Payload	22,027	23, 399	25,300	27,939	30, 703	28, 415	30, 191	32,749	36.116	30.43
	Bupty weight Onces weight	28,190	30,570	32,950	35, 330	37,710 64 h12	28, 190 56 605	30, 570	32,950	35, 330	37,710
		173 '00	606101	inc s for	603 (00	CT+ 600	100,000	10/ 100	669,09	71, 446	77,14
3-2	Payload	32, 167	31, 467	32,100	32,067	47,950	· 41, 495	41,500	41,500	4J, 500	55, 33
	Gross veight	58, 167	58, 167	59.500	60, 167	76,750	60, 495	68, 200	58°,900	28,100	28, 800 84, 133
										~~ ~~	
#-	Payload	:	:	:	:	:	:	:	:	:	1
	Gross veight	::	: :	: :	::	:	: :		: :	: :	::
2-81-2	Payload	26.000	25.900	26,000	32.450	22.25	33.540	33.533	11 511	orle or	HC OT
	Empty weight	28,500	29,400	30, 300	30,800	31,300	28,500	20) 102 102	30,300	30,800	31,300
	Gross weight	54,500	55,300	56, 300	63,250	63, 627	. 040	62,933	63, 833	11,040	71,54
3-82-3	Payload	:	:	;	:	;	;	•	:	:	1
	Empty velicht	:	;	:	1	1	1	1	:	;	:
	Oross weight	:	:	;	:	1	:	:	1	:	:
3-82- k	Payload	;	:	;	:	:	:	:	:	:	:
	Empty weight .	;	:	:	:	1	;	:	:	:	:
-	Gross velcht	;				-	-				

Table 10-44 .--Average payload, empty, and gross weights of each class of vehicle in Method 1 East North Central--primery, rural

The base 1990 ADT for each vehicle class was available for each highway system. Therefore, the base ADT's for 1962 and 1990 and the 1962 ADT for each higher axle-weight limit were available. The 1990 ADT's for each vehicle class at higher axle-weight limits were computed from the following relationship: the ADT at 1962 base condition is to the ADT at 1990 base condition as the 1962 ADT at each higher weight level is to the 1990 ADT at the same weight level.

5. DESIGN OF PAVEMENT STRUCTURE

For analysis of the economy of changes both in maximum axle-weight limits and in the maximum limits on vehicle dimensions, the design of the pavement structure was based upon the "AASHO Interim Guide for the Design of Flexible Pavement Structures" (October 12, 1961) and "Rigid Pavement Structures" (April 1962). The pavement design guides were developed from the AASHO Road Test results. The design procedure and selection of the factors involved are described as each was applied to the 10 census divisions and the highway systems. The main factors in the design formulas are as follows:

- (1) Number of applications to the pavement of equivalent 18,000-pound axles (E 18-kip axles)
- (2) Terminal value of the present serviceability index (PSI or Pt)
- (3) Soil support values

A. General Provisions

The pavement was designed for a period of 20-years, January 1, 1965 to December 31, 1984. The terminal PSI of 2.0 was used for all highway systems, all ADT's, and both types of pavements. Although a PSI value of 2.5 might be more suitable for the high-volume Interstate routes, the 2.0 figure was used to keep all design factors constant, because it was desirable to obtain comparable results between systems and ADT's.

For 2-lane, bi-directional highways, the traffic was assumed to be equally divided between the lanes. For 4-lane divided highways, the total ADT was assumed to be 50 percent in each direction, but with 80 percent of the total E 18-kip axle applications in each direction on the right-hand lane of each pair of lanes. See tables 10-5 and 10-6.

B. Soil Support for Rigid and Flexible Pavements

A representative soil support value was assigned to each census division (table 10-7) by judging relatively the general soil condition in one division against another.

C. Rigid Pavement Design

New rigid pavements were designed using the following assumptions:

- The initial serviceability index of the pavement is 4.5, the value obtained in the AASHO Road Test.
- (2) The terminal serviceability index of the pavement is P = 2.0.

Table 10-5. -- Average daily traffic-volume guide to number of lanes

Number of	ADT	Nominal m	aximum ADT
lanes	range	Interstate system	Primary system
		Rural freeways	Rural highways
2	0 - 6,000	4,500	3,000
4	up to 27,000	21,000	18,000
6	up to 40,000	31,000	26,000
8	up to 54,000	42,000	
		Urban freeways	<u>Urban highways</u>
4	up to 56,000	40.000	10,000
6	up to 84,000	60,000	15,000
8	up to 112,000	80,000	20,000
10	up to 140,000	100,000	

ø

Census division	1. Inter- state rural	2. Inter- state urban	3. Pri- mary rural	4. Pri- nary urban	5. Secon- dary rural	6. Secon- dary urban
l. NE 2. MA 3. SAN 4. SAS 5. EIC	4 4 4 4 4	24 24 24 24 24 24	24 24 24 24 24	4 4 4 4 4 4	2 2 2 2 2 2	2 2 2 2 2 2 2 2
6. WNC 7. ESC 8. WSC 9. M 10. P	2; 2; 2; 2; 2; 2; 2;) 4 14 14 14 14	2 2 2 2 2 4	2 2 2 2 4	2 2 2 2 2 2 2	2 2 2 2 2 2

Table 10-6.--Summary of number of lanes for each highway system and census division

Table 10-7. -- Representative average soil support values used for the design of pavements

	Census division	Rigid pavement modulus of subgrade reaction (k)	Flexible pavement soil support values
1.	New England	150	5.0
2.	Middle Atlantic	150	5.0
3.	South Atlantic North	100	3.7
4.	South Atlantic South	200	6.0
5.	East North Central	100	3.7
6.	East South Central	150	5.0
7.	West North Central	100	3.7
8.	West South Central	100	3.7
9.	Mountain	250	7.3
10.	Pacific	200	6.0

- (3) The modulus of subgrade reaction (k) was chosen for each census division as given in table 10-7.
- (4) The modulus of elasticity of concrete is 4,200,000 PSI.
- (5) The modulus of rupture of the concrete is
 650 PSI and the working stress is 3/4 x 650 =
 487.5 PSI.
- (6) The pavements have jointed slabs with adequate load transfer devices.

D. Base Design for Rigid Pavements

A study of State practice indicates that the thickness and qualities of base materials currently being used on Interstate and primary highways are about as shown in table 10-8, in which the values represent practices within each census division. The AASHO Road Test shows that rigid pavements with granular bases performed better than those without, but no significant differences were observed for 3, 6, or 9 inches of such base material. This and the fact that granular bases are used for insulation indicate that increase in base thicknesses in the future is doubtful. However, a trend toward better quality of granular base material through stabilization is currently raising the cost of bases for rigid pavements.

E. Flexible Pavement Design

New flexible pavements were designed using the "AASHO Interim guide for the Design of Flexible Pavement Structures" (October 12, 1961) with the following assumptions:

Table 10-8. -- Granular base thickness and material for rigid pavement

Census division	Thickness of base	Type of material	Comment 보	Material used in analysis for economy of axle weight 2
	inches			
1. NE	3 19	open-graded gravel	drained	clay-gravel
2. MA	ш	open-graded gravel	drained	clay-gravel
3. SAN	8	dense-graded granular		clay-gravel
4. SAS	6	stabilized granular		stone-macadam
5. ENC	8	open-graded granular	drained	stone-macadam
6. WNC	6	dense-graded sand-gravel	drained	stone-macadam
7. ESC	8	dense-graded crushed aggregate	drained	stone-macadam
8. WSC	10	stabilized selected local material		clay-gravel
9. M	6	cement- stablilized granular		clay-gravel
10. P	8	dense-graded	drained	stone-macadam

y Drained full width in fill or underdrains in cut.

2 Clay-gravel or stone macadam used in the analysis because of availability of a price-curve based on thickness. Clay-gravel or stone macadam selected on basis of total cost and on suitability and not on availability.

3/ Ten inches added for frost protection.

- The initial serviceability index of the pavement is 4.2, the value obtained on the AASHO Road Text.
- (2) The terminal serviceability index of the pavement is P = 2.0.
- (3) The soil support value for each census division is as given in table 10-7.
- (4) The regional factor is 1.0.
- (5) The strength coefficients of the different courses are:
 - a. Surface = 0.44
 - b. Granular base = 0.14
 - c. Subbase = 0.11

The depth of each layer (base, subbase, and bituminous concrete surface) was computed in accordance with the design procedure by the use of an electronic computer.

F. Subbase for Flexible Pavements

All the flexible pavement designs in the present size and weight study are composed of layers of surfacing, base, and subbase material. The thicknesses of these components were derived from the AASHO equations and are adequate to carry the expected traffic over the next 20 years (1965 through 1984).

G. Computation of E 18-Kip Axle Applications

The "AASHO Interim Guide for Pavement Design" gives the factors for reducing axle loads to equivalent 18-kip single-axle applications. These factors are given as extended to higher axle-weight limits in Appendix B.

For rigid pavements these equivalence factors vary by a minor amount with the slab thickness; and for flexible pavements, with the structural number (SN). The SN factor varies with the soil support value and the daily number of applications of equivalent 18-kip single axles. For both types of pavements, the equivalence factors vary with the terminal PSI, or Pt value, the factors being slightly larger for a smaller value of Pt.

To simplify the many calculations for the economy of maximum axle weight, the E 18-kip axles for rigid pavements were all calculated for a slab of 8 inches, regardless of the calculated final slab thickness. Also, for flexible pavements a structural number of 3 was used for all calculations of the E 18-kip axles. For the purpose of calculating the relative economy of the maximum axle-weight limits, these two departures from strict design procedure introduce no significant errors in the finally resulting relative pavement costs.

H. Calculation of the Pavement Structure Depths and Construction Cost

The depths of the pavement surface, base, and subbase and the construction cost were calculated using a computer program so written that it could produce the following items:

> The accumulated total of E 18-kip axle applications for the 20 years from 1965 through 1984.

10-33

10-34

- (2) The thickness of the rigid pavement slab and the thickness of each of the three courses for the flexible pavement structure.
- (3) The cubic yards of each type of material in one highway mile, including the shoulders.
- (4) The price per cubic yard of the specific thicknesses of pavement courses from the equations of the price curves (See table 8-2, page 8-12.).
- (5) The total dollar cost per highway mile, including the appropriate base material for rigid pavement.

See figure 10-3 (page 10-9) for the E 18-kip axle curves for the New England and East North Central census divisions.

6. CONSTRUCTION COST OF THE HIGHWAY AS AFFECTED BY AXLE-WEIGHT LIMITS

In the final analysis, the total highway cost at each of the five levels of axle-weight limit was compared with the operating cost of those vehicles whose costs would be affected by a change in legal axle-weight limits. The elements of highway construction cost affected by axle-weight limits are as follows: (1) pavement and shoulders, (2) bridges, and (3) earthwork and small drainage structures. These costs were computed for a mile of new highway, as explained in the following sections.

A. Pavement Geometric Design

Figure 10-4 shows the standard designs of the highway cross section adopted for purposes of estimating the total cost of the pavement and shoulder structure for the series of axleweight increments considered in the analysis of the engineering economy of increased axle-weight limits.

B. Unit Price and Construction Cost of the Pavement Structure

The unit prices of the paving materials given in table 8-2 were applied to the quantities (cubic yards per mile) as computed from the cross sections in figure 10-4.

C. Construction Cost of Bridges Related to Increments of Maximum Axle Weight

The approach to determining the cost of bridges to accommodate traffic at the five levels of maximum axle-weight limit considered only steel bridges designed for the standard H2O-S16 loading, but was based upon each of the five levels of axle-weight limit.

Table 10-9 gives the critical vehicles for a range of bridge span length from 20 to 140 feet. From the loadings of these vehicles were developed the pounds of steel required for the five levels of maximum axle weight. Table 10-10 shows the required steel by span length of bridge.

The upper half of the table was developed on the basis of structural design for the indicated span lengths. Because of change in the geometrics of the bridges, the increase in the added increments of steel required per lineal foot of bridge is not smooth over the range of weight limits. In preliminary calculations it was found that the lack of uniform increments of steel resulted in undesirable roughness from one axle-weight level to another in the final highway cost increments and in the

Span, feet	No gross Load limit			ss load lir le loads, l		
	2.00	1.8/32	20/35		24/41	26/44
20 30	3-52	3-S2	3-S2	3-52	3-52	3-52
40	ij	11	11	11	11	11
50	3-52-3	3-52-3	11	11	11	11
60	11	π	3-52-3	31	11	11
	11	11	11	3-52-3	11	11
70 80	31	n	11	"	11	11
90	11	11	11	11	11	11
1.00	11	- 11	11	11	11	11
110	11	п	11	81	· 3-S2-3	11
120	11	п	11	11	"	11
130	11	11	11	11	11	11
140	31	n	п	n	11	н

Table 10-9. -- Critical vehicles

Table 10-10. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axle-weight limits: increments of pounds of steel by span length of bridge required above the H20-S16 design loading

Span	Span Single/tandem axle-weight limits, kips						
length	18/32	20/35	22/38	24/41	26/44		
Additio	Additional pounds per linear foot of bridge obtained from structural analysis						
Feet	lb.	lb.	lb.	lb.	16.		
20	7.5	24.0	39.5	56.0	72.0		
30	41.0	61.5	82.5	104.0	125.0		
40	61.0	88.5	116.0	144.0	171.0		
50	172.0	233.5	299.5	357.0	417.5		
60	264.0	330.0	397.5	458.0	526.0		
70	275.0	288.0	334.0	422.5	473.5		
80	52.6	109.0	144.6	207.6	217.9		
90	130.6	179.9	299.2	289.3	327.8		
100	141.3	201.5	233.0	279.1	314.3		
110	136.5	181.6	213.2	269.0	314.2		
120	122.4	166.8	220.7	271.3	329.0		
130	125.6	176.1	226.9	277.4	313.4		
140	137.2	194.7	237.9	292.0	356.7		
The abov	e structur	al design	smoothed t	o straight	lines		
20	7.5	23.6	39.8	55.9	72.0		
30	41.0	62.0	83.0	104.0	125.0		
40	61.0	88.5	116.0	143.5	171.0		
50	172.0	233.4	294.8	356.1	417.5		
60	264.0	329.5	395.0	460.5	526.0		
70	226.2	288.0	350.0	411.7	473.5		
80	72.7	109.0	145.3	181.6	217.9		
90	130.6	179.9	229.2	278.5	327.8		
100	141.3	187.2	233.0	278.8	324.7		
110	133.4	178.6	223.8	269.0	314.2		
120	119.5	170.1	220.7	271.3	321.9		
130	125.6	176.2	226.8	277.4	328.0		
140	146.0	194.7	243.4	292.0	340.6		
140 and over	160.0	210.0	260.0	310.0	360.0		
Total	1,800.8	2,430.7	3,060.8	3,690.3	4,320.1		

final benefit-cost ratios. Because the final benefit-cost ratios were highly sensitive to several factors, including highway construction cost per mile, it was thought to be better procedure to remove the abrupt changes in bridge cost between some axle-weight levels by smoothing the pounds of steel required from one weight level to another.

The additional pounds of steel required for the increased axle-weight limits was determined by comparing the inventory of bridges by span length (see table 8-8) against the incremental steel requirement given in table 10-10 to produce the overall pounds of steel required per foot of length of bridge for a 2lane roadway, using the standard H2O-S16 basic design (see table 10-11). These pounds of steel per foot of bridge length for a 2-lane roadway were converted to pounds of structural steel per mile of highway by multiplying by the length of bridges per mile of 2-lane highway as given in table 10-12 and then multiplying by one-half of the number of lanes. For the five axle-weight levels, table 10-13 gives per mile of highway the final pounds of structural steel in excess of the pounds required for a standard H2O-S16 design, by highway system and census division.

By analysis of Federal-aid construction contracts for 1962 and 1963, the average bid price per pound of structural steel was obtained for each census division. These prices are given in table 8-4, page 8-14. In table 10-14, the cost of constructing bridges in excess of the standard H20-S16 design was computed for

Table 10-11. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the H20-S16 design loading, weighted by span length and shown by highway system and census division

Sheet 1 of 3

Census Number		Maximum az	Maximum axle-weight limits, single/tandem, kips				
divi	sion.	of lanes	18/32	20/35	22/38	24/41	26/44
			System 1	. Interst	ate rural		
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	24 24 24 24 24	137.920 137.937 137.937 123.179 137.163	183.761 183.647 183.647 166.628 182.720	229.601 229.358 229.358 210.076 228.278	275.442 275.068 275.068 253.525 273.835	321.282 320.778 320.778 296.973 319.392
6. 7. 8. 9. 10.	WNC ESC WSC M P	24 24 24 24 24	123.161 150.012 74.737 91.312 138.502	165.332 198.726 105.555 126.195 184.916	207.502 247.441 136.373 161.077 231.330	249.673 296.155 167.191 195.960 277.743	291.843 344.869 198.009 230.842 324.157
			System 2	2. Interst	ate urban	-	
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	24 24 24 24 24	151.324 144.711 151.628 143.450 161.666	199.811 192.449 201.357 190.400 212.712	248.297 240.187 251.086 237.351 263.758	296.784 287.925 300.815 284.301 314.803	345.270 335.663 350.544 331.251 365.849
6. 7. 8. 9. 10.	WNC ESC WSC M P	24 24 24 24	162.216 135.865 117.210 115.788 145.659	213.984 181.750 157.945 156.470 192.771	265.751 227.636 198.679 197.152 239.882	317.519 273.521 239.414 237.834 286.994	369.286 319.406 280.148 278.516 334.105

Table 10-11. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the H2O-S16 design loading, weighted by span length and shown by highway system and census division

Cen	เธนร	Number	Maximum a	Maximum axle-weight limits, single/tandem, kip			
division of lanes			18/32	20/35	22/38	24/41	26/44
	System 3. Primary rural						
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	24 24 24 24 24 24	112.434 98.481 106.491 58.578 109.808	152.194 135.380 145.144 85.998 148.902	191.955 172.278 183.737 113.418 187.996	231.715 209.177 222.359 140.835 227.090	271.475 246.075 260.982 168.258 266.184
6. 7. 8. 9. 10.	WNC ESC WSC M P	2 2 2 2 2 4	83.630 66.413 47.951 57.242 109.584	116.604 95.701 72.655 84.230 148.815	149.578 124.988 97.359 111.219 188.046	182.552 154.276 122.062 138.207 227.276	215.526 183.563 146.766 165.195 266.507
			System	4. Prima:	rv urban		
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	24 24 24 24 24 24	94.510 109.566 124.601 73.827 154.791	130.513 148.879 167.473 104.474 204.130	166.516 188.192 210.346 135.120 253.468	202.519 227.504 253.218 165.767 302.806	238.522 266.817 296.090 196.413 352.145
6. 7. 8. 9. 10.	WNC ESC WSC M P	2 2 2 2 4	93.804 66.413 97.053 84.871 115.543	129.671 95.701 133.323 118.275 156.855	165.539 124.988 169.593 151.679 198.166	201.406 154.276 205.863 185.082 239.478	237.273 183.563 242.133 218.486 280.789

Table 10-11. -- Structural steel required per linear foot of 2-lane bridge for proposed higher axleweight limits: increments of pounds of steel per bridge above the H20-S16 design loading, weighted by span length and shown by highway system and census division

Sheet 3 of 3

Census		Number of	Maximum az	cle-weight	limits, s:	ingle/tand	em, kips
divi	sion	lanes	18/32	20/35	22/38	24/41	26/44
			System 5	5. Seconda	ary rural		
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	2 2 2 2 2 2	102.637 101.764 118.597 80.685 122.324	140.428 139.501 159.859 113.332 164.578	118.217 177.238 201.121 145.978 206.832	216.006 214.975 242.382 178.625 249.086	253.796 252.712 283.644 211.271 291.340
6. 7. 8. 9. 10.	WNC ESC WSC M P	2 2 2 2 2 2 2	60.625 80.142 34.259 35.201 80.916	88.069 112.354 55.977 57.577 113.567	115.513 144.566 77.694 79.954 146.218	142.957 176.777 99.412 102.330 178.869	170.401 208.989 121.129 124.706 211.520
			System (5. Seconda	a.y urban		
1. 2. 3. 4. 5.	NE MA SAN SAS ENC	2 2 2 2 2 2	86.685 82.215 116.355 84.731 138.609	120.802 115.195 157.174 118.105 184.510	154.920 148.175 197.993 151.479 230.411	189.037 181.154 238.811 184.852 276.312	223.154 214.134 279.630 218.226 322.213
6. 7. 8. 9. 10.	WNC ESC WSC M P	2 2 2 2 2 2	90.505 69.801 96.717 70.601 120.358	125.340 99.358 132.763 100.649 161.782	160.175 128.916 168.810 130.698 203.205	195.010 158.473 204.856 160.746 244.629	229.845 188.030 240.902 190.794 286.052

Sheet	1	of	3
-------	---	----	---

Total bridge length per mile of highway	Cost of bridges per mile of highway				
1. Interstate rural					
Feet	Dollars				
198 511 250 142 147 124 199 259 86 177	256,750 320,856 275,157 128,254 219,336 109,681 142,701 169,197 83,272 175,141				
2. Interstate urban	n				
219 396 483 155 163 157 228 232 114 200	1,876,665 2,212,649 1,974,658 493,561 1,473,526 990,702 1,162,574 641,727 417,723 1,545,987				
	length per mile of highway 1. Interstate rura Feet 198 511 250 142 147 124 199 259 86 177 2. Interstate urbas 219 396 483 155 163 157 228 232 114				

Table 10-12. -- Total length of bridges in feet per mile and construction cost in dollars per mile of highway, -by highway system and census division

Sh	eet	2	of	3
		_		~

Highway system	Total bridge	Cost of bridges
and	length per	per mile of
census division	mile of highway	highway
	3. Primary rural	
	Feet	Dollars
1. NE	49	54,765
2. MA	36	43,955
3. SAN	61	27,791
4. SAS	70	21,651
5. ENC	30	25,368
6. WNC	45	15,724
7. ESC	73	31,230
8. WSC	68	20,909
9. M	26	13,172
10. P	50	41,024
	4. Primary urban	
1. NE	149	181,854
2. MA	98	172,434
3. SAN	148	122,082
4. SAS	120	108,301
5. ENC	93	136,938
6. WNC	48	35,639
7. ESC	103	42,934
8. WSC	99	53,870
9. M	34	36,602
10. P	208	259,935

Table 10-12. -- Total length of bridges in feet per mile and construction cost in dollars per mile of highway, by highway system and census division

		Sheet 3 OI 3
Highway system	Total bridge	Cost of bridges
and	length per	per mile of
census division	mile of highway	highway
	5. Secondary rura	1
	Feet	Dollars
1. NE	13	19,946
2. MA	15	15,357
3. SAN	14	6,368
4. SAS	37	4,741
5. ENC	13	5,863
6. WNC	19	4,393
7. ESC	50	11,687
8. WSC	39	6,392
9. M	14	6,464
10. P	17	7,478
	6. Secondary urba	n
1. NE	378	68,221
2. MA	413	60,540
3. SAN	327	28,296
4. SAS	621	23,578
5. ENC	411	31,548
6. WNC	196	10,052
7. ESC	719	159,412
8. WSC	560	9,408
9. M	179	18,199
10. P	728	47,529

Sheet 3 of 3

Table 10-13. -- Pounds of structural steel per mile of highway, excess over standard H20-S16 design

Sheet 1 of 2

Census division	18/32	20/35	22/38	24/41	26/44
	Syste	m 1. Inter	state rurs	1	
1. NE	54,616	72,769	90,922	109,075	127,228
2. MA	140,972	187,687	234,404	281,119	327,835
3. SAN	68,969	91,824	114,679	137,534	160,389
4. SAS	34,983	47,322	59,662	72,001	84,340
5. ENC	-40,326	53,720	67,114	80,507	93,901
6. WNC	30,544	41,002	51,460	61,919	72,377
7. ESC	59,705	79,093	98,482	117,870	137,258
8. WSC	38,714	54,677	70,641	86,605	102,569
9. M	15,706	21,706	27,705	33,705	39,705
10. P	49,030	65,460	81,891	98,321	114,752
	Syste	em 2. Inte	erstate urb	an	
1. NE	66,280	87,517	108,754	129,971	151,228
2. MA	114,611	152,420	190,228	228,037	265,845
3. SAN	146,473	194,511	242,549	290,587	338,626
4. SAS	44,470	59,024	73,579	88,133	102,688
5. ENC	52,703	69,344	85,985	102,626	119,267
6. WNC	50,936	67,191	85,446	99,701	115,956
7. ESC	61,954	82,878	103,802	124,726	145,649
8. WSC	54,385	73,286	92,187	111,088	129,989
9. M	26,400	35,675	44,951	54,226	63,502
10. P	58,264	77,108	95,953	114,798	133,642
	Syst	em 3. Pri	mary rural	· · · · · · · · · · · · · · · · · · ·	
1. NE	11,019	14,915	18,812	22,708	26,605
2. MA	7,091	9,747	12,404	15,061	17,717
3. SAN	12,992	17,708	22,416	27,128	31,840
4. SAS	8,201	12,040	15,879	19,717	23,556
5. ENC	6,588	8,934	11,280	13,625	15,971
6. WNC	3,763	5,247	6,731	8,215	9,698
7. ESC	4,848	6,986	9,124	11,262	13,400
8. WSC	3,260	4,940	6,620	8,300	9,980
9. M	1,488	2,190	2,891	3,593	4,295
10. P	10,958	14,882	18,805	22,728	26,651

	Sheet 2 of 2					
Census division	- 18/32	20/35	22/38	24/41	26/44	
	System 4. Primary urban					
1. NE	28,164	38,893	49,622	60,351	71,080	
2. MA	21,475	29,180	36,886	44,591	52,296	
3. SAN	36,882	49,572	62,262	74,953	87,643	
4. SAS	17,718	25,074	32,429	39,784	47,139	
5. ENC	28,791	37,968	47,145	56,322	65,499	
6. WNC	4,502	6,224	7,946	9,667	11,389	
7. ESC	6,840	9,857	12,874	15,890	18,907	
8. WSC	9,608	13,199	16,789	20,380	23,971	
9. M	2,885	4,021	5,157	6,293	7,428	
10. P	48,066	65,252	82,437	99,623	116,808	
	System	15. Seco	ndary rura	L		
1. NE	1,334	1,826	2,317	2,808	3,299	
2. MA	1,526	2,093	2,659	3,225	3,791	
3. SAN	1,660	2,238	2,816	3,393	3,971	
4. SAS	2,985	4,193	5,401	6,609	7,817	
5. ENC	1,590	2,140	2,689	3,238	3,787	
6. WNC	1,152	1,673	2,195	2,716	3,238	
7. ESC	4,007	5,618	7,228	8,839	10,449	
8. WSC	1,336	2,183	3,030	3,877	4,724	
9. M	493	806	1,119	1,433	1,746	
10. P	1,376	1,931	2,486	3,041	3,596	
System 6. Secondary urban						
1. NE	32,767	45,663	58,560	71,456	84,352	
2. MA	33,955	47,576	61,196	74,817	88,437	
3. SAN	38,048	51,396	64,744	78,091	91,439	
4. SAS	52,618	73,343	94,068	114,793	135,518	
5. ENC	56,968	75,834	94,699	113,564	132,430	
6. WNC	17,739	24,567	31,394	38,222	45,050	
7. ESC	50,187	71,438	92,691	113,942	135,194	
8. WSC	54,162	74,347	94,534	114,719	134,905	
9. M	12,638	18,016	23,395	28,774	34,152	
10. P	87,621	117,777	147,933	178,090	208,246	

10-4	. 8
------	-----

Table 10-14. -- Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H20-S16 design

Sheet	t]	. of	2

Census division	18/32	20/35	22/38	24/41	26/44	
	System 1. Interstate rural					
1. NE 2. MA 3. SAN 4. SAS 5. ENC	9,240 25,897 11,627 4,884 6,400	12,312 34,478 15,482 6,606 8,525	15,384 43,060 19,335 8,329 10,651	18,455 51,642 23,188 10,051 12,776	21,527 60,223 27,042 11,774 14,902	
6. WNC 7. ESC 8. WSC 9. M 10. P	6,176 11,565 6,206 3,331 11,787	8,291 15,320 8,765 4,604 15,737	10,405 19,076 11,324 5,876 19,687	12,520 22,831 13,883 7,149 23,636	14,635 26,587 16,442 8,421 27,586	
	System 2. Interstate urban					
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNC 7. ESC 8. WSC 9. M 10. P	11,215 21,054 24,695 6,208 8,364 10,299 12,000 8,718 5,599 14,007	14,808 28,000 32,795 8,240 11,005 13,586 16,053 11,748 7,567 18,537	18,401 34,945 40,894 10,272 13,646 16,873 20,106 14,778 9,534 23,067	21,991 41,890 48,993 12,303 16,287 20,160 24,159 17,807 11,501 27,597	25,588 48,836 57,091 14,335 18,928 23,446 28,212 20,837 13,469 32,128	
	System 3. Primary rural					
1. NE 2. MA 3. SAN 4. SAS 5. ENC 6. WNC 7. ESC 8. WSC 9. M	1,864 1,303 2,190 1,145 1,046 761 939 523 316	2,524 1,790 2,986 1,681 1,418 1,061 1,353 792 464	3,183 2,279 3,779 2,217 1,790 1,361 1,767 1,061 613	3,842 2,767 4,574 2,752 2,162 1,661 2,181 1,330 762	4,502 3,255 5,368 3,288 2,535 1,961 2,596 1,600 911	
9. M 10. P	2,634	3,578	4,521	5,464	6,407	

Table 10-14. -- Dollars of construction cost for structural steel per mile of highway, excess of cost over standard H20-S16 design

Sheet 2 of 2

Census division	18/32	20/35	22/ 3 8	24/41	26/44	
	System 4. Primary urban					
1. NE	4,765	6,581	8,396	10,211	12,027	
2. MA	3,945	5,360	6,776	8,191	9,607	
3. SAN	6,218	8,358	10,497	12,637	14,777	
4. SAS	2,473	3,500	4,527	5,554	6,581	
5. ENC	4,569	6,026	7,482	8,938	10,395	
6. WNC	910	1,258	1,607	1,955	2,303	
7. ESC	1,325	1,909	2,494	3,078	3,662	
8. WSC	1,540	2,116	2,691	3,267	3,843	
9. M	612	853	1,094	1,335	1,575	
10. P	11,555	15,686	19,818	23,949	28,081	
	Syste	m 5. Secon	ndary rura	L		
1. NE	226	309	392	475	558	
2. MA	280	384	488	592	696	
3. SAN	280	377	475	572	670	
4. SAS	417	585	754	923	1,091	
5. ENC	252	340	427	514	601	
6. WNC	233	338	444	549	655	
7. ESC	776	1,088	1,400	1,712	2,024	
8. WSC	214	350	486	621	757	
9. M	104	171	237	304	370	
10. P	331	464	598	731	864	
System 6. Secondary urban						
1. NE	5,544	7,726	9,908	12,090	14,272	
2. MA	6,238	8,740	11,242	13,744	16,246	
3. SAN	6,415	8,665	10,916	13,166	15,417	
4. SAS	7,345	10,239	13,132	16,025	18,918	
5. ENC	9,041	12,035	15,029	18,023	21,017	
6. WNC	3,587	4,967	6,348	7,728	9,109	
7. ESC	9,721	13,838	17,954	22,071	26,187	
8. WSC	8,682	11,918	15,154	18,389	21,625	
9. M	2,680	3,821	4,962	6,103	7,244	
10. P	21,064	28,314	35,563	42,813	50,062	

each census division by multiplying the pounds in table 10-13 by the cost in cents per pound as given in table 8-4 for each census division. It will be noted in table 10-13 that additional increments of steel are required for the basic 18/32-kip axle loading, because the critical vehicle used in this design process required some additional steel over the present H20-S16 design normally used in Federal-aid work.

By adding the incremental costs in table 10-14 to the base costs given in table 10-12, the total costs of bridges per mile of highway were obtained for each of the five levels of axleweight limits. These total costs are given in table 8-10, page 8-28, along with other costs of construction of the complete highway.

D. Cost of Construction of Earthwork and Small Drainage Structures

The only cost of earthwork and small drainage structures that is considered to increase with increased maximum axle-weight limits is that which would result from any additional depth of earthwork excavations necessitated by a greater total depth of pavement structure. Allowance was made for this by added construction cost computed for each highway system and census division on the basis of the computed total depth of the pavement (and shoulder) structure. The cubic yards of extra excavation per mile were calculated for each of the axle-weight levels above the base condition on the basis that one-half of the mile was cut and the other half was fill. The increment of earthwork cost for the added axle-weight limit was added to the base earthwork costs in table 8-9 to get the total cost given in table 10-28N (page 10-74) and similar ones.

7. COST OF HIGHWAY MAINTENANCE AS RELATED TO MAXIMUM AXLE-WEIGHT LIMITS

The relation between axle-weight limits and the cost of maintaining a highway would vary only on the items of pavement and shoulders and of bridges. The procedure for estimating the cost of these two items of maintenance is discussed below.

A. Pavement Maintenance Cost Attributable to Increases in Maximum Axle-Weight Limits

Accepting the conclusion that the only maintenance operation affected by vehicle axle weight is the patching of pavements, where the surface must be cut through and the narrow strip of shoulder adjacent to the pavement edge must be patched, two further determinations are needed: (1) What is the maintenance cost per mile or per lane-mile of highway for a base condition such as that for the 18/32-kip axle-weight limit and (2) on what basis may this base cost be increased with increases in maximum limits of axle weight.

It was assumed that the annual cost of patching resulting from the effects of axle weight would be 20 percent of the total annual cost of maintaining the pavement and base course and the shoulders, as given in table 8-12. The values in this table are National averages, and to reduce maintenance costs to a census division basis, maintenance-cost indexes based on the wage rate for common labor were used.

The incremental increase in the base cost of maintenance patching as the maximum axle-weight limit is increased was calculated in direct ratio to the increase in pavement depth. For rigid pavement, only the slab depth was used, but for flexible pavements the bituminous concrete depth plus the depth of base was used. The annual cost per mile of 2-lane highway of maintaining the pavement and shoulders for the base condition at the 18/32-kip axle-weight limit is given in table 10-16.

B. Bridge Maintenance Cost Attributable to Increases in Maximum Axle Weights

Painting every six to seven years is the major cost of maintenance of steel bridges. The annual maintenance cost of structures may be assumed to be proportional to the added pounds of steel required for the increased axle-weight limits.

Using a 6- to 7-year frequency and a \$15 to \$20 cost of painting a ton of steel, the average annual cost of bridge

Table 10-16. -- Annual cost per highway mile of patching pavement and shoulders as a result of effects from axle weight applications

Cost in dollars per year per mile for a 2-lane readway for the 18/32 kip axle level. Costs apply to both rigid and flexible pavements.

-	ensus	Maintenance	Intera syst 2-1	tem	Prima syst 2-1	tem	Second syst 2-1	tem
15	vision	cost in lex 1/	rural	urban	rural	virban	nıral	urban
1.	NE	1.023	\$286	\$443	\$224	\$338	\$ 97	\$173
2.	MA	1.134	318	491	248	374	108	192
3.	SAN	0.804	225	348	176	265	. 76	136
4.	SAS	0.730	204	316	160	241	69	123
5.	ENC	1.156	324	501	253	381	011	195
6.	WINC	0.972	272	421	213	321	92	164
7.	ESC	0.759	212	329	166	250	72	128
8.	WSC	0.745	209	323	163	246	71	126
9•	M	1.171	328	507	256	386	111	198
10.	P	1.479	414	640	324	488	141	250
Nati	onal Z	1.000 0.200	1,398 280	2,165 433	1,094 219	1,648 330	477 95	847 169

Based on wage rate for common labor.

1/ 2/ Annual dollars cost is taken as 20 percent of the cost of maintaining surface, base and shoulders given in table 8-12.

maintenance, as it may be affected by vehicle axle-weight limits, was assumed to be \$3 per year per ton of steel in excess of the base tonnage.

The maintenance cost of \$3 a ton of steel is a National average, which was converted to a census division basis using the maintenance cost index given in table 10-17. The maintenance cost of bridges for the pounds of steel in excess of the standard H20-S16 design is given in table 10-18 for the six highway systems.

8. MOTOR VEHICLE OPERATING COST--PROCEDURE FOR CALCULATION

The important result of increasing the legal limits on dimensions and weights of motor vehicles would be a reduction in the number of vehicles required to transport a given tonnage of goods over the highway. As the gross weight of trucks increases, their operating cost per vehicle-mile likewise increases but at a shower rate. The number of vehicles required to transport a given tonnage of goods, therefore, decreases with increased gross vehicle weights. Within some range of change, the reduced number of vehicles times their operating cost in cents per mile would result in a lower payload per ton-mile operating cost than would be the case if the total payload were transported in a greater number of vehicles having lower gross weights and lower operating costs per mile.

Table 10-17 .- Unit cost per ton of structural steel of repainting steel bridges

-	ensus vision	Bridge maintenance cost_index l/	Equivalent annual cost of repainting steel bridges	Equivalent annual cost of repainting steel bridges 1/
			Dollars per ton	Dollars per pound
1.	NE	0.995	2.98	0.00149
2.	MA	1.087	3.26	•00163
3.	SAN	0.678	2.03	.00101
<u>4</u> .	SAS	0.772	2.32	.00116
5.	ENC	1.108	3.32	.00166
6.	WNC	1.052	3.16	.00158
7.	ESC	1.121	3.36	.00168
8.	WSC	0.776	2.33	.00116
9.	М	1.112	3•34	.00167
10.	P	1.388	4.16	0.00208
Nat	ional	1.000	2/3.00	0.00150

1/ Based on wage rate of skilled labor.
2/ Based upon a repainting cost of \$18 a ton of structural steel and a repainting cycle of 6 years of \$3 per year per ton of steel.

Table 10-18. -- Annual highway cost per mile of repainting steel bridges: excess above the standard H20-S16 design.

Sheet	1	of	2

Census	Single	e/tandem (axle weigh	nt limits	, kips
division	18/32	20/35	22/38	24/41	26/44
	1.	Interstate	e rural)	
1. NE	\$ 58	\$ 78	\$ 97	\$117	\$136
2. MA	142	190	238	285	333
3. SAN	135	180	225	269	314
4. SAS	44	60	76	91	107
5. ENC	76	101	127	152	177
6. WNC	44	59 94 67	74	89	104
7. ESC	71	1	117	140	163
8. WSC	47	1	86	106	125
9. M	29	40	51	62	72
10. P	85	114	142	171	200
	2.	Interstat	e urban		
1. NE	377	498	619	739	860
2. MA	1,261	1,677	2,093	2,509	2,925
3. SAN	483	641	799	958	1,116
4. SAS	376	500	623	746	869
5. ENC	704	926	1,148	1,370	1,592
6. WNC	517	682	850	1,011	1,176
7. ESC	499	668	837	1,005	1,174
8. WSC	355	478	602	725	848
9. M	285	386	486	586	687
10. P	1,026	1,358	1,690	2,022	2,351
	3.	Primary r	ural		
1. NE	16	22	28	34	40
2. NA	12	16	20	25	29
3. SAN	13	18	23	27	32
4. SAS	10	14	18	23	27
5. ENC	11	15	19	23	27
6. WNC	6	8	11	13	15
7. ESC	8	12	15	19	23
8. WSC	4	6	8	10	12
9. M	2	4	5	6	7
10. P	23	31	39	47	55

Table 10-18.	 Annual highway	cost]	per	mile	of	repainting
	steel bridges:		ss e	above	the	standard
	H20-S16 design.					

Table 10-19 gives the practical maximum gross vehicle weights for 13 vehicle types for the five levels of maximum axle-weight limits. The steering-axle weights were based upon the 1962 and 1963 weighings of trucks by the State highway departments.

9. CALCULATION OF THE BENEFIT-COST RATIO FOR THE ECONOMY OF AXLE-WEIGHT LIMITS

In the analysis of the economy of increased maximum axle-weight limits, the final comparison is based upon the ratio of the decreased annual cost of motor truck operation with each incremental increase in axle-weight limit (the benefits) to the incremental increase in the equivalent uniform annual highway costs (the costs).

A. Average Daily Traffic

Table 10-22 gives the number of each vehicle class in the total ADT for the primary rural system, census divisions 5 and 6 and axle-weight level. Note that the truck classes from 2D upward are the ones that decrease as the maximum axle-weight limit increases.

B. Computed Depths of Favement Structure and Construction Cost

The pavement depths and the pavement costs for each of the six highway systems and the ten census divisions were calculated by the computer for both rigid and flexible pavements.

Table 10-19. -Practical maximum gross vehicle weight with a range of maximum axle weights

Sheet 1 of 2

	Sing	le/tandem	axle wei.	ght limit	, kips
Vehicle and Exle	18/32	20/35	22/38	24/41	26/44
2D Steering Drive single Total	7.4 18.0 25.4	8.2 20.0 28.2	9.0 22.0 31.0	9.8 24.0 33.8	10.6 26.0 36.6
3A. Single unit truc Steering axle Drive tandem Total		10.2 35.0 45.2	10.8 38.0 48.8	11.4 41.0 52.4	12.0 Լև.0 56.0
2-Sl Steering Drive single Semi-single Total	7.6 18.0 18.0 43.6	8.0 20.0 20.0 4 ⁸ .0	8.3 22.0 22.0 52.3	8.5 24.0 24.0 56.5	8.6 26.0 26.0 60.6
2-S2 Steering Drive single Semi-tandem Total	8.4 18.0 32.0 58.4	8.7 20.0 35.0 63.7	9.0 22.0 38.0 69.0	9.3 24.0 41.0 74.3	9.6 26.0 44.0 79.6
3-S2 Steering Drive tandem Semi-tandem Total	9.7 32.0 <u>32.0</u> 73.7	10.0 35.0 35.0 80.0	10.3 38.0 38.0 86.3	10.6 41.0 41.0 92.6	10.9 Цц.0 Цц.0 98.9
2-2 Steering Drive single Trailer single Trailer single Total	8.6 18.0 18.0 18.0 62.6	8.8 20.0 20.0 20.0 68.8	9.0 22.0 22.0 22.0 75.0	9.2 24.0 24.0 24.0 81.2	9.1, 26.0 26.0 25.0 87.1
2-3 Steering Drive single Trailer single Trailer tandem Total	8.6 18.0 18.0 32.0 76.6	8.8 20.0 20.0 35.0 83.8	9.0 22.0 22.0 38.0 91.0	9.2 24.0 24.0 41.0 98.2	9.4 26.0 26.0 105.4
3-2 Steering Drive tandem Trailer single Trailer single Total	9.8 32.0 18.0 18.0 77.8	10.2 35.0 20.0 20.0 85.2	10.6 38.0 22.0 22.0 92.6	11.0 41.0 24.0 24.0 100.0	11.4 44.0 26.0 26.0 107.4

Table 10-19. -Practical maximum gross vehicle weight with a range of maximum axle weight^s

Sheet 2 of 2

	Sing	le/tandem	axle wei	ght limit	, kips
Vehicle and axle	18/32	20/35	22/38	24/41	26/44
2-S1-2					
Steering	8.7	8.9	9.1	9.3	9.5
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0 80.7	20.0	22.0	24.0	26.0
Total	00.7	88.9	97.1	105.3	113.5
2-S2-2					
Steering	9.3	9.7	10.1	10.5	10.9
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Total	95.3	104.7	114.1	123.5	132.9
2-S2-3					
Steering	9.3	9.7	10.1	10.5	10.9
Drive single	18.0	20.0	22.0	24.0	26.0
Semi-tandem	32.0	35.0	38.0	41.0	44.0
Trailer single	18.0	20.0	22.0	24.0	26.0
Trailer tandem	32.0	35.0	38.0	41.0	44.0
Total	109.3	119.7	130.1	140.5	150.9
3-S2-4 Steering	10.0	10.3	10.6	10.9	11.2
Drive tandem	32.0	35.0	38.0	41.0	44.0
Semi-tandem	32.0	35.0	38.0	41.0	· 14.0
Trailer tandem	32.0	35.0	38.0	41.0	44.0
Trailer tandem	32.0	35.0	38.0	h1.0	44.0
Total	138.0	150.3	162.6	174.9	187.2
3-4					
Steering	9.8	10.2	10.6	11.0	11.4
Drive tandem	32.0	35.0	38.0	41.0	44.0
Trailer tandem Trailer tandem	32.0	35.0	38.0 38.0	41.0 41.0	44.0 44.0
Trailer Vandem Total	32.0	35.0	124.6	134.0	143.4
LOVAL	1 10/.0	12.2.)	1 124.0	1-07-0	

						SY	SYSTEM 3				Method 1,		with payload increase
SINGLE AXLE Weight Limit Kips	PASS CARS	BUSES	PANEL AND PICKUP	25	20	ЗА	SEMI- 3-AXLE	SEMI- 4-AXLE	SEMI- 5-AXLE	COMB 5-AXLE	2-TLR 5-AXLE	SUB TGTAL	TOTAL
1962		-				CENSUS	NUISINIO	0N 5					
18	2596.0	0*6	143.0	35.0	142.0	22.0	46.0	135.0	85+0	3.0		438-0	3221.0
20	2596.0	0*6	143.0	35.0	131.9	20.0	43.5	127.5	79.5	2.8	4.7	406°6	3192.9
22	2596.0	0°6	143.0	35.0	122.8	18.3	41.0	121.0	14.5	2.6	4.4	384.6	3167.6
24	2596.0	0°6	143.0	35.0	114.7	17.0	38.5	115.5	70.0	2.4	4.1	362.2	3145.2
26	2596.0	0*6	143.0	35.0	107.6	15.8	36.0	111.0	66.0	2.2	3.8	342.4	3125.4
1990		1	•	-									
18	3211.0	7.0	198.0	49*0	148.0	27.0	40.0	180.0	136.0	4.0	6•0	541.0	4006.0
20	3211.0	7.0	198.0	49.0	137.5	25.0	37.5	170.0	127.2	3.8	5.7	506.7	3971.7
22	3211.0	0*2.	198.0	49.0	128.0	23.0	35.0	161.3	119.2	3.6	5.4	475.5	3940.5
24	3211.0	7.0	198.0	49.0	119.6	21.0	32.5	154.0	112.0	3.4	5.1	447.6	3912.6
26	3211.0	7.0	198.0	49.0	112.2	19.0	30.0	148.0	105.6	3.2	4.8	422.8	3887.8
1962		•				CENSUS	CENSUS DIVISION	9 N				:	
1.8	1273.0	5.0	95.0	14.0	65°0	15.0	13.0	33.0	50.0	0•	0.	176.0	1563.0
20	1273.0	5.0	95.0	14.0	60.5	14.0	12.3	31.0	46.6	0.	0•	164.3	1551-3
22	1273.0	5.0	95.0	14.0	56.4	13.0	11.6	29.3	43.5	0	0.	153.8	1540.8
24	1273.0	5.0	9·26	14.0	52.7	12.0	10.9	27.9	41.0	0 *	0•	144.5	1531.5
26	1273.0	5.0	95.0	14.0	49.4	11.0	10.2	26.8	39-0	0.	0.	136.4	1523.4
1990			-	•									
18	1466.0	4.0	123.0	18.0	63.0	17.0	10.0	41.0	73.0	0	0 •	204.0	1815.0
20	1466.0	0.4	123.0	.18.0	58.6	16.0	<u>6°5</u>	38.5	6.10	0.	0 • •	190.5	1801.5
22	1466.0	4.0	123.0	18.0	54.7	15.0	0*6	36.4	63.6	• •	•	178.6	1789.6
24	1466.0	0-4	123.0	18.0	51.1	14.0	8.5	146	59.8	0	•	168-1	1.6771
26	1466.0	0-4	123-0	18.0	41.9	13.0	8.0	33.5	56.9	0•	• 0	159.1	1170.1

Table 10-23A is a direct reproduction of the computer printout for the primary rural system.

C. Calculation of the Equivalent Uniform Annual Highway Cost

Table 10-28N (page 10-74) gives the National averages for highway construction costs and annual highway maintenance costs in the six highway systems as calculated by the procedure described in the preceding sections for Method 1-M. The total construction cost for paving, bridges, and earthwork was reduced to an annual capital cost by multiplying it by the capital recovery factor of 0.087185 assuming a 6-percent annual interest rate and an analysis period of 20 years. This factor reduces the construction costs to an equal annual cost equivalent to an annual depreciation charge plus an interest charge on the undepreciated cost.

D. Calculation of the Equivalent Uniform Annual Motor Vehicle Operating Cost

The annual motor vehicle operating costs at the five axle-weight levels are also given in table 10-28N. Operating costs are given only for those vehicles (the 2D and upward) which would make some use of the increased axle-weight limits under a change of the law. While passenger buses would make some use of the increase, such use is not considered. The total costs have two components: (1) the operating cost for the first year of the 20-year analysis period (1965) and continued for 20 years, plus

TABLE /Q-225 computer printout on persons design and personal construction cost as affected by axls weight maximum limits by highway system and census division.

Analysis method 1-WP-W2-HTB. With 29 percent increase in payload 1952 to 1970 and with the 5-year transition period.

IDIBIAT STRTEM 2, INTERSTATE UPDAN

DIV.	EQ AXLE LOAD	NO. LHS	FO	E18	RIGIO OEPTH PVMT INCHES	COST/MILE	COS7 CHANGE	EQ YEAR	E18	OEPTH PVMT	FLEXIBLE PAV IN INCHES BASE SB	COST/MILE	COST CHANGE
I. NE	10	4		1301.7	8.19	203758.52	•		1155.0	3.18	6.36 21.09	176501.60	
	20	4	82.9	1523.5	6-41	206316.98	2558.46	03.2	1312.2	3.23	6.46 21.40	178318.55	1816.9
	22	4	81.2	1756-6	8.61	208690.10	2373+12	81.7	1484.7	3.28	6.56 21.70	180128.91	1810.3
	24	4	79.8	1992.4	8.79	210837.88	2147.78	80.4	1664.9	3.33	6.66 21.98	181860.30	1731.4
	26	4	76.7	2227.4	8.95	212776.78	1938.90	79.4	1849.6	3.31	6.75 22.25	183502.08	1641-7
, ма	10	4		3102.3	9.49	254842.64			2704.9	3.54	7.08 13.25	248305.76	
	20	4	33.3	3511.4	9.69	257677.18	2834.54	83.4	3045.8	3.59	7.19 13.57	251 783.76	2978.0
	22	ă.	61.6	4077.8	9.88	260454.64	2777.46	82.0	3411.6	3.64	7.29 13.88	254678.48	2894.7
	24		80.6	4564.4	10.07	263081.42	2626.78	80.8	3738.6	3.69	7.39 14.18	257396.42	2717.9
	26	4	79.5	5063.0	10.24	265539.48	2458.06	79.8	4171.0	3.74	7.48 14.45	259925.10	2528.6
SAN	18	4		1999.8	9.02	227520.60		· _ · · · ·	1672.6	3.79	7.59 14.78	248079.06	
	20	4	83+2	2286.3	9.22	230217.20	2696.60	83.1	1922.1	3.86	7.72 15.18	251906.30	3827.2
	22	4	81.7	2580.0	9.40	232704.86	2487.66	81.6	2170.8	3.92	7.84 15.54	255302.02	3395.7
	25		80.5	2880.3	9.57	235014.52	2309.66	80.4	2424.4	3.97	7.95 15.87	258423.14	3121.1
	26	. 4	79.5	3174-5	9.73	237091.04	2076.52	79.5	2672.9	4+02	8.05 16.16	261206.22	2783.0
\$A5	18			1097.3	7.83	211981.06			901.8	2.78	5.56 8.68	128637.91	
	źò	· .	83.0	1282.0	8.03	214816.76	2835.70	83.1	1043.9	2.83	5.66 8.98	130234-19	1596.2
	22	4	81.3	1478.9	8.22	217488.48	2671.72	81.5	1193.6	2.87	5.75 9.27	131725.35	1491.1
	24	4	80.0	1687.2	8.40	220012.96	2524.48	80.2	1350.2	2.92	5.84 9.53	133124+10	1398.7
	26		78.9	1899.2	8.56	222331.10	. 2318.14	79.2	1508.1	2 . 96	5.92 9.78	134400.30	1276,B
ENC	18			2125.4	9.11	221510.42			1684.7	3.80	7.60 14.80	194220.12	
	20		83.1	2445.2	9.32	224233.88	2723.46	83+2	1919.5	3.86	7.72 15.18	196963.98	2743+8
	22	4	`81 <u>`</u> 7	2773.9	9.51	226739.60	2505.72	81.8	2161.8	3.92	7.64 15.53	199496.55	2532 • 5
	24	4	80.4	3110.5	9.69	229061.50	2321.90	80.6	2411.6	3.97	7.95 15.85	201852.40	2355.8
	26	4	79.5	3438.3	9.85	231130.12	2068.62	79.7	2657.1	4.02	8.04 16.14	203960.86	2108.4
							• • • •						
INC	i												
	18	°. 4		937.5	7.76	220647.62	2528.02		714.7	2.99	5.99 9.99	156143.99	1851.8
	20	~4	83+2 -	1070.5	7.93	223175.64	2423.80	83.3	807.8	3.04	6.09 10.27	157995.86	1746.0
	22	4	01.7	1212.3	8.10	225599.44	2322.10	82.0	904.5	3.08	6.17 10.52	159741.91	1649.4
	24	4	80.5	1362.4	8.26	227921.54	2126.45	80.8	1004.3	3.12	6.25 10.76	161391.39	1488.0

		-		101005	1472	223213101	2423.80	0.50.5	00100	2001	0.07		191779200	1746.05
	22	4	81.7	1212.3	8.10	225599.44		82.0	904.5	3.08	6.17	10.52	159741.91	
	24	4	80.5	1362.4	8.26	227921.54	2322.10	80.8	1004.3	3.12	6.25	10.76	161391.39	1649.48
	26	4	79.5	1\$13.0	8.40	230048-00	2126.45	79.9	i10i.9	3.16	6.32	10.98	162879.41	1488.05
7. ESC	18	4		2526.1	9.37	246214.26			2146.2			15.50	225410.52	
							2538.58						•	2664.80
	20	4	83.4	2837.2	9.55	248752.84	2473.18	83.6	2383.6			15.82	228075.32	2515.16
	22		82.1	3170.3	9.72	251226.02	2395.90	82.4	2629.3	4-01	8.03	16.11	230590.48	2380.66
	24	4	80-9	3524.0	9.89	253625+92	2218.28	81.3	2883.1	4.05	8.13	16.39	232971.14	2147.62
8. wsc	26	4	80.0	3879.4	10.05	255844.20		80.5	3131.2	4.10	8.21	16.65	235118.76	
0	18	4		1375.6	8.48	190529.51			1063.5	3.59	7.18	13.54	17+393.90	
	20	4	83.1	1585.6	8.68	192761.53	2232.02	\$3.2	1212.7	3.64	7.29	13.89	176909.36	2515.46
	22	4	81+6	1802.2	8.86	194819.03	2057.50	81.8	1369.0	3.70	7.40	14.22	179274.27	2364.91
	24	4	80.4	2024.7	9.03	196728.92	1909.09	80.6	1532.1	3.75	7.51	14.54	181502.45	2228.18
	26	4	79.4	2242.1	9.19	198434.23	1705.31	79.6	1693.9			14.82	183515.92	2013.47
9. 🛪	18	4		1887.2	8.44	169969.74								
							2068.83		1396.8		5.10	7.30	99956.48	1031.52
	20	4	83.3	2155.5	8.62	172058.57	1907.04	83.5	1566.5	2.58	5.17	7.52	100988.00	993.13
	22	4	81.9	2430.3	8.79	173965.61	1769.98	82.2	1746.1	2.62	5.24	7.73	101981.13	955.62
	24		80.8	2710.7	8.95	175735.59	1586.71	81.1	1935.0	2.65	5.31	7.94	102936.75	
10	26	4	79.9	2984.5	9.10	177322.30	1300-11	80.ź	2124.7	2.68	5.37	8.13	103820.53	883.78
101 0	18	4		3591.3	9.51	201896.42			2843.8	3.21	6.42	11.27	160893.01	
	20	4	83.5	4020.2	9.68	203922.60	2026.18	83.2	3260+2	3.26	6.53	11.61	163376.80	2483.79
	22	4	82.3	4469.7	9.85	205861.88	1939.28	81.8	3685.5	1.32	6.64	11.92	165563.38	2286.58
	24		81.2	4738.6	10.02	207718.74	1856.86	80.7		3.30		12.21	167784.48	2121.10
	26	4	80.3	5406.0	10.17		1709.86							1907.90
	20	-	00+3	5400.0	10.11	209428.60		79.8	4543.0	3+41	6.82	12.47	167692.39	

(2) the equivalent uniform annual cost for the increased ADT over the 20-year period. The increase in ADT was calculated as a uniform (gradient) increase for each of the 20 years. This gradient expressed in dollars per year was reduced to an equivalent uniform annual amount by multiplying the yearly uniform increase in operating cost by the gradient factor of 8.605 for a 6-percent interest rate and a period of 20 years. This procedure discounts the future increasing motor vehicle operating costs to an equivalent uniform annual cost.

The calculation of the motor vehicle operating cost in table 10-28N was based upon the same transition period (1, 2, 3, or 5 years beginning January 1, 1965) as was used in the calculation of the equivalent 18-kip axle applications. The equivalent decremental change in motor vehicle operating cost was obtained by successive subtraction of the operating costs at each axle-weight level.

E. The Benefit-Cost Ratios

The last line of table 10-28N gives the final ratios of the equivalent uniform annual incremental motor vehicle benefits to the equivalent uniform annual incremental highway costs. These benefit-cost ratios are shown for each level of upward change in maximum axle-weight limits, beginning with the increment between the 18/32-kip and 20/35-kip axle-weight levels.

10. CONSIDERATIONS RELATIVE TO THE AASHO INTERIM PAVEMENT DESIGN FORMULAS

In the studies of the economy of the maximum axleweight limits using Methods 1, 2, and 3, the pavement designs were made by applying without modification the AASHO Interim Guides and the design depths as calculated. The following arrays give the rigid pavement designs for Method 1 for each highway system, arranged from high to low by slab depth for the ten census divisions.

These depths, with the possible exception of the top few for Interstate systems 1 and 2, are materially less than are being constructed by the States. It was concluded that the AASHO design formula for rigid pavements is not in agreement with practice at low traffic volumes, actually low numbers of E 18-kip axle applications. The explanation offered is that the AASHO Road Test did not cover sufficient calendar time to permit time, weathering, and other environmental factors to contribute their combined effects. Therefore, it is to be expected that good design practice under certain conditions would call for increasing the slab depth from that indicated by the AASHO design formula. Further, the applications herein of the AASHO design formula may have extrapolated the formula below its reliable range.

The question is raised, logically, as to whether the final benefit-cost ratios arrived at in Method 1 would be

System 1	System 2	System 3	System 4	System 5	System 6
9.25	9.51	7.10	8.37	5.17	6.57
9.24	9.49	7.06	7.57	5.17	6.11
9.15	9.37	6.97	7.38	5.17	6.05
9.04	9.11	6.95	7.26	5.04	5.76
8.96	9.02	6.94	7.16	5.01	5.56
8.16	8.48	6.69	7.16	5.01	5.50
7.81	8.44	6.49	7.13	4.95	5.48
7.81	8.19	6.30	6.69	4.88	5.43
7.58	7.83	5.99	6.58	4.76	5.29
7.21	7.76	5.51	6.49	4.56	4.75

METHOD 1--RIGID PAVEMENT Depths of pavement slab, inches

materially greater or smaller if some minimum rigid pavement depth were imposed so that the analysis of economy of axleweight limits was made to start at the pavement design now generally accepted as adequate under existing axle-weight maximum limits. To answer this question, Method 1 was repeated as Method 1-M, in which minimum limits of pavement depths for both rigid and flexible pavements were used.

11. METHOD 1-M--ECONOMY OF AXLE-WEIGHT LIMIT WHEN USING A MINIMUM DEPTH OF PAVEMENT

By reference to summaries and spot information on pavement design, State by State, found in the Structures and Applied Mechanics Research Division, table 10-26 was prepared, giving the general nominal thickness of rigid pavement slab and of the flexible bituminous surfacing most frequently

Table 10-26. --Minimum pavement depth most frequently used by the States in each census division for each of six highway systems

Census				Highway	system			
division	l. ISR	2. ISU	3.	PR	4.	PU	5. SR	6. SU
	4-lane	4-lane	4-1n	2-1n	4-1n	2 - ln	2-lane	2-lane
		Inches	of desi	.gn depth	for rig	id slab		
l. NE	9.0	9.0	9.0		9.0		8.0	8.0
2. MA	9.0	9.0	9.0		9.0		8.0	8.0
3. SAN	9.0	9.0	9.0		9.0		8.0	8.0
4. SAS	9.0	9.0	9.0		9.0		8.0	8.0
5. ENC	10.0	10.0	10.0		10.0		8.0	8.0
6. WNC	9.0	9.0		9.0		9.0	8.0	8.0
7. ESC	10.0	10.0		10.0		10.0	8.0	8.0
8. WSC	9.0	9.0		9.0		9.0	8.0	8.0
9. N	8.0	8.0		8.0		8.0	8.0	8.0
10. P	9.0	9.0	9.0		9.0		8.0	8.0
	I	nches of de	sign der	oth for 1	lexible	surface	course	
1. NE	3.50	3.75	3.25		3.25		3.00	3.00
2. MA	3.50	3.75	3.25		3.25		3.00	3.00
3. SAN	3.75	4.00	3.25		3.25		3.00	3.00
4. SAS	3.50	3.50	3.50		3.50		3.00	3.00
5. ENC	3.50	4.00	3.25		3.25		3.00	3.00
6. WNC	3.50	3.75		3.25		3.25	3.00	3.00
7. ESC	3.50	4.00		3.25		3.25	3.00	3.00
8. wsc	3.50	4.00		3.25		3.25	3.00	3.00
9. M	3.00	3.00		2.75		2.75	2.50	2.50
10. P	3.00	3.50	2.75		2.75		2.50	2 50

specified by the States in each of the ten census divisions for each of the six highway systems. The number of lanes indicated corresponds to those used in this research on the desirable dimensions and weights of motor vehicles.

Because Method 1-M was designed to be a direct comparison with Method 1, in which a minimum depth was not used (except for the 2 inches for flexible pavement), recourse was had to the relationship in Method 1 of E 18-kip axles to design pavement depth. Because the pavement depth depends upon the number of E 18-kip axle applications and upon soil conditions rather than upon axle-weight limits, it was possible to plot a series of curves similar to figures 10-5 and 10-6 from which to read the number of daily E 18-kip axle applications required to produce the predetermined minimum surface depth in inches of design pavement.

From the series of curves of which figures 10-5 and 10-6 are examples, the depth E-18 relationship was read for all minimum depths, as shown in table 10-27.

The basic difference between Methods 1 and 1-M is simply that of the starting base condition. For Method 1 the base conditions is the daily E 18-kip axle applications from the truck weight data for 1962 and the projected traffic to 1990 for the legal axle weights in 1962. For Method 1-M the base condition is the daily E 18-kip axle applications corresponding to the minimum design depth. Therefore, for

FIGURE 10-5. DESIGN RIGID PAVEMENT SLAB DEPTH RELATED TO DAILY E-18 KIP AXLE APPLICATIONS RESULTING FROM METHODS 1, 2, AND 3 PLOTTED FOR USE WITH METHOD I-M

4-LANE FLEXIBLE SURFACE DEPTH, INCHES

		of rigi	d and I	lexible	paveme	nt surf	aces, f	or eac	h census	of rigid and flexible pavement surfaces, for each census division.	'n.	Shee	Sheet 1 of 2	5
			4-	Lane ri	4-Lane rigid pavement	ement			2-La	2-Lane rigid pavement	l paven	lent		
	Census division		Pavement	ent sla	slab depth,	, inches	ŷ		Pavement	t slab depth,	lepth,	Inches		
		7		Ø		6	10		7	ω		6		IO
-1	New England	5.924	11	1136.8	53(2306.0	4388.6		359.4	0.002		1846.4		3510.9
\$	Middle Atlantic	499.5	H	1136.8°	53(2303.0	4389.6		399.14	0.006		1846.4		3510.9
'n	South Atlantic North	427.5	9	963.0	196	1982.7	3757.4		342.0	773.6		1583.3		3000.0
4.	South Atlantic South	558.0	R	1254.9	25(2569.6	4877.2		443.5	1003.9		2055.7		3901.8
5.	East North Central	427.5	<u></u>	963.0	361	1962.7	3757.4		342.0	773.6		1583.3		3000.0
6.	West North Central	4:99.5	ਸ਼	1136.8	23(2308.0	4388.6		399.4	0.006		1846.4		3510.9
7.	East South Central	427.5	9	963.0	361	1982.7	3757.4		342.0	773.6		1583.3		3000.0
တံ	West South Central	427.5	<u>e</u>	963.0	196	1982.7	3757.4		342.0	773.6		1583.3		3000.0
6.	Mountain	603.1	1 3(1366.5	280	2805.8	5340.0		489.2	1093.3		2244.6		4:272.0
10.	Pacific	558.0	12	1254.9	256	2569.6	4877.2		443.5	1003.9	6	2055.7		3901.8
			4-Laı	ne flex	4-Lane flexible pavement	rement			2-Lane	2-Lane flexible pavement	e pave	ment		
12.9		Bitumi	ms snot	rface cu	Bituminous surface course, depth, inches	lepth,	Inches		Bitumin	Bituminous surface course, depth, inches	ace co	urse, de	epth, 1	
5		2.50	2.75	3.00	3.25	3.50	3.75	4.00	2.50	2.75	3.00	3.25	3.50	נ7–0.
1.	New Eugland	157.3	353.4	727.6	727.6 1385.5 2	2475.8 4300.0	4300.0	8	125.8	286.0	582.1	582.1 1108.4 1980.6	1980.6	
3.	Middle Atlantic	157.3	353.4	727.6	727.6 1385.5 2475.8 4300.0	2475.8	The subscription of the local diversion of th		125.8	286.0 582.1 1108.4 1980.6	582.1	1108.4	1980.6	

Table 10.27. --Daily E 18 kip axle applications corresponding to minimum design depth of rigid and flexible pavement surfaces, for each census division.

TO		ches									
Sheet 2 of 2		Bituminous surface course, depth, inches	3.50	699.5	4.7644	699.5	1980.6	699.5	699.5		4.7844
epth Shee	ement	ourse, d	3.25		672.4 1346.7 2544.1 4487.4	91.5 194.4 376.4 699.5	286.0 582.1 1108.4 1980.6	91.5 194.4 376.4 699.5	91.5 194.4 376.4		303.8 672.4 1346.7 2544.1 4487.4
ssign d lon.	le pav	face c	3.00	194.4	1346.7	194.4	582.1	194.4	194.4		1.346.7
nimum de s divisi	2-Lane flexible pavement	ins snot	2.75	91.5	672.4	91.5		91.5		971.8 2080.0	672.4
to mil	2-Lan	Bitumir	2.50	39.5	303.8	39.5	125.8	39.5	39.5	971.8	303.8
Daily E 18 kip axle applications corresponding to minimum desig of rigid and flexible pavement surfaces, for each census division.			4.00	2567.2	8	241.8 479.4 874.4 1535.1 2567.2	1 1 1	2567.2	2567.2	l I I	2 2 2
s correi faces, :		inches	3.75	479.4 874.4 1535.1 2567.2	1	1535.1	727.6 1.385.5 2475.8 4300.0	241.8 479.4 874.4 1535.1 2567.2	874.4 1535.1 2567.2	2 8 2	8 9 8
ication ent sur	4-Lane flexible pavement	āepth,	3.50	874.4	840.5 1683.4 3180.1 5609.3	874.4	2475.8	874.4	874.4	1 8 1	5609.3
le appl e pavem	zible p	course,	3.25		3180.1	ħ-674	1385.5	4.9.4	4.074 kT9.4	B L L	3180.1
kip ax flexible	ane fler	urface (3.00	241.8	1683.4			241.8	241.8	4320.0	1683.4
Ly E 18 Id and :	4-I.e	Bituminous surface course, ācpth, inches	2.75	4.4LL		114.4	353.4	50.0 114.4	50.0 114.4	1214.7 2600.0 4320.0	379.5 840.5 1683.4 3180.1 5609.3
7Dai of rig		Bitum	2.50	50.0	379.5	50.0	157.3	50.0	50.0	7.4121	379.5
Table 10-27Daily E 18 kip axle applications corresponding to minimum design depth of rigid and flexible pavement surfaces, for each census division.		Census division		South Atlantic North	South Atlantic South	East North Central	West North Central	East South Centrel	West South Central	Mountain	Pacific
		Cer		ů.	4. 5	5. E	6. м	7. E	8. W	9. M	10. P

higher axle-weight limits than prevailed at the base condition in 1962, the increase in E 18-kip axle applications would be the same for both Methods 1 and 1-M. Consequently, the design E 18-kip axle applications for the axle-weight limits above the base limits were found for Method 1-M by adding to the base E 18's the same increases calculated for Method 1. The one difference in the resulting designs is simply the starting level--either pavement depth or its corresponding E 18-kip axle applications.

Table 10-27 gives the final E 18-kip daily axle application used as computer input for the base condition for the minimum pavement depths for both rigid and flexible pavements. The computer printed out the pavement designs and the pavement costs for Method 1-M in the same form as those obtained for Method 1. These results are shown on a national basis in table 10-28N. Since Method 1-M assumed the same truck fleet and loads as for Method 1, the truck operating costs were identical for the two methods.

The final highway costs were calculated using exactly the same procedure as followed for Method 1. The pavement costs were higher where the base pavement depth was greater, because of the higher minimum depth, but the increase in depth with increase in axle-weight limits was at a slower rate.

10-73

Highway System 1. IR		Method	Method of Analysis	sis 1-M with	with tra	transition		Census	Census DIVISION F	IIA
		R16	Rigid Pavement	at			Ple	Flexible Pavement	nemt.	
Cost item	Single/te	undern axle	Single/tandem axle weight meximum limits, kips	dam lint	ts, kips	Single/t	andem axle	Single/tandem axle maximum weight limits,	Ight limit	s, ktps
	18/32	20/35	22/38	[竹/ 竹己	26/144	18/32	20/35	22/38	T#/#Z	26/htt
		COST OF I	COST OF PROVIDING EIGEWAY PACILITIES	FIGEWAY FA	SILITIC					
<pre>1. Construction cost per mile: a. Pavement and shoulders</pre>	222,016	223,394		225,251 227,574	229,608	186,899	188.717	190,972	193.590	195,89%
b. Bridge structures	200,634	202,212	204,347	207,648	210,948	200,634	202.212		207,048	210.
c. Earthwork and drainage	190,465	193.505	190,561	140'061	190,709	190,465	190,591	190,757	199,477	191,173
d. Total construction cost	613,115	616,111	620,159	625,863	631,265	577,998	531,520		592,215	1 '
 Equivalent uniform annual capital cost *	53,454	53,716	54,069	54,500	55,037	50,393	50.700		51,632	1 2
3. Incremental annual cost a. Capital cost	1	262	253	114	124	5	307	396	1 1 1 1 1	506
b. Maintenance cost of pavement and shoulders	1	7	6	11	01	t	و	∞	6	α,
c. Maintenance cost of structures	1	12	/8	25	25	i	12	/ 8	100	25
d. Total equivalent uniform annual highway cost	-	281	380	533	206	Ţ	10 10 10	422	570	123
		MOTOR		TRUCK OPERATING COST	Der					
14. Amuel operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent uniform annual operating cost *	232,044	228,713	224,003	224,003 218,657	215,181	232,044	228,713	224,003	218,657	215,18
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost	1	3,331	012,4	5,346	3,476	١	3, 331	4,710	5, 246	5.40
RATIO OF	ANNUAL DECREASE		IN MOTOR TRUCH	TRUCK OPERATING		COST TO ANNUAL EIGEWAY COST	IMAY COST			
6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost.	1	11.9	12.4	10.0	6.9	1	10.2	11.2	4.4	6.4

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads 10-74

* Calculated at 6 percent interest rate per annum and 20 years.

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads

Table //- fill- Comparison of highway cost and motor vehicle operating cost for five levels of axle-veight maximum limits, for the 20-year period 1965 through 1984 -- National average

Highway System 2. IU

Method of Analysis 1-M with transition

Census DIVISION All

Single/tendem syle 18/32 20/35 20/35 222,792 223,852 1,294,3141,296,265 492,872 492,902 492,872 492,902 775,240 175,505 775,240 175,505 765 9		24/41	ktps	Single/ta	ndem axle	xle maximum weigh	Single/tandem axle maximum weight limits,	s, kips
18/32 20/35 COST OF I COST OF I 222,792 223,852 1294,314 1,296,265 492,9782,992,902 175,240 175,505 765 2,009,9782,013,019 755,505 765 - 265 9								
COST OF I 222,792 223,852 2294,3141,296,265 492,872 492,902 2,009,978 2,013,019 175,240 175,505 - 265 - 265			50/##	18/32	20/35	22/38	24/41	56/144
. 222,792 223,852 . 294, 314 1,296,265 . 492,872 492,902 . 2,009,9782,013,019 . 175,240 175,505 265 9		PROVIDING HIGHWAY FACILITIES	SALTE			. 		
. 1294.314/296,265 492,872 492,902 2,009,9782,013,019 175,240 175,505 - 265 9	52 225,279	227,088	228,761	196,957	197,728	198,779.	.200,113	201,361
. 492,872 492,902 . 2,009,9782,013,019 . 175,240 175,505 - 265	296,265 1,299,2291,	1,303,2461;357,264		1,294,314 1,	296,265	1,299,2291.	303,246	1307,264
. 2,009,9782,013,019 . 175,240 175,505 - 265	02 472,944	493,006	493,063	492,871	492,928	493,008	473,122	493,229
	192,017452	2,0174522,023,3402,029,088	_	1,984,142	1,986.921		1996,481	2.001,854
cost	05 175,892	176,405	176,906	172,987	173,230	173,587	174.063	174,532
1	65 387	513	501]	243	357	476	469
	9 11	/3	12	1	7	5	7	0
c. Maintenance cost of structures	11 139	193	193	ł	111	139	193	193
d. Total equivalent uniform annual - 385	537	719	706	1	358	501	10/10	668
MOTOR		TRUCK OPERATING COST						
4. Amual operating cost of vehicles affected by axle veight limits: a. For 1965 ADT								
b. Total equivalent uniform annual 368,086 357,380 34 operating cost *	80 346,460	332,350 323,250		368,086	357,380	346,460	332,350	323,250
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost	06 10,920	14,110	6.100	1	10,706	10,920	14,110	9,100
OF ANNUAL DECREASE	IN MOTOR TRUCK	OPERATING	COST TO ANNUAL	NIVUAL EIGEWAY	WAY COST			
6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost	8 20.3	19.6	12.9	ł	29.9	21.8	20.9	13.6

* Calculated at 6 percent interest rate per annum and 20 years.

10-75

COMMERCE	Roads
U.S. DEPARTMENT OF	Bureau of Public

Table 0-75 W- Comparison of highway cost and motor vehicle operating cost for five levels of axle-veight maximum limits, for the 20-year period 1965 through 1984 -- National average

H Highway System 3.

Method of Analysis 1-M with transition

Census INVISION All

		Rie	Rigid Pavement	4	-	-	PI CI	Flerible Parament	nent:	
	Single/te	Single/tendem axle veight maximum limits, kips	veight max	dmm limit	is, kips	Single/ta	ndem axle	Single/tandem axle maximum weight limits,	sight limit	cs, htps
	18/32	20/35	22/38	「ヤ/ヤ る	26/144	18/32	20/35	82/38	14/42	
		COST OF F	ROVIDING B	COST OF PROVIDING HIGHMAY FACILITIES	SILITI					-00
 Construction cost per mile: a. Pavement and aboulders 	180.568	180,808	181,212	181,212 181,775	182,301	143,781 144,424 145,456 146,656	144,424	145,456	146,656	142757
b. Bridge structures	31,194	31,439	31,816	32,308	32,801	31,194	31,438	31,816	32,308	32,801
c. Earthwork and drainage	86.710	86,717	86,730	86,751	86,769	86,710	86,755	86,831	86,929	81,020
d. Total construction cost	298,472		298,964 292 758	300,834	301,871	261,685	262.617	262.617 264,103	265,893	267,578
2. Equivalent uniform annual capital cost *	26,022	26,065	26,134	26,228	26,319	22.815	22,896	23,026	23,182	23,329
3. Incremental amush cost a. Capital cost	1	43	69	44	16	1	18	130	156	147
b. Maintenence cost of payement and shoulders	ſ	1	/	2	2	I	2	ŋ	M	m
c. Maintenance cost of structures	1	2	m	4	4	1	2	Μ	4	4
d. Total equivalent uniform annual highway cost	1	46	.73	100	97	1	28	136	163	154
		MOTION	R TRUCK OF	MOTOR TRUCK OPERATING COST	ST					
4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent uniform annual operating cost *	56,018	54,860	53,425	51,892	50,992	56,018	54,860	53,425	51,892	50,972
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost	ſ	1,158	1,435	1,533	200	1	1,158	1,435	1,533	900

* Calculated at 6 percent interest rate per annum and 20 years. • • • • • •

5.8

4.4

10.6

13.6

1

9.3

15.3

19.7

25.2

۱

RATIO OF

6. Ratio of incremental reduction in

ANNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL HIGHAN COST

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads

of axle-veight maximum limits, for the 20-year period 1965 through 1984 --National average Table/0-28 M.- Comparison of highway cost and motor vehicle operating cost for five levels

Highway System 4. PU

Method of Analysis 1-M with transition

Census DIVISION All

		RIE	Igid Pavemen	It			ne	dble Paven	nent	
Cont ttm	Single/t	anden axle	weight max	dmum limit	ts, kips	Single/te	undem axle	mextmum we	Might limit	is, kips
10A1 1900	18/32	20/35	22/38	24/42	56/44	18/32	20/35	82/28	17/7d	SK /hth
								2		

145,413 146,239 147,335 148,553 149,645 448,256 39.083 112,063 122,970 124,344 174,277 222 239 5 2 445.727 174,204 50 38,861 121,647 115,221 5 2 2 25 N 440,811 443,038 38.626 941 174,025 174,106 208 765121 5 σ 20,547 38,432 m 134,610 128,190 5 141 7 S 439,187 173,963 38,291 119,813 1 ١ 1 ١ 481,551 181 634 182.420 183.153 174,054 202 115,221 112,063 41.984 0000 122,970 124,344 4 2 COST OF PROVIDING HIGHMAY FACTLIFTES TRUCK OPERATING COST 174,027 475,540 477,230 479,417 41.778 208 5 3 0 121,647 121.597 173.9.15 173,999 41,607 100 47 4 5 MOTOR 104 150.567 181,015 120,547 128,190 41,460 2 114 0 134,610 474,343 41,356 73,963 119.813 1 I : • • a. Capital cost • • b. Maintenance cost of pavement and Total equivalent uniform annual b. Total equivalent uniform annual operating cost * • c. Maintenance cost of structures • • • a. For 1965 ADT • • • • • • • • • • 4. Annual operating cost of vehicles affected by axle weight limits: vehicles 2. Equivalent uniform annual capital • • • . b. Bridge structures. . . . a. Pavement and shoulders . . • d. Total construction cost. 1. Construction cost per mile: c. Earthwork and drainage 3. Incremental amual cost shoulders . . hichway cost . cost * **д**.

5 30.9 40.7 56.3 l truck operating cost to incremental increase in equivalent annual 6. Ratio of incremental reduction in highway cost. . .

* Calculated at 6 percent interest rate per annum and 20 years

10-77

3,158

6,426

6,543

6,420

l

3,158

6,426

6.543

6,420

5. Incremental equivalent uniform decre

ments in annual vehicle operating

••••••

cost.

ELGEWAY COST

TO ANNUAL

LSOC

OPERATING

ANNUAL DECREASE IN MOTOR TRUCK

RATIO OF

2

Ň

S

25.

31.5

42.0

1

0

COMMERCE	Roads
0Ē	10
ARTMENT	Public
LRT	of
DEPA	Bureau
ŝ	Bur
D	

of axle-weight maximum limits, for the 20-year period 1965 through 1984 -- National average Table 10-28 M- Comparison of highway cost and motor vehicle operating cost for five levels

> R in **Elghway System**

Method of Analysis 1-M with transition

LIA Census DIVISION 1.1

1

I

	Rie	tigid Pavement	It			Ne	lexible Pavement	nent	
Single/tu	anden axle	an axle veight maximum 1	daum limit	limits, kips	Single/te	ingle/tandem axle	mextmum w	um veight limits,	, ktps
18/32	20/35	22/38	ビャ/ヤ ろ	26/144	18/32	20/35	22/38	24/41	56/144
	COST OF I	ROVIDING E	COST OF PROVIDING HIGHWAY PACILITIES	SILITIES					×

		I IN TOWN	CATITITIES INTERNET INTERACUS IN IMP	NAT INVENT						•
 Construction cost per mile: a. Pavement and aboulders 	104,044	104,095	104.044104,095 104,157 104,241 104,324	104,241	104,324	82,197	82,290	82,416	82,290 82,416 82,571	82,730
b. Bridge structures	. 9,244	9.329	9,439	9.568	9698	9,244	9,328	9,439	9.568	9.678
c. Barthwork and drainage	64248.	34,251	34,253	34,255	34,258	34,249 34,251 34,253 34,255 34,258 34,250 34,255 34,266 34,278	34,255	34,266	34,278	34,290
d. Total construction cost	. 147.537	147,675	147,849	148,064	148,280	47.537147,675147,849148,064148,280 125,691125,873126,121 126,417 126,718	25,873	126,121	126,417	126,718
2. Equivalent uniform annual capital cost *	12,863		12,875 12,890 12,909 12,928	12,909	12,928	10,958	10,958 10,974	10,996	11,022	11,048
3. Incremental annual cost a. Capital cost	1	12	15	61	19	1	16	22	26	26
b. Maintenance cost of pavement and shoulders	1	0	0	0	0	1	0	0	Q	0
c. Maintenance cost of structures .	-	/	1	/	/	1		/	-	-
d. Total equivalent uniform annual highway cost .	1	13	16	20	20	١	17	23	27	27
		MOTO	MOTOR TRUCK OPERATING COST	ERATING CO	ST					
4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent uniform annual operating cost *	10,068	9,777	9,451	9,048		8,816 10,068	9,777	9,451	9,048	8,816

* Calculated at 6 percent interest rate per sumum and 20 years. 22.4

I

232

403

326

291

1

232

403

326

291

١

RATIO OF

ANNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL EIGENAY COST

8.6

14.9

14.2

17.1

1

11.6

20.2

20.4

10-78

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads

of axle weight maximum limits, for the 20-year period 1965 through 1984 -- National average Table 10-2% M.- Comparison of highway cost and motor vehicle operating cost for five levels

Highwy System 6. SU

Method of Analysis 1-M with transition

Census DAVISION All

Cost item	<u>10/32</u>	Rig odem exle 20/35	veight may 22/38	tt Imm limit 24/41	s, kips	Single/ta	Plen Eddem exie 20/35	cible Paven meximum ve 22/38	avenent a veight limit	8, ktps 26/hh
								SI	!	

FACILITIES
BIGEWAY
FROVIDING
5
COGT

1. Co	1. Construction cost per mile: a. Pavement and shoulders	104,044	104,164	104.044 104,164 104,338 104,548 104,752	104,548	104,752		82,427	52,177 82,427 82,784 83,185	83,185	83,571
ò	b. Bridge structures	40,814	42,826	40,814 12,826 45,352 48,346 51,341	48,346	51,341	40,814	42,826	40,814 42,826 45,352 48,346	48.346	51,341
	c. Barthwork and drainage	49.018	49,05%	49,013 49,052 49,087 49,095 49,102 49,013 49,096 49,125 49,159 49,191	260,64	49,102	49.073	49,096	49,125	49,159	49,191
đ.	d. Total construction cost	173,936	196,072	173,936 196,072 198,777 201,989 205,195 172,037 174,349 177,261 180,690 184,103	201,989	205,195	172,037	174,349	177,261	80,690	184,103
2. Bq	2. Equivalent uniform ammual capital cost *	16,908	17,095	16,708 17,095 11,330	17,610	17,870	15,004	15,201	15,004 ,5,201 15,454 15,753 16,050	15.753	16,050
3. H	3. Incremental amnual cost a. Capital cost	1	187	235	280	280	-	197	253	299	297
à	b. Maintenance cost of pavement and aboulders		0	/	/	/		1	1	~	-
· 0	c. Maintenance cost of structures		17	21	25	25	1	17	21	25	25
ġ.	d. Total equivalent uniform annual highway cost		204	257	306	306		215	275	325	323
			MOTOM	MOTOR TRUCK OPERATING COST	ERATING CC	ST					
1	Aminel constitue and a solution as										

25,521 68) 26,202 1,142 27,344 957 28,301 790 COST TO ANNUAL EIGEWAY COST 29.091 1 26,202 25,521 681 ARRUAL DECREASE IN MOTOR TRUCK OPERATING 1,142 27.344 957 28,201 790 29.071 ſ 5. Incremental equivalent uniform decre-ments in annual vehicle operating cost..... RATIO OF b. Total equivalent uniform annual operating cost * a. For 1965 ADT 4. Amual operating cost of vehicles affected by axle weight limits:

۱ 2.2 5.7 3.7 3.9 t 6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost. . .

* Calculated at 6 percent interest rate per annum and 20 years

10-79

2.1

n N

> S M

3.7

12. METHOD 2--EXTRAPOLATION BY PRACTICAL GROSS WEIGHT RELATIONSHIPS

By Method 1 for the analysis of the economy of maximum axle-weight limits, the axle-weight distribution for each vehicle class as found in the 1962 truck weight study was transferred from those States having highest limits to those States having lower limits. These axle-weight distributions were extrapolated to get distributions for the axle-weight levels of 22/41 and 26/44 kips. Method 2 uses a more direct approach, but it is also based on the 1962 truck weight study.

A. Payload Weight vs. Practical Maximum Gross Vehicle Weight

For each of 46 States and each class of vehicle, the average payload in pounds carried by all vehicles weighed in 1962 (including the empty vehicles) was plotted against the practical maximum gross weight limit as calculated from the legal maximum axle weight, making proper allowance for the steering axle. See table 10-19 (page 10-59) for these practical maximum gross vehicle weights.

Figure 10-9 gives the final set of these curves for each vehicle class. The curves are extrapolated to cover the practical maximum gross vehicle weight for axle-weight limits up to 26/44 kips. By the application of these payloadgross-weight curves, the number of vehicles necessary to carry the same total tons of payload as carried in 1962, by class of vehicle, was readily computed.

B. E 18-Kip Axles vs. Practical Maximum Gross Vehicle Weight

The foregoing procedure resulted in the estimate of the number of vehicles (or trips) required to haul the same total tons of payload at the five levels of axle-weight limits. The next step was to estimate the number of E 18-kip axles resulting from the number of vehicles of each class at each axle-weight level.

Again, the State-by-State variation in the maximum practical gross vehicle weight limit was used as the control. The E 18-kip axles were calculated for each vehicle class in each State from the axle-weight distribution found in the 1962 truck weight study. These E 18-kip axles per vehicle were plotted for each vehicle class and each State. Final curves are given in figures 10-12 and 10-13 for rigid and flexible pavements.

The average payload weight per vehicle for each vehicle class for 1990 was increased 29 percent over that shown in figure 10-7 for 1962, but the practical maximum gross weight was held the same in 1990 as in 1962.

The E 18-kip axles per vehicle were likewise increased in 1990 over 1962 to correspond to the payload increase, because such an increase in payload would increase the average gross weight per vehicle and the weight distribution of the load-carrying axles. The increase was estimated by distributing the increased payload weight proportionally

equally to the load-carrying axles. The appropriate E 18-kip equivalence factor was then applied.

The 1990 practical maximum gross vehicle weight was held to the number of pounds used for 1962 for the respective maximum axle-weight limits. Since the practical maximum gross vehicle weight is a function of maximum legal axle weight, it is unaffected by transport practice. It is assumed, however, that any specific maximum legal gross weight would be equal to the sum of the axle-weight limits.

C. Results of Method 2

Method 2 was developed with and without the transition period, but the tables of results here given are for only the analysis with the transition period.

The results of Method 2 are not presented in detail because the results of Method 1-M are superior for the purposes of this study. The Method 2 results are close enough to those of Method 1 and 1-M to prove the reliability of these other methods--the basic objective of Method 2. In table 10-37 (pages 10-98 to 10-104) some results of Method 2 are given.

13. METHOD 3--REPEAT OF METHOD 2, BUT OMITTING THE 29-PERCENT INCREASE IN PAYLOAD PER VEHICLE 1962 TO 1990

Both Methods 1 and 2 for determining the economy of axle-weight maximum limits included the effects of a 29-percent increase in average payload per vehicle from 1962 to 1990. Including this increase in payload has the effect of reducing the gain in payload per trip that could be attributed to any increase in maximum axle-weight limits. To determine the effects of this payload increase, Method 2 was repeated as Method 3, but without the payload increase.

14. COMPARISON OF THE ECONOMY OF AXLE-WEIGHT LIMITS AS DETERMINED BY ANALYSIS METHODS 1, 1-M, 2, AND 3

At this point in the discussion it will be helpful to summarize briefly the evolution or sequence of the methods for determining the economy of maximum axle-weight limits and the distinguishing features of these methods. The major difference in approach is between Methods 1 and 2, or between (1) transferring the axle-weight distributions of States with the highest limits to the States having lower limits and (2) plotting the maximum practical gross vehicle weight for each vehicle class against equivalent 18,000-pound axles.

Methods 1, 2, and 3 were all done both with and without the 5-year transition period from 1965 to 1969. An evaluation of the results produced by all these methods indicated that the final benefit-cost ratios were lower when the transition period was included. This effect plus the fact that including such a period in the calculation is wholly logical led to the conclusion that the results with the transition period were superior to those without. Therefore, all the detailed results without the transition period are omitted from this report. Comparing the results of Methods 1 and 2 revealed Method 1 as the preferred one. When it became clear that applying the AASHO design formulas in the three basic methods resulted in pavement depths less than the States are currently constructing, Method 1 was repeated as Method 1-M. Table 10-35 presents the design depths for rigid pavement and the benefit-cost ratios developed from Methods 1 and 1-M for the ten census divisions and the six highway systems.

A. Brief Summary of Table 10-35

The variations in incremental benefit-cost ratios from about 1.0 to about 60.0 shown in table 10-35 result from (1) the method of analysis, (2) the increment of increase in axle-weight limit, (3) the census division (variable in ADT, traffic composition, unit prices of construction cost, and soil character), and (4) highway system (variable in ADT and traffic composition).

The higher the axle-weight limit, the lower is the incremental benefit-cost ratio, but with the exception of eight entries in the secondary systems, all benefit-cost ratios for the increment of axle-weight limit from 24/41 to 26/44 are above 2.0. The low truck ADT on the secondary systems contributes to low benefit-cost ratios.

In table 10-35, for the New England and Middle Atlantic census divisions, all entries for the 18/32- and 20/35-kip axle-weight limits are for comparative purposes only,

limits	
e-veight.	
n exl	
mutxe	Ą
οf	metho
levels	Lys1s
five	ana.
for f	, and
ratios	rision
st r	s d1
Lt-co	censu
benef:	tem,
and b	/ sys
depth	1ghwa)
alab -	by h
ment :	Ltion,
pever	trans:
rigid ;	with t
sign :	
- De	
35	
10-3	
Table	

Since the New England and Middle Atlantic census divisions in 1962 had axle-weight limits approximating the 22/38-kip limits, the entries in this table for 13/32 and 20/35 kips are backward and downward. They are included for comparison purposes only. Likewise, the entries for South Atlantic North and South Atlantic South for the 18/32-kip limits are projecting backward because these divisions had approximately approximation in the source of the Headnote:

`	1	0
	9	5
	-	
	40040	מחבתי

			Design rigid		pavement depth	lepth - 1	- inches	Incren	Incremental benefit-cost ratio	efit-cost	ratio	Ove	Overall benefit-cost ratio	it-cost ra	tio
Census d:	ivision	Census division and analysis method	18/32	20/35	22/38	24/41	26/144	18/32 to 20/35	20/35 to 22/38	22/38 to 24/41	24/41 to 26/44	18/32 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
						System 1.		Interstate 1	rural						
i	E	Method 1 Method 1-M	7.81 8. 66	8.09 8.83	8.35 9.00	8.59 9.17	8.80 9.32	13.6 17.1	12.1 14.7	10.7 12.5	7.7 8.9	13.6 17.1	12.9 15.9	12.2 14.8	11.2
2.	MA	Method 1 Method 1-M	9.04 9.04	9.35 9.35	9.64 9.64	9.91 9.91	10.09 10.09	11.7 11.7	10.1	8.7 8.7	6.5 6.5	11.7	10.9 10.9	10.2 10.2	9.3 9.3
ж.	SAN	Method 1 Method 1-M	9.15 9.15	9.47 74.6	9.75 9.75	10.01 10.01	10.23 10.23	19.8 19.8	18.0 18.0	15.5	10.5 10.5	19.8 19.8	19.0 19.0	17.9 17.9	16.2 16.2
. ц	SAS	Method 1 Method 1-M	7.58 8.87	7.86 9.00	8.11 9.13	8.34 9.26	8.55 9.39	16.9 26.2	14.3 20.9	11.7	7.5	16.9 26.2	15.6 23.5	14.4 21.1	12.8 18.4
5.	ENC	Method 1 Method 1-M	9.24 10.00	9.58 10.23	9.88 10.45	10.15 10.66	10.39 10.85	13.6 17.1	11.9	10.5	8.0 9.1	13.6	12.8 15.8	12.1 14.6	11.1 13.3
6.	MNC	Method 1 Method 1-M	7.61 9.00	7.84	8.05 9.21	8.24 9.30	8. 40 9.39	5.1	4.7	3.7	2.7	5.1	4.9	4.5 6.5	4.1 5.8
7.	ESC	Method 1 Method 1-M	8.16 10.00	8.46 11.01	8.72 10.22	8.96 10.33	9.16 10.43	8.7 12.9	7.5 10.5	6.5 8.6	4.7	8.7 12.9	8.1 11.7	7.01 10.7	6.9 9.5
8.	MSC	Method 1 Method 1-M	8.9 9.00	9.27 9.30	9.54	9.78 9.80	9.99 10.01	9.4	8.1 8.2	6.5	3.9 4.0	9.3 4.6	8.7 8.8	8.0 8.1	7.1 7.2
9.	X	Method 1 Method 1-M	7.21 8.00	04.7 8.11	7.57 8.22	7.74	7.89 44	6.0 8.0	5.2	4.3 5.3	2.9	6.0 8.0	7.4	5.2 6.7	4.6 5.9
10.	д	Method 1 Method 1-M	9.25	9.52 9.52	9.77 77.6	10.00 10.00	10.20 10.20	12.8 12.8	1.01	7.7	4.4 8.4	12.8 12.8	н.5 н.5	10.3 10.3	0.6 0.6

axle-weight limits	Sheet 2 of 6
D-35 Desig	with transition by highway system, census division, and analysis method
Table 10	

			Deston riot	rioid na	d navement depth	1	1 nches	Incre	mental ben	Incremental benefit-cost ratio	ratio	Ove	Overall benefit-cost ratio	1t-cost ra	tio
Census d	ivision and	Census division and analysis method	18/32	20/35	22/38	ᅻ	1 4	18/32 to 20/35	20/35 to 22/38	22/38 to 24/41	24/41 to 26/44	18/32 [°] to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
						System	۲۵	Interstate urban	urban						
r.	Ð	Method 1 Method 1_M	8.19 8.68	8.41 8.85	8.61 9.00	8.79 9.15	8.95 9.28	45.3 49.8	37.4 40.6	29.9 32.0	18.3 19.3	45.3 49.8	41.4 45.2	37.7 10.9	33.1 35.7
5.	MA	Method 1 Method 1-M	9.49 9.49	69.6 69.6	9.88 88.6	10.07 10.07	10.24 10.24	39.5 39.5	32.0 32.0	24.9 24.9	15.0 15.0	39.5	35.7 35.7	32.2	28.0 28.0
ώ	SAN	Method 1 Method 1-M	9.02 9.02	9.22 9.22	9.40 9.40	9.57 9.57	9.73 9.73	20.4 20.4	17.8 17.8	15.2 15.2	10.8 10.8	20.4 20.4	1.91 1.91	17.8 17.8	1.91 1.6.1
ц.	SAS	Method 1 Method 1-M	7.83 8.89	8.03 9.00	8.22 9.11	9.22 9.22	8.56 9.32	24.2 30.9	21.2 26.2	18.0 21.9	13.0 15.3	24.2 30.9	22.7 28.6	21.2 26.4	19.3 23.6
5.	ENC	Method 1 Method 1-M	9.11 10.01	9.32 10.13	9.51 10.26	9.69 10.39	9.85 10.50	23.7 27.5	20.9 23.8	17.9 19.9	12.9 14.2	23.7 27.5	22.3 25.6	20.9 23.7	19.0 21.4
6.	MNC	Method 1 Method 1-M	7.76 9.00	7.93 9.08	8.10 9.17	8.26 9.25	8.40 9.34	11.7 14.3	9.7 7.11	7.7 9.1	4.8 5.6	11.7 14.3	10.7 13.0	9.6 11.7	8.6 10.2
7.	ESC	Method 1 Method 1-M	9.37 10.00	9.55 10.13	9.72 10.26	9.89 10.39	10.05 10.52	24.8	21.3 23.1	17.9 19.2	12.4 13.2	24.8 27.1	23.1 25.1	21.4 23.2	19.2 20.7
	MSC	Method 1 Method 1-M	8.48 9.00	8. 6 8 9.15	8.86 9.30	9.03 9.43	9.19 9.55	17.8 19.5	15.3 16.6	12.8 13.7	8.8 9.4	17.8 19 <i>.</i> 5	16.6 18.1	15.4 16.6	13.8 14.9
9.	W	Method 1 Method 1-M	8.44 8.44	8.62 8.62	8.79 8.79	8.95 8.95	9.10 9.10	22.1 22.2	18.6 18.5	15.0 15.0	8.9 6.9	22.1 22.2	20.4 20.4	18.7 18.7	16.3 16.3
10.	ρ.	Method 1 Method 1-M	9.5 27.9	9.68 89.6	9.85 9.85	10.02 10.02	10.17 10.17	29.8 29.8	24.8 24.8	20.4 20.4	14.3 14.3	29.8 29.8	27.3 27.3	25.0 25.0	22.4 22.4

adivision of a division of a d	Census division and analysis method 1. NE Method 1 Method 1-M 2. MA Method 1-M 3. SAN Method 1-M 0.000 1-M	Design rigid revement depth 18/32 20/35 22/38 24/1 18/32 20/35 22/38 24/1 6.30 6.52 6.73 6.9 8.92 8.96 9.00 9.0 7.06 7.30 7.51 7.51 7.10 7.34 7.56 7.7 8.92 9.00 9.03 9.0 7.10 7.34 7.56 7.7 8.92 9.00 9.03 9.0	.1g1d part 20/35 6.52 8.96 7 30	vement d	1 4		Incres 18/32 to	Incremental benefit-cost ratio	efit-cost	ratio		Overall benefit-cost ratio	it-cost ra	tio
a division a 1. NE 2. MA 3. SAN 4. SAS	and analysis method Method 1 Method 1 Method 1 Method 1 Method 1 Method 1 Method 1-M		20/35 6.52 8.96 7 30	22/38	24/42		18/32 to	20/35 to					-+ 00/00	
	Method 1 Method 1-M Method 1 Method 1 Method 1-M Method 1-M	6.30 8.92 7.06 8.84 7.10 7.10	6.52 8.96 7 30			26/44	20/35	22/38	22/38 to 24/41	24/41 to 26/44	18/32 to 20/35	18/32 to 22/38	10/32 to	18/32 to 26/44
	Method 1 Method 1-M Method 1 Method 1-M Method 1-M	6.30 8.92 7.06 8.84 7.10 8.92	6.52 8.96 7 30		System	ň	Primery rural	ral						
	Method 1-M Method 1-M Method 1-M Method 1-M	0.92 7.06 8.84 7.10 8.92	0.90	6.73	6.92	60.7	8.9	7.8	6.9	1.4 1.4	8.9 6.9	-# 1 80 g	7.9	20
	Method 1 Method 1-M Method 1-M Method 1-M	7.06 8.84 7.10 8.92	7 30	8.6	9.05	60.6	20.2	21.2		6.6	20.2	23.7	51.3	OT
	Method l Method l-M	7.10 8.92	8.92	7.51 9.00	02.7 9.08	7.87 9.15	7.9 18.7	1.61	7.1 14.0	5.4	7.9 18.7	7.7 17.4	7.5 16.3	7.0
			7.34	7.56	7.74	7.90	8.4 18.4	7.9 15.6	7.1 12.8	5.0 8.4	8.4 18.4	8.2 17.0	7.9 15.6	7.3 13.9
	Method 1-M	6.49 8.96	6.70 9.00	6.88 9.04	7.04	7.19 9.13	8.6 25.9	7.8 21.2	6.7 16.5	4.3 9.7	8.6 25.9	8.2 23.6	7.8 21.2	7.1 18.4
5. ENC	Method 1 Method 1-M	6.97 10.00	7.21	7.43 10.08	7.61 10.13	7.77 10.16	8.7 33.3	8.1 27.4	7.2 21.6	4.9 13.6	8.7 33.3	8.4 30.3	8.0 27.4	7.4 24.2
6. WNC	Method 1 Method 1-M	5.99 9.00	6.20 9.03	6.39 9.06	6.56 9.09	6.70 9.12	6.4 24.3	5.7 19.1	4.9 15.1	3.0 8.0	6.4 24.3	6.1 21.7	5.7 19.5	5.2 16.6
7. ESC	Method 1 Method 1-M	6.69 10.00	6.92 10.03	7.13 10.06	7.32	7.49 10.13	11.2 35.7	9.7 28.3	8.0 21.4	4.8 12.0	11.2 35.7	10.5 32.0	9.7 28.4	8.6 24.3
8. WSC	Method 1 Method 1-M	6.95 9.00	7.18 9.06	7.37 9.13	7.53 9.18	7.67 9.24	14.3 35.6	13.3 29.4	11.2 22.7	6.7	14.3 35.6	13.8 32.5	13.1 29.3	11.8 25.4
9. M	Method 1 Method 1-M	5.51 8.00	5.71 8.03	5.90 8.07	6.06	6.21 8.14	6.6 26.9	5.7 20.4	4.6 15.4	2.5	6.6 26.9	6.2 23.6	5.7 20.9	5.0 17.4
10. P	Method 1 Method 1-M	6.94 9.00	7.19 9.07	7.40	7.58 9.20	7.73 9.26	6.1 13.3	5.6 11.0	4.9 9.0	3.2	6.1 13.3	5.9	5.6 1.11	5.1 9.8

it limits	
e-veight	
m exl	
umixa	ą
of n	metho
Levels	Lys1s
for five leve	l anal
for 1	and
ratios	ivision
it-cost :	sus d
lefit-	a, cen
d ben	yster
th an	way s
o dep	high
slal	a, by
pavement slab depth and benefi	ransitic
rigid	with t
Design	
ď	
L0-35.	
Table]	

System 4. 6.69 6.90 7.09 7.25 7.40 8.90 8.95 9.00 9.05 9.10 7.13 7.36 7.57 7.76 7.93 8.91 8.92 9.00 9.05 9.10 7.13 7.36 7.57 7.76 7.93 8.91 9.00 9.03 9.16 9.16 8.91 9.00 9.03 9.16 9.20 8.94 9.00 9.04 9.03 9.12 8.96 9.00 9.04 9.03 9.12 7.16 7.33 7.60 7.76 7.93 10.00 10.05 10.09 10.14 10.18 10.00 10.05 10.09 10.14 10.18 10.00 10.05 10.09 10.14 10.18 10.00 10.05 10.09 10.14 10.18 10.00 10.06 10.01 10.25 7.93 10.00 10.05 10.09 10.14 10.25 10.00 10.04	gid pavement depth - inches 0/35 22/38 24/41 26/44 18	Incremental ben 18/32 to 20/35 to 20/35 22/38	Incremental benefit-cost ratio 2 to 20/35 to 22/38 to 24/41 to /35 22/38 24/41 26/44	18/32	Overall benefit-cost ratioto18/32 to18/32 to18522/3824/41	12 3
NE Method 1 6.69 6.90 7.09 7.25 7.40 Method 1-M 8.90 8.95 9.00 9.05 9.10 Method 1-M 8.91 7.36 7.57 7.76 7.93 9.10 Method 1-M 8.91 8.92 9.00 9.05 8.24 9.10 9.20 9.30 9.30 SAN Method 1 7.38 7.62 7.94 8.05 8.24 9.30		Primary urban			h	
MA Method 1M 8.90 8.95 9.00 9.05 9.10 MA Method 1 7.13 7.36 7.57 7.76 7.93 9.16 SAN Method 1 7.13 7.36 7.57 7.76 7.93 9.16 9.33 SAN Method 1 8.91 9.00 9.10 9.20 9.30 9.16 9.34 SAN Method 1 7.13 7.62 7.84 8.05 8.24 9.20 9.30 SAS Method 1 8.91 9.00 9.04 9.03 9.12 9.20 9.20 BNC Method 1 7.16 7.39 7.66 7.776 7.93 9.12 BNC Method 1 10.00 10.05 10.09 10.14 10.18 BNC Method 1 10.00 10.05 10.09 9.12 9.20 WR Method 1 7.16 7.39 8.04 8.40 9.12 WR Method 1	7.25	30.2 26.0			28.2 26.2	
MA Method 1 7.13 7.36 7.57 7.76 7.93 9.16 7.93 9.16 7.93 9.16 7.93 9.16 7.93 9.16 7.93 9.16 7.93 9.16 9.16 9.16 9.16 9.20 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 9.32 9.20 <	9.05			54.3		•
SAN Method I 7.38 7.62 7.94 8.05 8.24 Method I Method I 8.91 9.00 9.10 9.20 9.30 SAS Method I 8.91 9.00 9.10 9.20 9.30 SAS Method I 8.96 9.00 9.04 9.03 9.12 BNC Method I 7.16 7.39 7.60 7.78 7.93 MNC Method I 10.00 10.05 10.09 10.14 10.18 WNC Method I 7.16 7.39 7.60 7.77 7.93 WNC Method I 10.00 10.05 10.09 10.14 10.18 WNC Method I 7.01 7.28 7.01 7.28 7.93 WNC Method I 10.00 10.05 9.10 9.15 9.20 WNC Method I 7.01 7.28 8.94 8.40 9.20 MSC Method I 7.01 7	7.76 7.93 9.08 9.16	35.7 30.5 65.8 52.1	26.1 16.1 41.8 24.4	4 35.7 65.8	33.1 30.9 58.8 53.2	
SAS Method 1 6.49 6.68 6.85 7.01 7.16 ENC Method 1 8.96 9.00 9.04 9.08 9.12 ENC Method 1 10.00 10.05 10.09 10.14 10.18 WIC Method 1 6.58 6.81 7.60 17.76 7.93 7.93 WIC Method 1 0.000 10.05 10.09 10.14 10.18 WIC Method 1 6.58 6.81 7.01 7.20 7.36 WIC Method 1 7.57 7.82 8.04 8.24 8.40 MSC Method 1 7.06 7.36 7.57 7.57 7.57 7.57 7.57 7.57 MSC Method 1 7.06 9.07 9.013 10.19 10.25 1 M Method 1 8.00 8.54 8.40 8.56 8.56 M Method 1 8.03 8.16 8.21 8.90 8.91 M Method 1 8.33 8.56 9.20 9.20 9.20<	8.05 9.20	31.1 24.8 48.7 36.6	18.5 8.9 26.4 12.1	31.1 148.7	28.0 24.9 42.6 37.1	
ENC Method I 7.16 7.39 7.60 7.78 7.93 WNC Method I-M 10.00 10.05 10.09 10.14 10.18 WNC Method I-M 9.00 9.05 9.10 9.15 9.20 BSC Method I-M 9.00 9.05 9.10 9.15 9.20 MSC Method I-M 10.00 10.06 10.13 10.19 10.25 1 WSC Method I-M 7.57 7.82 8.04 8.40 8.40 10.25 1 WSC Method I-M 10.00 10.06 10.13 10.19 10.25 1 WSC Method I-M 7.26 7.38 7.57 7.75 7.90 MSC Method I-M 9.00 9.07 9.14 9.21 9.28 M Method I-M 8.06 8.51 8.46 8.50 M Method I 8.03 8.16 8.21 8.20	7.01 7.16 9.08 9.12	23.1 19.6 54.2 42.1	15.3 8.4 31.4 16.0	+ 23.1 54.2	21.4 19.5 48.1 42.5	• •
WIC Method I 6.58 6.81 7.01 7.280 7.36 BESC Method I 9.00 9.05 9.10 9.15 9.20 BESC Method I 7.57 7.82 8.04 8.24 8.40 MSC Method I 10.00 10.06 10.13 10.19 10.25 1 WSC Method I 7.16 7.38 7.57 7.98 8.24 8.40 WSC Method I 10.00 10.06 10.13 10.19 10.25 1 WSC Method I 7.16 7.38 7.57 7.75 7.90 M Method I 9.00 9.07 9.14 7.21 9.28 M Method I 8.00 8.16 8.10 8.46 8.58 P Method I 8.37 8.57 8.52 9.06	7.78 7.93 10.14 10.18	22.4 17.7 48.9 35.9	13.1 6.4 24.4 11.1	+ 22.4 48.9	20.2 18.0 42.4 36.4	
ESC Method I 7.57 7.82 8.04 8.24 8.40 Method I-M 10.00 10.06 10.13 10.19 10.25 WSC Method I 7.16 7.38 7.57 7.77 7.99 MSC Method I 7.16 7.38 7.57 7.75 7.90 MSC Method I 7.16 7.38 7.57 7.75 9.28 M Method I 7.26 7.51 7.74 7.94 8.10 M Method I 8.00 8.16 8.31 8.46 8.58 P Method I 8.37 8.57 8.75 8.92 9.06	7.20 7.36 9.15 9.20	26.9 21.9 78.8 57.3	16.2 7.3 39.7 15.9	26.9 78.8	24.6 22.0 68.0 58.7	• •
WSC Method I 7.16 7.38 7.57 7.57 7.90 Method 1-M 9.00 9.07 9.14 9.21 9.28 M Method 1 7.26 7.51 7.77 7.94 8.10 M Method 1 7.26 7.51 7.94 8.10 M Method 1-M 8.00 8.16 8.31 8.46 8.58 P Method 1 8.37 8.57 8.57 8.92 9.06	8.24 8.40 10.19 10.25	59.4 45.4 135.0 95.2	30.6 13.1 58.8 23.6	59.4 135.0	52.7 46.0 115.3 96.6	
M Method 1 7.26 7.51 7.74 7.94 8.10 Method 1-M 8.00 8.16 8.31 8.46 8.58 P Method 1 8.37 8.57 8.57 8.92 9.06	7.75 7.90 9.21 9.28	43.3 33.9 81.1 59.0	24.4 12.0 39.7 18.4	0 43.3 4 81.1	38.8 34.3 70.2 60.0	
P Method 1 8.37 8.57 8.75 8.92 9.06	7.94 8.10 8.46 8.58	43.1 37.6 63.6 52.7	29.5 16.8 39.1 21.3	63.6	40.5 37.2 58.3 52.2	
9.40 9.51	8.75 8.92 9.06 9.27 9.40 9.51	31.8 25.0 35.6 27.6	18.7 9.7 20.3 10.4	31.8	28.5 25.3 31.7 27.9	• •

10-91

1

len		
	t limits	Sheet 5 of 6
	axle-weight limits	

Table 10-35. -- Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum vith transition, by highway system, census division, and analysis method

			Design	Design rigid pav	ement	depth - 1	Inches	Incre	Incremental benefit-cost ratio	efit-cost 1	ratio	Ove	rall benef	Overall benefit-cost ratio	itio
Census d	ivision au	Census division and analysis method	18/32	20/35	22/38	24/41	26/44	18/32 t o 20/35	20/35 to 22/38	22/38 to 24/41	24/41 to 26/44	18/32 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
						System	Ś	Secondary rural	ural						
г.	NE	Method 1	5.01	5.11	5.22	5.33	5.44	15.6	12.5	10.3	6.7	15.6	14.0	12.8	11.3
		Method 1-M	7.98	66.7	8.00	8.01	8.03	80.3	72.2	4.84	29.9	80.3	76.4	66.0	56.2
તં	MA	Method 1 Method 1-M	5.01 7.98	5.11 7.99	5.22 8.00	5.33 8.01	5.4 4 8.03	13.2 70.3	10.4 52.2	8.8 8.6	5.6 24.0	13.2 70.3	11.8 60.7	10.8 53.5	9.5 45.4
'n	SAN	Method 1 Method 1-M	4.76 7.99	4.86 8.00	4.98 8.01	5.10 8.02	5.22	7.6 45.5	32.7	4.4 24.6	2.8 14.0	7.6 45.5	6.6 38.7	5.8 33.5	5.0 27.9
1	SAS	Method 1 Method 1-M	4.56	4.66 8.00	4.77 8.01	4.89 8.02	5.00 8.03	6.9 28.2	5.3 23.4	4.1 17.9	2.7 11.5	6.9 28.2	6.1 25.8	5.4 23.1	4.7 20.1
5.	ENC	Method l Method l-M	5.17 8.00	5.30 8.02	5.41 8.03	5.52 8.05	5.61 8.06	5.4 26.9	4.8 23.7	3.8 15.7	2.2 8.4	5.4 26.9	5.1 25.4	4.7 22.1	4.2 18.7
6.	WINC	Method l Method l-M	8.0 ⁴	5.17 8.01	5.28 8.03	5.38	5.47 8.05	4.9 26.9	4.2 21.1	3.4 14.9	1.9 7.2	4.9 26.9	4.5 24.0	4.2 20.9	3.7 17.2
7.	ESC	Method 1 Method 1-M	5.17 8.00	5.30 8.02	5.41 8.03	5.52 8.05	5.61 8.06	4.2 12.1	3.5 9.5	2.8 7.3	1.6 3.6	4.2 12.1	3.8 10.8	9.6 9.6	3.1 8.1
ω.	WSC	Method 1 Method 1-M	5.17 8.00	5.30 8.02	5.41 8.03	5.52 8.05	5.61 8.06	5.8 24.3	5.0 19 . 0	4.1 14.2	6.8 6.8	5.8 24.3	5.4 21.6	5.0 19.1	4.4 15.9
9.	W	Method l Method l-M	4.88 8.00	5.00 8.01	5.11 8.02	5.21 8.03	5.30 8.04	6.5 44.1	5.5 31.6	4.6 25.7	2.6 11.0	6.5 141.1	6.0 37.6	5.6 33.7	4.9
10.	6 4	Method 1 Method 1-M	4.95	5.07 8.01	5.19 8.02	5.29 8.03	5.38 8.05	5.8 25.5	4.9 21.1	4.0 14.2	2.3 7.9	5.8 25.5	5.4 23.4	5.0 20.1	4.4 17.2

10 92

t B	ė
t limi	
t 1	
18	
A-O	
N,	
B	
ž.	
ga	bod
g	s method
els	ŝ
Lev	Lys
Š	808
뷥	bd
for	sion, and analysis method
80	101
rati	TT.
Bt .	с, С,
õ	nsu
fit	Sei
ene	with transition by highway system, census division,
d b	yst
80	S N
pth	hwa
de	hig
Iale	λď
ft	Lon
E E	sitt
pav	ran
1d	ц ц
Hg	4TE
u B	
es1	
1	
Table 10-35 Design rigid pavement slab depth and benefit-cost ratios for five levels of maximum axle-veight	
0-35	
H e	
able	
E	

5 $22/38$ $24/41$ $26/44$ $26/35$ $20/35$ $20/35$ $20/35$ $20/35$ $20/35$ $20/35$ $20/35$ $20/35$ $20/35$ $22/38$ $24/41$ $26/44$ $28/44$ 7 System 6. Secondary urban $20/35$ 13.9 11.0 8.4 4.7 13.9 21.4 11.1 7 8.00 8.05 11.0 8.6 6.6 8.4 4.7 13.9 12.4 11.1 7 8.00 8.05 11.0 8.6 6.6 6.6 6.6 8.4 4.7 13.9 $24/41$ $26/44$ $24/41$ $28/41$ $28/41$ $28/41$ $28/41$ 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 11.1 12.4 11.1 12.4 11.1 12.4 11.1 12.4 11.1 12.4 11.1 12.4 11.1 12.4 11.1 12.4				Design rigid												
Rite Method I 5.93 5.44 5.93 13.9 11.0 8.4 4.7 13.9 12.4 11.1 Method I 7.96 7.98 8.00 8.05 13.9 11.0 8.4 4.7 13.9 12.4 11.1 Method I 7.96 7.97 8.00 8.03 8.05 11.0 8.4 3.7 13.9 12.4 11.1 Method I 7.96 5.69 5.80 8.05 11.0 8.4 3.7 13.9 12.4 11.1 SM Method I 7.95 5.69 5.03 5.05 5.64 5.03 5.05 5.66 5	៦ ទាន	ivision a	od analysis method	18/32		22/38	1 4/42		18/32 to 20/35		22/38 to 24/41		18/32 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
RK Method I. 5.29 5.44 5.73 5.85 13.9 11.0 8.4 3.7 10.2 9.2 8.4 11.1 M Method I. 7.96 7.98 8.00 8.05 13.9 11.0 8.4 3.7 13.9 12.4 11.1 M Method I. 7.96 7.99 8.00 8.05 13.9 11.0 8.4 3.7 13.9 12.4 11.1 M Method I. 7.96 5.96 5.93							Syste	0	scondary w	rban						
M Method 1 5:56 5:03 5:03 5:05 10.0 8:05 11.0 8:6 5:3 2:1 11.0 7:5 6:8 8:7 8:0	- i		Method 1 Method 1-M	5.29 7.96	5.44 7.98	5.59 8.00	5.73 8.02	5.85 8.05	10.2 13.9	8.2 11.0	6.4 8.4	3.7	10.2 13.9	9.2 12.4	8.3 11.1	7.2
SMI Method I. 6.05 6.41 6.55 6.67 6.07 8.10 8.14 8.11 8.11 8.11 8.11 8.11 8.11 7.5 5.6 5.6 5.2 4.2 2.4 6.0 5.6 5.8 5.93 8.10 8.11 8.11 8.12 8.14 5.71 5.74 5.71 5.93 2.94 1.0 2.9 2.4 2.3 2.4 2.3 2.3 2.3 2.3 2.3	3.		Method l Method l-M	5.56 7.95	5.69 7.97	5.83 8.00	5.95 8.03	6.07 8.05	4.8 0.11	6.6 8.6	6.6 6.6	3.4	4.8 11.0	7.5 9.8	6.8 8.7	5.8 7.4
Sals Method I 5.43 5.77 5.71 5.88 5.90 5.0 4.2 3.7 2.4 5.90 4.6 4.3 5.0 4.6 4.6 4.3 3.7 2.4 5.90 3.6 4.3 3.4 4.3 3.7 2.4 5.00 3.6 3.0 1.9 3.6 3.4 4.3 4.3 4.3 3.0 1.9 1.3 2.4 5.0 4.6 4.3 4.9 5.01 3.02 2.8 2.4 1.3 2.3 2.4 2.6 4.3 4.3 4.99 5.11 5.2 2.8 1.9 1.1 2.4 3.0 2.9 3.1 3.1 2.2 2.8 3.1 3.1 3.1 3.1 3.1 3.2 2.8 3.1	'n		Method l Method l-M	6.05 7.95	6.24 8.00	6.41 8.05	6.55 8.10	6.67 8.14	6.0 8.1	6.9 6.9	4.2 5.3	2.9 2.9	6.0 8.1	5.6 7.5	6.8	4.5 5.9
RKC Method I 5.50 5.65 5.79 5.94 6.06 2.5 2.8 1.9 1.3 2.5 2.4 2.6 WNC Method I 8.00 8.05 8.05 8.05 8.06 8.11 3.2 2.3 1.9 1.3 2.5 2.4 2.6 WNC Method I 8.00 8.01 8.02 8.03 8.04 3.25 2.1 1.1 2.4 2.6 2.3 2.3 2.1 2.4 2.6 2.1 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.6 2.4 2.2 2.4 2.6 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.3 2.6 2.4	4		Method l Method l-M	5.43 7.98	5.57 8.00	5.71 8.02	5.85 8.05	5.98 8.08 8.08	5.0	5.03 10 10 10 10 10 10 10 10 10 10 10 10 10	3.0 3.7	1.9	3.9 5.09	3.6 4.6	3.4 4.3	3.0 9.80
WIG Method I 4.75 4.87 4.99 5.11 5.22 2.4 2.2 1.7 1.1 2.4 2.3 3.7 3.3 <	ŗ.		Method l Method l-M	8.50 8.00	5.65 8.03	5.79 8.05	5.94 8.08	6.06 8.11	3.2	5.8 5.8 5	2.4	1.3 1.6	8.5 3.2	2.4 3.0	0.0 0 0 0	5.50
BSC Method I 5.76 5.90 6.02 6.15 6.26 2.0 1.8 1.4 0.9 2.0 1.9 1.7 WSC Method I-M 8.00 8.02 8.12 2.3 2.1 1.6 1.0 2.3 2.2 1.9 2.2 2.0 1.7 WSC Method I-M 8.00 8.05 8.02 8.12 2.3 2.1 1.6 1.0 2.3 2.2 2.0 2.3 2.1 1.6 1.0 2.3 2.2 2.0 2.3 2.1 2.3 2.1 2.1 2.1 2.3 2.1 2.3 2.1 2.3 1.6 3.1 2.9 6.7 8.0 8.00 8.11 3.1 2.7 2.3 1.6 3.1 2.9 2.6 2.9 2.7 2.9 2.7 2.3 1.6 2.3 2.2 2.0 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.7 2.3 <th< td=""><td>9.</td><th></th><th>Method 1 Method 1-M</th><td>4.75 8.00</td><td>4.87 8.01</td><td>4.99 8.02</td><td>5.11 8.03</td><td>5.22 8.04</td><td>2.4</td><td>2.2 3.5</td><td>1.7 2.6</td><td>1.1 1.7</td><td>2.4 3.9</td><td>2.3 3.7</td><td>2.1</td><td>1.9 2.9</td></th<>	9.		Method 1 Method 1-M	4.75 8.00	4.87 8.01	4.99 8.02	5.11 8.03	5.22 8.04	2.4	2.2 3.5	1.7 2.6	1.1 1.7	2.4 3.9	2.3 3.7	2.1	1.9 2.9
WSC Method I 5.48 5.63 5.78 5.92 6.05 2.6 2.2 1.9 1.4 2.6 2.4 2.3 Method 1-M 8.00 8.03 8.05 8.06 8.11 3.1 2.7 2.3 1.6 3.1 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.9 2.4 2.3 2.7 2.4 2.3 1.19 2.6 2.4 2.4 2.3 2.4 2.3 1.19 <td>7.</td> <th></th> <th>Method 1 Method 1-M</th> <td>5.76 8.00</td> <td>5.90 8.03</td> <td>6.02 8.06</td> <td>6.15 8.09</td> <td>6.26 8.12</td> <td>2.3 2.3</td> <td>1.8 2.1</td> <td>1.4 1.6</td> <td>0.9</td> <td>2.3</td> <td>1.9 2.2</td> <td>1.7 2.0</td> <td>1.8</td>	7.		Method 1 Method 1-M	5.76 8.00	5.90 8.03	6.02 8.06	6.15 8.09	6.26 8.12	2.3 2.3	1.8 2.1	1.4 1.6	0.9	2.3	1.9 2.2	1.7 2.0	1.8
M Method I 6.11 6.29 6.45 6.71 9.5 8.1 6.7 4.3 9.5 8.8 8.1 Method 1-M 8.00 8.05 8.10 8.14 8.19 14.6 11.8 9.4 5.7 14.6 13.2 11.9 P Method 1-M 6.57 6.74 6.90 7.04 7.17 3.1 2.6 2.2 1.4 3.1 2.6 P Method 1-M 8.00 8.01 8.13 8.26 3.4 2.8 2.3 1.4 3.1 2.6 2.6	80		Method 1 Method 1-M	5.48 8.00	5.63 8.03	5.78 8.05	5.92 8.08	6.05 8.11	2.6 3.1	2.2	1.9 2.3	1.4 1.6	2.6 3.1	2.9	2.3	5.4 10 10
P Method I 6.57 6.74 6.90 7.04 7.17 3.1 2.6 2.2 1.4 3.1 2.9 2.6 Method I 8.00 8.07 8.13 8.26 3.4 2.8 2.3 1.5 3.4 3.1 2.8	6		Method 1 Method 1-M	6.11 8.00	6.29 8.05	6.45 8.10	6.59 8.14	6.71 8.19	9.5 14.6	8.11 11.8	6.7 9.4	4.3 5.7	9.5 14.6	8.8 13.2	8.1 11.9	7.3 10.4
	TO		Method 1 Method 1-M	6.57 8.00	6.74 8.07	6.90 8.13	7.04 8.20	7.17 8.26	3.4 3.4	2.6 2.8	2.3	1.4	3.1 3.4	2.9 3.1	2.8 2.8	8 5.3 2

10=93

because these two census divisions now have axle-weight limits approximately equal to 22/38 kips. The same is true for the 20/35-kip limits for the South Atlantic North and South Atlantic South divisions, which now have axleweight limits approximating 20/35 kips.

B. Results of Method 1-M Analysis

Where the minimum depth of pavement used in Method 1-M is equal to or less than that for Method 1 at the base condition, the pavement depth and the benefit-cost ratios are identical for the two methods. Where the minimum depth of pavement surface used in Method 1-M is greater than the depth at the base condition in Method 1, the pavement depths for Method 1-M and the resulting benefit-cost ratios are always greater than for Method 1.

This analysis (Method 1-M) again brings out the following significant facts: (1) As the daily E 18-kip axle applications increase, the pavement design depth increases at a decreasing rate, and (2) as the design pavement depth increases, the cost of the pavement per cubic yard decreases, but the total pavement cost per mile increases at a decreasing rate. From these facts, logical reasoning leads to the conclusion that, as axle-weight limits are increased, the use of a minimum pavement depth above that resulting from the Method 1 design would lead to greater economy (benefit-cost ratio) than would result from Method 1. Table 10-35 proves the correctness of this reasoning. The benefit-cost ratios of Method 1-M vary from equality with those of Method 1 to as much as six times as great. For a given highway system now using the minimum pavement depth in Method 1-M, the economy of higher axleweight limits as given in table 10-35 would be more nearly that of Method 1-M than of Method 1.

This analysis should allay all fears that, because Method 1 procedures result in pavement design of much less depth than is commonly used by some highway departments, the analysis unjustly favors higher axle-weight limits. The exact opposite is true.

C. The Transition Period

Should the laws of all States, or of any State, be changed to legally permit axle weights higher than are now permitted, the trucking industry would not make full use of the higher limits the first day or even the first year they were legally effective. Of course, the amount of increase in the limits would be a factor determining the rate of utilization of the higher limits. The change from 18/32 kips to 20/34 kips could be rather fully utilized within a year, but the change from 18/32 to 26/44 kips would require some years to be fully effective. The change in axle-weight limits would affect vehicle design, customer orders, commodity selection, terminal facilities, and practically every aspect of the trucking industry. In the analyses of the economy of axle-weight limits the transition period was included as described under Method 1.

The use of the transition period has the effect of postponing the utilization of the increasing axle-weight limits, and therefore, for the 20-year analysis period used, the design pavement depth should be slightly less with the transition period than without. The E 18-kip axle applications in the 20-year period would be fewer because of the time delay in applying the axles of higher weight. The total motor vehicle operating cost reduction would be less with the transition period than without. Therefore, the overall economy of the higher axle weights within the 20-year analysis period is less with the transition period than without it.

The effect of using the transition period for the axle-weight limits of 20/35 to 24/41 kips is minor, amounting to practically zero for the increment of 18/32 to 20/35 kips, and increasing gradually to the axle limit of 24/41. Between 24/41 and 26/44 kips the effect of the 2-year differential is pronounced. For rigid pavement and the upper two weight-limit intervals, the following table gives the benefit-cost ratios with the transition period expressed as a percentage of the benefit-cost ratio without the transition period:

Axle-weight-limit interval

		22/38 24/41	b to . kips	24/41 26/44	
		Minimum*	Maximum*	Minimum*	Max1mum*
1.	Interstate rural	87.5	89.6	63.9	73.0
2.	Interstate urban	87.7	90.9	66.7	73.9
3.	Primary rural	86.1	88 .9	59 .5	66.7
4.	Primary urban	85.2	8 8 .9	54.1	62.9
5.	Secondary rural	86.6	90.2	61.3	66.7
6.	Secondary urban	82.4	89.5	54.0	63 .6

* Considering all ten census divisions

D. Effect of the 29-Percent Increase in Payload Per Vehicle, 1962 to 1990

From table 10-37 the effect of the increase in payload per vehicle from 1962 to 1990 may be determined by comparing the rigid pavement depths and benefit-cost ratios of Method 3 (without payload increase) with those of Method 2 (with payload increase).

Two sets of benefit-cost ratios are shown below:

	Method 2 with payload increase	Method 3, without payload increase
System 1, New England at 26/44 axle-weight limit		
Rigid pavement depth, inches Benefit-cost ratio	s 8.52 9.4	8.47 12.8
System 3, East North Central at 26/44 axle-weight limit		
Rigid pavement depth, inches Benefit-cost ratio	3 7.40 8.0	7.29 13.0

	et the in had sheet 1 of 7	atio	18/32 to 26/44		11.2	16.9 19.9	t 0		16.1 20.6	16.2	28.5	38.3	12.8	20.7	29.4	1.11	30.7	0. ++	4.1	16.5	6.9	17.71	C- 0T	1.7	35.7
0	the entri ikewise, t sions had Shee	fit-cost I	18/32 to 24/41		12.2	19.4	1.13		18.6 23.7	17.9	32.7	43.9	14.41	23.4	33.3	12.1	33.4	+0.4	-4 c v v	18.2	7.6	14.1	1.01	8.0	39.9
TINTT ANATS	c census divisions in 1962 had axle-weight limits approximating the 22/30-kip limits, the entries projecting backward and downward. They are included for comparison purposes only. Likewise, the th Atlantic South for the 18/32-kip limits are projecting backward because these divisions had Sheet <u>1</u>	Overall benefit-cost ratio	18/32 to 1 22/38		12.9	21.8	6.02	A. 01	50.9 56.69	19.0	36.5	49.1	15.6	25.8	36 .8	12.8	36.3	4.24	4 6, 9	19.7	8.1	15.6	1.02	8.7	30.8
	he 22/30=k on purpose d because	δ	18/32 to 20/35		13.6	25.0	7.00		24°0 324°0	19.8	41.8	56.3	16.9	29.1	4 1 .6	13.6	39.8 22	0.14	2.1	21.5	8.7	17.5	23.4	9.3	34 .0 48.4
is method	ximating t r comparis ng backwar	ratio	24/41 to 26/44		L. J.	4.0		6.5	3.11	10.5	16.0	22.22	7.5	12.3	17.9	8.0	21.3	? ₩,	2.7	10.5	4.7	7.2	9.6	3.9	15.0 22.1
du provenciu stato deput aud penetur-cost fatus in iire iereso of mark with transition by highway system, census division, and analysis method	mits appro ncluded fo e projecti	penefit-cost ratio	22/38 to		10.7	14.7	1. KT		11.0	15.5	25.0	33.5	7.11	18.4	26.2	J° •2	27 .2	34.0	7.0	14.8	6.5	0.11	14.7	6.5	31.8
division, s	-weight li Dhey are i Limits are	Incremental sen	20/35 to	e rural	12.1	18.6		10	22.7	13.0	31 -3	[.54	14.3	22.5	32 .0	6.11	32.5	40.1	1.4	12.8	7.5	13.6	18.7	3.1	38.8
, census (2 had axle. 2 ywnward. 16/32-kip	Increi	10/32 to 20/35	Interstate	13.6	25.0	1.00) • 11	0. 9. 10. 10. 10. 10.	8.61	E. 14	56.3	16.9	29.1	9.14	13.6	30° - 20 30° - 20 30° - 20	0.76	1.0	21.5	8.7	17-5	2.5.4	9.3	34.0
y syster	in 1962 d and do for the	Inches	26/44	System l.	d.č0	55		50°07	9.75	10.23	9.00	±/6	d.55	0.20	01.2	10:39	9.93	7.1.7	9"FQ	2.96	9.16	d.65	0.49	66.6	4.01 4.30
v highwa	lvisions backwar c South	•	T4/42	Syst	0.59	0.44 11.0	1 3	7.7	9.70	10.01	9.73	9.64	0.34	.09	d.02	10.15	61.6	10.4	0.24	5.2	0.96 0.96	9.54	0.41	3.10	2.30 .30 .30
sition, by	tensus d Djecting Atlanti	pavement depth	22/38		0.35	о. 35 25 25	19 1	5 0 0	4.6t	9.75	9.60	3.55	0.11	96.1	7.94	9.56	9.63	7.74	50.02 2	- 32	0.72	d.41	· 33	9.54	9.33 9.33
th trans	clantic c s are pro id South 1962.	1 7	20/35		е 0 .5	d.27		0	сс. у 65. у	9.47	74.6	6.47	99.1	1.86	9 0°1	35.6	9.45	7.30	1.84	21.1	8.46	0.29	0.24	7.2.4	9.09 9.09
orrangar⊲o	Middle A 20/35 kip c North a imits in	Design rigid	18/32		7.81	2.19 26.19	0100	+	9.54	9.15	9.34	9.39	34.1	1.73	1.7.7	9.24	9.24	7.24	19.7	7.61	0.16	0.16	0.10	96.0	s. 3. S. 3.
rade lo-ofDevien indum growning and deput and beneficatedoes factos for interingent antermenter times with transition by highway system, census division, and analysis method	Since the New England and Middle Atlantic census divisions in 1902 had axle-weight limits approximating the 22/30-ktp limits, the entr this table for 18/32 and 20/35 kips are projecting backward and downward. They are included for comparison purposes only. Likewise, entries for South Atlantic North and South Atlantic South for the 18/32-kip limits are projecting backward because these divisions had approximately 20/35-kip limits in 1962. She		Census division and sualysis method		Method 1	Method 2 Method 2			Method 3	Method l		Method 3			Method 3	Method 1			Method 1 Mothod 2	Method 3	Method 1		Nethod 3		Method 2 Method 3
	Since this t entrie approx.		ision a		NE			Hi		SAN			SAS			ENC			MNC		ESC			MSC	
	Headnote:		Census div		Τ.		c			ж.			4.			5.			6.		.).			0	

Table 10-3/.--Design rigid pavement slab deptm and benefit-cost matios for five levels of maximum axle-weight limits

10.08

		Tebie LO-3()tructur Te	าก มายายายายายายายายายายายายายายายายายายาย	ith tran	went site sition,	erd prement since deputence of the version, by high transition, by higher system,	ano bener sy system	n, census	division,	census division, and analysis method	verget also deputed and beneficients for its free receives for mortaness on the second and the second states are an associated and the second and second a		्र नाम्म राज्य		Sheet 2 of \underline{J}
			Destan rigid		pavement	dept- 1	1 rches	Incre	mental ben	Incremental benefit-cost ratio	retio	Ove	rall benef	Overall benefit-cost ratio	10
Census d1	vision and a	Census division and analysis method	16/32			.[4/42	26/44	15/32 to 20/35	20/35 to 22/38	22/30 to 24/41	24/41 to 26/44	132 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
						System 1.	Inter	rstate run	Interstate rural continued	nied					
5	W	Method 1.	7.21	7.40	7.5.1	7.74	68.7	6.0	9. Ľ	4.3	°.	6.0	5.6	5.2	h.6
	:		7.21	14.7	5.	21.1	5 /	15.0	12.5	10.6	7.4	15.0	13.8	12.8	9.11
		Method 3	12.7	(.35	1.4.7	7.56	7.64	22.2	18.8	16.5	12.4	22 .2	20.6	19.4	17.9
10.	G.	Method 1	4.25	4.52	9.71	10.00	10.20	8.21	1.01	7.7	-1 0,0	12-3	51 TT	10.3	0.6
		Method 2 Method 3	9.25	9.50 9.50	38.02 38.75	11.01 90.6	95.01 9.99	25.9 37 .1	3 - 9	20.5	12.8 16.6	25.9 37 .1	2# °0 34 •2	32.4	20.2 28.9
						Syst	System 2.	Interstate	e urban						
	MF	Mathod 1	6.1a	14.,	Å.61	6.7.6	8.95	45.3	37.4	29.9	18.3	45.3	4 I.tl	37.7	33.1
•		Mathod D		01	5	3	44. 5	0.00	1 91	3.05	0	6.00	18.2	16.6	8.41
		Method 3	3.50	15	0.0		2:51 2:52	52.9	20.7	17.6	12.6	25.9	23.3	21.4	19.2
~	MA		01.0	0.64	0.88	10.07	10.24	39.5	32.0	24.9	15.0	39.5	35.7	32.2	28.0
Ĵ			60.5	6.79	4.88	5.5	10 01	6.08	16.1	13.3	8.7	6.02	18.5	16.8	14.8
		Method 3	9.77	9.83	90.6	46.6	66.6	26.3	20.5	16.9	12.0	26.3	23.4	21.2	18.9
	SAN	Method 1	4.02	9.22	9.40	9.57	51.2	20.4	17.8	15.2	10.8	20.4	1.9.1	17.8	16.1
			б у . 5	3.22	9.34	9.HG	15.5	19.8	15.6	12.7	6.8	19.8	17.7	16.1	14.3
		Method 3	4.13	9.22	5.5	4.39	3.40	25.1	19.8	16.3	11.7	25.1	22.4	20.4	10.2
14 °	SAS	Method 1	7.83	5.03	5.22	3.40	5.56	2:4.2	21.2	18.0	13.0	24.2	22.7	21.2	19.3
		Method 2	16.2	0.03	3.14	6.24	: 0 . 3†	22.6	18.1	15.2	10.9	9 9 8 8	20.4 1. C	18.7	16.8 20 5
			+ <u></u> , , ,	50.0	0.11	ÁT'O	0.4.0	30.50	2 th 1		5 - C	7.00	20 2) { 0 0	
· ·	ENC		11.2	2.0	1 - A	20.4		23.1 22.1	50.5	6.11	6.91				6 0 E
		Method 2	11.50			0.1	1 10	2.02		1. 	2				25.00
9	CIMIT		711-2	1 i i i i i i i i i i i i i i i i i i i				22.22		20.02		2. CC	7.0L	, 6 , 6	9.6
	ON M			16.1	0.05	01.0	02.00	9.11	- 0	7.7	5.3	11.6	10.4	5.6	8.5
		Method 3	20	64.7	66.1	50.0G	0.15	14.9	2.21	10.4	7.6	14.9	13.6	9.21	11.4
7.	DSA		9.37	9.55	9.72	9.69	20.05	24.8	21.3	17.9	12.4	24.8	23.1	21.4	19.2
			5°-57	9.50	ò.62	9.75	70.6	51.5	21.5	17.7	न ्द्र	27.5	54.5	22 25 25	19.7 25 8
		Method 3	9.37	1.4.0	04.6	40° F	4.13	34.0	Q*/2	23.4	10.0	54 •0	C+TC		0° (y

ratios for five levels of maximum axle-weight limits

		Table 10-3/Design rigid pavement slab depth and benefit-cost ratios for with transition, by highway system, census division,	sija rig W	gid pavem dth tran	ent slal sition, l	o depth s ny highwa	and bener	fit-cost r s, census	gid pavement slab depth and benefit-cost ratios for five levels of maximuth transition, by highway system, census division, and analysis method	five levels and analysis	s of maxim is method	num axle-ve	of maximum axle-weight limits method	s Sheet 3	3 of <u>1</u>
			Design rigid	rigid pe	pevement d	depth - 1	inches	Incre	Incrementel benefit-cost		retio	a)	Overall benef	benefit-cost ratio	io
Census d	ivision an	Census division and analysis method	18/32	20/35	22/38	24/41	26/44	18/32 to 20/35	20/35 to 22/38	22/38 to 24/41	24/41 to 26/44	18/32 tc 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
						System 2.	Inter	Interstate urban	ancontinued	ued					
~	MSC.	Method 1	8.43	8.63	-3 .96	9.03	9.19	17.8	15.3	12.9	8.8	17.3	16.6	15.4	13.8
		Method 2	3.48	8.63	0.78	ô.91	9.04	20.6	16.4	13.6	9.5	20.6	13.5	16.9	15.1
			8.48	S.60	8.70	8.79	ö.86	26.9	2] "G	19.2	13.2	56.9	24.5	5 2.8	20.4
.6	Ŵ	Method 1	9.44	8.62	6.79	d.95	9.10	22.]	18.6	15.0	8.9	22 .1	4.02	18.7	16.3
			0.44	8.64	3.82	66.5	9.14	26.6	21.4	17.9	12.7	26.6	24.0	22.1	19.9
		Method 3	8.44	а.60	8.74	0.85	9.94	35.6	7.65	25.9	19.5	35.6	32.8	30.6	28.1
10.	Ч	Method 1	9.51	9.68	9.95	10.02	10.17	29 -8	24.8	20.4	14.3	29.8	27.3	25.0	22.4
			9.51	j.1.6	10.00	10.20	10.40	5 , 0	2.)•8	17.4	12.5	52 °S	53.0	51.4	19.0
		Method 3	9.51	9.74	9.92	10.07	10.19	32.8	27.1	23.7	17.7	ν. Κ	30.0	20.0	25.6
						S	System 3.	Primary rural	rural						
Ŀ.	EN	Method 1	6.30	6.52	6.73	6.92	60.7	6.9	7.8	6.8	4.4	8.9	8.4	7.9	1.7
		Method 2	6.60	6.66	6.73	6.30	6.86	20.5	15.2	8.11	9.9	20.5	17.8	15.8	13.5
		Method 3	6.64	6.68	6.73	6.73	6.83	27.8	20.7	15.8	4.6	27.8	24.2	2.14	18.3
2.	MA	Nethod 1	7.06	7.30	7.51	7.70	7.87	6.7	7.4	1.7	5.4	6.7	7.7	7.5	7.0
		Method 2	7.38	7.45	7.51	7.58	7.65	40.6	5.62	22.5	12.7	10.6	34.9	30.7	26.2
		Method 3	7.43	1.4-T	7.51	7.57	7.62	60.69	42.8	31.6	18.6	60.6	51.5	44.5	37.7
э.	SAN	Method 1	7.10	7.34	7.56	7.74	7.90	8.1	7.9	7.1	2.0	8.4	8.2	6.7	7.3
		Method 2	7.25	7.34	7.43	7.52	7.60	24.6	18.9	15.4	9.1	24.6	21.8	19.7	17.1
		Method 3	7.29	7.34	14.7	7.4.7	7.54	36.5	26.7	20.8	2.51	36.5	31.6	27.9	23.9
ч. Ч.	SAS	Method 1	6.49	6.70	6.68	7.04	7.19	8.6	7.8	6.7	4.3	8.6	8.2	7.8	1.1
		Method 2	6.61	6.70	6.78	6.86	6.93	4.15	16.3	13.2	8.0	21.5	18.9	17.0	14.9
		Method 3	6.64	6.70	6.75	6.ôl	6.87	32.5	54.0	0.01	8.11	32.5	28.2	25.1	21.7
5.	ENC	Method 1	6.97	7.21	7.43	7.61	7.77	8.7	8.1	7.2	4.9	8.7	8.4	8.0	4°-2
			6.97	7.10	7.22	7.32	04.7	17.1	14.41	4. SI	0.0	1.11	15.8	14.8	13.4
		Method 3	6.97	1.07	7.16	7.23	62.1	24.2	20.5	18.7	13.0	24.2	22.5	21.4	19.7
6.	MINC	Method 1	5.99	6.20	6.39	6.56	6.70	6.4	5.7	6.4	3.0	6.4	6.1	5.7	5.2
		Method 2	5.99	6.11	6.21	6.30	6.38	10.9	6.8	7.7	5.0	10.9	10.0	6 .9	8 •4
		Method 3	5.99	60.9	6.17	6.23	6.28	2.4L	12.5	† .ц	8.1	14.5	13.5	6.2I	12.0

																															1
T so 큐	tio	18/32 to 26/44		8.6	15.1	20.3	9.11	51.1				6.11	- · ·	6 1 1	13.0		23.3	8° 21	4. CL	27.6 20.0			2.12	9.0L		17.0	24	4	15.5	. 41 . 8	
Sheet 4 of	t-cost ra	18/32 to 24/41		7.9.7	17.0	22.4	13.1	23.4			α V n	С, Г	5.6	0 1	14 .0		26.2	14.5	1.1.9	6.0 00	23.7	6 0 0 0 0 0 0	6° #2	100	;	19.5	1-4-1	/-	18.0	0.21 19	
ght limits	Overall benefit-cost ratio	18/32 to 22/38		10.5	18.4	54.0	13.8	24.8	37.4 4.02	, v 0 (ο. Ο. (12.4	5.9	0.1 1	15.5		28.2	15.9	19.6	33.1		2+ 50 2 + 0	28.0	0° 16		21.4	1 1 1 1 1 1 1	C. 01	20.5	13.9	
m axle-wei	Over	18/32 to 20/35		11.2	19.9	25.7	14.3	2 0.8	38.0	0. 4	e.; 6;	13.1	6.1	1.1	16.5		30.2	17.8	21.8	35.7	50. 0	39.9	31.1	21 .3	0.12	23.1	17.1	- C-21	22.4	15.5 2.8	0.0T
of maximus method	atio	24/41 to 26/44		4.8	8.6	12.5	6.7	12.6	19.8	۲.5 ۲.5	2.1	6.6	3.2	5.7	9.5		13.4	7.5	9.6	1,91	г. 1	15.8		2.0	C-11	9.4		т •А	6.4	9.9	0.7
ive levels ad analysi	fit-cost r	22/38 to 24/41		8.0	13.9	18.8	2.11	19. 9	58.3	0.4	1.7	9.11	6.4	8.6	12.3		21.9	9.11	14.41	26.1	18.6	24.3	18.5	13.7	1(.)	15.3	11.4	13.1	13.1	10.3	L3.9
pavement slab depth and benefit-cost ratios for five levels of maximum axle-weight limits transition, by highway system, census division, and analysis method	Incremental benefit-cost ratio	20/35 to 22/38	Primary ruralcontinued	7.6	16.7	22.0	13.3	22.6	32.6	5.7	8.4	12.5	5.6	10.1	14.4	urban	26.0	14.1	17.3	30.5	22.8	29.7	24.8	16.7	+• TZ	19.6	13.6	14 °C	17.7	<u>ि</u>	12.0
lt-cost ra , census d	Incren	18/32 to 20/35	ary rural-	11.2	19.9	25.7	14.3	26.8	.9°.	6.6	9.3	13.1	6.1	11.7	16.5	Primary	30.2	17.8	21.8	7.35	29.8	38.8	31.1	ਿ ਹ	2.(•b	23.1	1.71	19.3	22.4	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	18-8
d benef system	Inches	26/44	가신	7.49	10.7	6.96	7.67	7.38	7.26	6.21	5.94	5.82	7.73	7.55	7.38	System 4.	04.7	7.23	7.20	7.93	7.74	7.70	8.24	1.91	ς <u>ρ</u> •).	7.16	16.9	9.35	7.93	7.65	7.55
depth an y highway	depth - 17	24/42	System 3.	7.32	6.97	6.91	7.53	7.30	7.21	6.06	5.86	5.77	7.56	7.43	7.31	Sys	7.25	7.16	7.15	7.76	2.66	7.64	6.05	7.82	1.1.1.1	7.01	6.86	9.20	7.78	7.54	24.2
ent slab	pavement d	22/38		7.13	6.89	6.85	7.5.7	7.20	7.14	5.90	5.76	5.70	7.40	7.30	7.21		7.09	60.7	60.7	7.57	7.57	7.57	1,84	7.72	01.1	6.85	6.77	9.17	7.60	7.42	7.39
				6.92	• •			60.7			5.65		7.19	7.14	7.09		1.1			7.36		7.50	1.62	7.62	7.62	6.68	6.68	9.6	7.39	7.29	7.28
sign rig w	Design rigid	18/32		6.69	6.69	69.9	6.95	6.95	6.95	5.51	5.51	5.51	6.94	6.94	6.94		6.69	6.93	6.96	7.13	7.39	7.44	1.38	1.51	7.54	6.49	6.58	36.9	7.16	7.16	7.16
Table 10-37Design rigid with		Census division and amalysis method		Method 1					Method 3	Method 1		Methoù 3	Method l		Method 3		Method 1	Method 2	Method 3	Method 1		Method 3	Method 1		Method 3	Method 1		Method 3	Method 1		Method 3
		ision at			2004		DSM.			М			д				NF.			MA			SAN			SAS			ENC		
		Census div		6	÷		œ			9.			10.							5.			з.			4.			5.		

10-10-

10 102

		Isole LV-2/Penign fight premius sine were store contrological terms of the control of the fight with transition, by highway system, census division, and analysis method	STJ DSTap	sith tran	sition, b	y highwa	y syster	transition, by highway system, census division, and analysis method	ivision, E	ind analys.	is method		0		Sheet_5 of]
			Design rigid		pevement o	depti - 1	Inches	Increm	Incremental benefit-cost		ratio	Ove	Overall benef	benefit-cost ratio	io
ensus di	vision and	Census division and aualysis method	10/32	20/35	22/30	24/41	26/44	18/32 to 20/35	20/35 to 22/30	22/38 to 24/41	24/41 to 26/44	15/32 to 20/35		18/32 to 18/32 to 22/38 24/41	18/32 to 26/44
						System 4		Primery urbencontinued	-continued						
1.e	INC	Method 1	6.58	6.81	10.7	7.20	7.36	26.9	21.9	16.2	7.3	26.9	2h.6	22.0	18.9
)		Method 2	6.58	6.71	6.83	6.94	7.04	21.2	17.4	14.6	9.5	21.2	19.4	17.9	16.0
			6.53	6.70	6.00	6.89	6.95	25.3	23.0	20.9	15.6	25.3	24.2	23.3	21.7
-	DOR D		7.57	7.82	8.04	0.24	8.40	59.4	45.4	30.6	13.1	59.4	52.7	146.0	39.0
•	2	Method 2	7.57	7.70	7.02	7.93	8.03	40.4	32.6	27.1	17.5	40.4	36.6	33.6	29.8
			7.57	7.68	7.78	78.7	7.95	50.4	42 °0	36.4	24.5	50.4	46.4	43.3	39 •0
	UC B		7.16	7.38	7.57	7.75	7.90	43.3	33.0	7, 45	12.0	43.3	38.8	34.3	29.4
	0		7.16	62.7	7.41	7.52	7.62	200	54.9	20.2	13.2	30.8	27.9	25.4	22.6
			7.16	7.20	7.37	7.45	7.52	38.1	32.7	27.6	20.0	38.1	35.6	33.1	30.2
9.	W	Method 1	7.26	7.51	7.74	7.94	d.10	43.1	37.6	29.5	16.8	43.1	40.5	37.2	33.0
			7.26	7.43	7.59	7.73	7.87	50.02	31.2	29.0	18.7	39.9	35.7	33.6	30.3
		Method 3	7.26	7.42	7.54	7.65	7.73	50.4	199	42.9	33.7	50.4	148.6	47.0	44.5
10.	d.	Method 1	5.37	8.57	8.75	8.92	90.6	31.8	25.0	18.7	9.7	31.8	28.5	25.3	21.6
			8.37	8.59	8.78	0.96	9.12	1.91	15.4	9.21	8.4	19.1	17.3	15.8	14.0
			0.37	0.57	8.73	6.35	0.95	23.2	19.8	16.8	12.1	23.2	21.6	20.1	18.3
						Sys	System 5.	Secondary	rural						
1.	NE	Method 1	5.01	11.3	5.22	5.33	5.44	15.6	12.5	10.3	6.7	15.6	14.0	8.21	11.3
		Method 2	5.12	5.17	5.22	5.28	5.33	15.6	1.21	9.3	6.0	15.6	13.9	ۍ ک ار ۲	10.7
		Method 3	5.13	5.18	5.22	5.27	5.31	20.4	15.5	12.2	8.2	20.4	17.9	16.0	14.0
2.	MA	Method 1	5.01	5.11	5.22	5.33	5.44	13.2	10.4	8.8	5.6	13.2	ы.8 8-ш	10.8	9.5
			5.12	5.17	5.22	5.28	5.33	13.3	10.0	7.6	5.1	13.3	11.7	10.3	0.6
		Method 3	5.13	5.18	5.22	5.27	5.31	17.0	13.2	6.6	0°2	17.0	15.1	13.3	11 .8
э.	SAN	Method 1	4.76	4.86	1.96	5.10	5.22	2.6	5.6	4.4	2 °8	2.6	9.9	0,0 0,0	5.0 1
			4.80	90.4	4.92	4.97	5.01	6.5	0	0.0	ю	0 C	0.2	0 v 0 v	2.6
		Method 3	4.02	4.00	4.90	4.94	4.40	1.01	†	6.0	; ;	1.21			
4.	SAS	Method 1	4.56	4.66	4.77	4.09	2°.8	6.9	ς Υ.	4.	C- C	6.9	6.1 6.1	4°C	4.7 1
		Method 3	4.62	4.66	4.70	4.74	4.77		 -	1 1 1 0 1 0	ο ο «		7.8	2.0	6.2
			-					-	-)	-		-	

				Tth trai	asition, c	awngin Vo	ly system	with transition, by highway system, census division, and analysis method	ULVISIOD, 4	anu analys.				Sheet	Sheet 6 of 1
			Design rigid	E	pavement d	depth - 1	Inches	Incre	Incremental benefit-cost ratio	efit-cost :	ratio	Ove	rall benef	Overall benefit-cost ratio	tio
Census d	ivision and	Census division and analysis method	18/32	20/35	22/33	24/41	26/44	18/32 to 20/35	20/35 to 22/38	22/38 to 24/41	24/41 to 26/44	18/32 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/44
					3	System 5.	Secor	Secondary rural	lcontinued	ed					
5.	ENC	Method 1	5.17	5.30	5.41	5.52	5.61	5.4	4.8	3.8	2.2	5.4	5.1	4.7	4.2
			5.17	5.31	5.43	5.52	5.60	3.7	3.4	3.5	2.4	3.7	3.5	3.5	3.3
		Method 3	5.17	5.27	5.36	5.43	5.49	5.7	5.4	5.3	3.6	2.2	5.6	5.5	5.1
6.	WINC	Metinod 1	5.04	71.4	5.28	5.30	5.47	4.9	5.4	3.4	1.9	6.4	4.5	4.2	3.7
			5.04	5.18	5.29	5.39	5.46	3.5	3.1	3.1	2.1	3.2	ຊຸ ຕ.	3.1	5.9
		Method 3	5.04	5.14	5.23	5.29	5.35	5.1	4.7	4 . 8	3.2	2.1	6.4	6.4	9° †
7.	ESC	Method 1	5.17	5.30	5.41	5.52	5.61	r: -2	3.5	2.8	1.6	4.2	3°8	3.5	3.1
		Method 2	5.17	5.31	5.43	5.52	5.60	5 .8	2.5	2.5	1.7	8° 2	2.2	2.7	2°2
		Method 3	5.17	5.27	5.36	5.43	5.49		3.7	3.6	2°†	4.2	0.4	3.9	3.6
С	WSC	Method 1	5.17	5.30	5.41	5.52	5.61	5.8	5.0	4.1	2.3	5.8	5.4	5.0	t1 . L1
		Method 2	5.17	5.31	5.43	5.52	5.60	3.9	3.6	3.8	2.7	3.9	3.8	3.8	3.6
		Method 3	5.17	5.27	5.36	5.43	5.49	6.1	5.5	5.6	3.8	6.1	5.8	5.7	5.4
9.	М	Method 1	4.83	5.00	5.11	5.21	5.30	6.5	5.5	4.6	2.6	6.5	6.0	5.6	4.9
			4.88	5.02	5.13	5.22	5.29	4.4	3.9	5.4	5.9	4° 7	4.2	4.2	0°.0
		Method 3	4.88	4.98	5.06	5.13	5.18	6.8	6.2	6.4	h. 4	6.8	6.5	6.5	6.1
10.	Ч	Method 1	4.95	5.07	5.19	5.29	5.38	5.8	6.4	0° †	2 •3	5.8	5.4	5.0	4.4
			4.95	60.5	5.20	5.29	5.37	3.9	3.6	3.6	2.4	6.E	3.7	3.7	3.5
		Method 3	4.95	5.05	5.13	5.20	5.26	6 •0	5.5	5.4	3.6	6.0	2.2	2.6	5.3
						Sys	System 5.	Secondary	y urban						
ч.	NE	Method 1	5.29	5.44	5.59	5.73	5.85	10.2	8.2	6.4	3.7	10.2	9.2	α.3	7.2
			5.44	5.52	5.59	5.65	5.71	14 .44	3.5	2.9	1.7	ti . ti	9.6 .0	3.6	3.1
		Method 3	5.46	5.53	5.59	5.65	5.70	5.3	0.4	3.4	2.1	5.1	9° †	4.2	3.7
2.	MA	Method 1	5.56	5.69	5.83	5.95	6.07	4.8	9.9	5.3	2.7	8.4	7.5	6.8	5.8
			5.69	5.76	5.03	68.3	5.94	9° †	3.6	2.9	1.8	p.4	4.1	3.7	Q () ()
		Method 3	5.71	5.77	5.33	5.08	5.92	5.3	4 .2	3.4	0. 0	ς. Υ.	4.7		ς π.
ч.	SAN	Metucà l	6.05	6.24	6.41	6.55	6.67	0.0	ب ب	cia 1.4.0	-, c	0,0	0 ~ 4	ν. 	* * • •
		Method 2	6.16	6.24	6.32	6.39	6.45	0.0	+•+	n .	C•2	0			, , , ,
		Method 3	6.13	6.24	6.30	6.36	6.41	7.1	5.6	9* #	6° 0	1.7	6.3	0°4	7°C

With tradsition, by highway system, census division. Bnd analysis method

Sheet I of I	tio	18/32 to 26/44		0.0 0.0 0.0		1 1 1 2 2 1 1	11.49 1.14	1.5 1.45	2.0 1.5	7.3 7.6	2.3 2.3
Sheet	it-cost re	18/32 to 24/41		3.4	0°0 0°0	1.1 1.9	2.1 1.6 1.9	1.7 1.6 1.9	2.3 2.0	3.1 6.6 4.8	5.6 5.6 5.6
	Overall benefit-cost ratio	16/32 to 22/38		3.6	2.5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.1 2.1 2.1	1.9 1.8 2.1	2.5 1.9 2.5	8.8 7.1 9.0	0.4.0 0.4.0 0.0
	Ove	18/32 to 20/35		9.6 	0 4 0 4		50 50 50 50 50 50 50 50 50 50 50 50 50 5	0.00 0.00 0.1	2.5 2.5	9.5	8.50 9.50 9.50 9.50
s method	atio	24/41 to 26/44		1 1 1 6	0 °		1.1 7.0 6.0	6.0 7.0	1.1 1.1	4 °2. 8.2. 8.2.	4.1.4 1.1.1
nd analysi	fit-cost 1	22/30 to 24/41	pa	0.0		i u u vov	1.7	1.5	1.6	6.7 5.6 7.0	2.1
transition, by highway system, census division. and analysis method	Incremental benefit-cost ratio	20/35 to 22/38	Secondary urbancontinued	0.0 5 7		1.0 0 0 0	9.11 9.9 9.1	ччч 8.6.8	0.1 1.9 1.9	8 6 8 8 2 1	5.1 5.1 5.1
, census d	Increm	18/32 to 20/35	idary urbar	6. 6	0 U Y) 0	τ. 	2.5 5.5 5.5	0.1.4. 	2.5 2.5 2.5	7.7 7.7	
y system	1 nches	26/44	Secor		2. 3	5.32	5.22 5.03 4.99	6.26 5.99	6.05 5.77 5.72	6.71 6.64 6.53	7.17 7.16 7.05
y highway	depth - 11	14/42	System 6.	5.72	7.04 10 2	5.75	5.11 4.97 4.95	6.15 5.97 5.94	5.92 5.71 5.67	6.59 6.54 6.46	7.04 7.08 6.97
sition, l	pavement	22/38	Syst	5.71	70.04	5.65 5.65	4.99 4.89	6.02 5.91 5.39	5.78 5.64 5.62	6.45 6.42 6.37	6.95 6.95 6.87
with tran		20/35		5.57	10.0 5 An	00 EX	4.37 4.84 4.33	5.33 5.33	5.63 5.55	6.29 6.26	6.74 6.79 6.79
3	Design rigid	13/32		5.43	00.0	22.2	4.75 4.75 4.75	5.76 5.76 5.76	5.45 148 5.48 5.48 5.48	6.11 6.11 6.11	6.57 6.57 6.57
		Census division and analysis methoù			Method 3 Mothod 1		Method 1 Method 2 Method 3	Method 1 Nethod 2 Nethod 3	Method 1 Method 2 Method 3	Method 1. Method 2 Method 3	Method 1 Method 2 Method 3
		ision a		SAS	Chi ch	্যার	NNC N	ESC	NSC	W	<u>م</u>
		Census d iv		.4	U	ń	<i>.</i>	7.	ċ	ň	.0.L

The effect of the transition period and of the increase in payload per vehicle is illustrated by the following benefit-cost ratios for highway systems 1 and 3, Interstate rural and primary rural, in the East North Central census division:

	Single	e/tandem limits,	axle-we kips	ight
Analysis method -	to	20/35 to 22/38	22/38 to 24/41	to
Method 1				
Interstate rural with transition without transition Primary rural	13.6 13.5	11.9 12.5	10.5 11.8	8.0 11.2
with transition without transition	8.7 8.5	8.1 8.5	7.2 8.1	4.9 7.5
Methods 2 and 3 with transition				
Interstate rural with increase in payload without increase in payload	39.8 57.8	32.5 46.7		21.3 32.0
Primary rural with increase in payload without increase in payload	17.1 24 .2	14.4 20 .5	12.4 18.7	8.0 1 3.0

E. Rigid and Flexible Pavement Comparisons

All methods of analysis produce benefit-cost ratios that are generally higher for flexible than for rigid pavement. There is some shifting by census division and by highway system. The construction cost is generally higher for rigid than for flexible pavement, and since the motor vehicle operating costs are assumed to be the same for both types of pavement, it logically follows that the benefit-cost ratios would favor the flexible pavement. Table 10-38 gives the summary of the ratios for the New England and East North Central census divisions.

Because there is no pronounced difference in the final benefit-cost ratios, most of the summary tables and discussions pertain to rigid pavement. Rigid pavement is chosen because its single slab design offers a better basis of comparison of design depth than does flexible pavement with its three structural layers

F. Comparison of Methods 1 and 2 of Determining the Economy of Axle-Weight Limits

The two critical factors in the analysis of the economy of axle-weight maximum limits are the forecasts of the vehicle class distribution in the ADT and the axle-weight distribution for each vehicle class that would use the highways under conditions of higher legal axle-weight limits. To compare the results of the analysis by Methods 1 and 2 is in order.

Such factors as legal gross weight limits, legal vehicle length limits, legal restrictions on the number of cargo units per vehicle combination vehicle, and enforcement of the applicable laws lead to certain transport practices in each State. Types of commodities, terrain, length of haul, and other transport factors also influence the composition and weight of the vehicles in the ADT. Thus, from one State to another,

Table 10-38. -- Comparison of the benefit-cost ratios for rigid and flexible pavements for Method 1 with transition, New England and East North Central Census Divisions

	Incremen	nt of ind	crease in	1 single,	/tandem s	xle weig	ght limit	s, kips
Highway system	18/32 to	20/35	20/35 to	22/38	22/38 to	24/41	24/41 to	26/44
and pavement type	New England	East North Central	New England	East North Central	New England	East North Central	New England	East North Central
l. Interstate rural Rigid Flexible	13.6 14.1	13.6 11.8	12.1 12.4	11.9 10.7	10.7 10.8	10.5 9.7	7.7 7.7	8.0 7.6
2. Interstate urban Rigid Flexible	45.3 49.6	23.7 23.6	37.4 40.0	20.9 20.8	29.9 31.3	17.9 17.8	18.3 18.8	12.9 12.8
3. Primary-rural Rigid Flexible	8.9 9.8	8.7 8.1	7.8 8.3	8.1 7.2	6.8 7.1	7.2 6.1	4.4 4.5	4.9 4.0
4. Primary-urban Rigid Flexible	30.2 29.9	22.4 21.0	26.0 26.0	17.7 16.7	21.9 21.9	13.1 12.2	13.4 13.4	6.4 6.0
5. Secondary-rural Rigid Flexible	15.6 17.8	5.4 6.4	12.5 14.0	4.8 5.0	10.3 11.4	3.8 3.7	6.7 7.1	2.2 2.0
6. Secondary-urban Rigid Flexible	10.2 10.6	2.5 2.6	8.2 8.4	2.2 2.2	6.4 6.6	1.9 1.9	3.7 3.8	1.3 1.3

there are factors other than the axle-weight limits that control the number of vehicles, the relative numbers of vehicles in each vehicle class, and the loading practice.

Method 1 does not take these factors into consideration. There is no known direct and positive way to do so. However, since there is ample evidence in the truck weight studies and in transport practice that motor freight carriers will utilize higher axle-weight limits whenever they are authorized, there is some basis for assuming that some of the traffic at lower axleweight limits will move to higher axle weights when they become legal.

Both methods 1 and 2 retain the effects of loading beyond legal limits. Analysis of the 1962 truck weight study indicates that, generally, overloaded axles will prevail regardless of the maximum limits of legal axle weights.

Neither method considers the real possibility that if higher axle weights should be legally authorized, there is apt to be an increase in highway transport use. To a degree this factor is considered in the forecast to 1990 of a 29-percent increase in payload per vehicle and is reflected in some increase in the percentage of the total (all modes) of intercity freight movement to be handled by highway transport. It is not, however, of special importance in the present analysis. If increased axle-weight limits resulted in increased use of the highways, it would only increase the benefits above those computed without considering such an increase.

There is a current shift in the use of vehicles from the 2-S1 to the 2-S2 and from the 2-S2 to the 3-S2. Neither Method 1 nor 2 accounts for this change but assumes that the same vehicle class will carry the same total tons of payload as before. This assumption is a weakness in the methods, but is on the conservative side. A shift to heavier vehicles results in transport economy, even at the same axle-weight limits. Therefore, the economy as calculated by Methods 1 and 2 is less than is likely to be experienced.

Method 2 results in the same average payload weight and the same E 18-kip axles per vehicle for a given vehicle class for all census divisions. This result is distinctly different from Method 1, where the step up to the next axle-weight level was accomplished by adjusting the 1962 axle-weight distribution separately for each census division. But Method 2 uses a National ratio of average payload weight and E 18-kip axles to practical maximum gross vehicle weight, based on the values by States.

The 1962 truck weight study is not a perfect sample of transport highway use. However, from year to year this study has been consistent in its trends of transport practice. By using the data by census division rather than by States, many of the deficiencies of the sample are averaged out. 10-110

Neither Method 1 nor 2 considers the effects that vehicle limits in one State have on highway usage in other States. It is known that, Nationwide, vehicle weights and frequencies are held down in a liberal State by less liberal limits in nearby States.

From table 10-37 may be gained the correct impression that the benefit-cost ratio tends to increase as the traffic volume increases, but there are many exceptions when the comparisons are made between census divisions and highway systems.

If, for example, the economy of increasing from 18/32kip to 20/35-kip limits were calculated for one census division and one highway system for a range of ADT, the results would be a consistent increase in economy with increases in ADT. The difference between this proposed calculation and the results in table 10-37 is that in table 10-37 the highway unit costs, highway total costs, the traffic mix, and highway designs (2 and 4 lanes) differ from system to system and from census division to census division. For instance, the cost of structures is not related to traffic volume, and this cost varies widely among highway systems and census divisions. The cost of paving is related to the ADT, because within the 20-year design period higher ADT's would apply a greater number of E 18-kip axles to to the pavement and thus require a thicker pavement. But this increase is not directly proportional to ADT and, further, it is obtained at a decreasing rate of increasing cost. The result

is that it is correct logically to expect an increase in the economy of total costs of highway transport with increased ADT.

If all six highway systems and all ten census divisions are considered, the range in benefit-cost ratios in table 10-35 for analysis Method 1 is from 59.4 (System 4, ESC, 18/32 to 20/35 kips) to 0.9 (System 6, ESC, 24/41 to 26/44 kips). This ratio of 0.9 is the only one of the results using Method 1 that is less than 1.1. In fact, if Methods 1, 2, and 3 are all taken into account, only seven incremental B-C ratios (all at 24/41 to 26/44 kips) are less than 1.0 in a total of 720 ratios. In general, the incremental ratios are well above 2.0, indicating acceptable economy of highway transport for axle-weight limits up to a maximum of at least 26/44 kips.

From table 10-37 it will be observed that, for systems 1 and 3--the Interstate and primary rural systems--the B-C ratios are substantially less for Method 1 than for Method 2, but they are generally greater in the case of the two urban systems. For both secondary systems, the B-C ratios for Method 1 are, for the most part, slightly more than for Method 2.

In the Method 1 analysis, the axle-weight distributions from the 1962 truck weight study were calculated separately for each highway system and census division, except for some census divisions in systems 5 and 6. In the Method 2 calculations, curves for the relationships that the E 18-kip axles and average payload per vehicle bear to the practical maximum gross vehicle 10-112

weight were the same for all six highway systems and for all ten census divisions. One result of the Method 2 procedure was that the slope of the curve of increasing E 18-kip axles against the five levels of axle-weight limits was less than the slope for Method 1 in those instances where the B-C ratio for Method 1 was greater than for Method 2. In other words, the less the E 18-kip axle applications increase with increases in axleweight limits, the higher the B-C ratio.

15. COUNTERINTERACTING EFFECTS ON PAVEMENT CONSTRUCTION COST OF INCREASING THE NUMBER OF E 18-KIP AXLE APPLICATIONS

As would be expected, the results of pavement designs for each series of increases in maximum axle-weight limits produce increases in pavement depth and consequent increases in the cost of pavement construction. The increases in pavement construction cost with each increment of maximum axle-weight limit from 18/32 to 26/44 kips is a decreasing rate of increase rather than an increasing rate, as might be expected since the E 18-kip axle equivalents increase exponentially with increasing axle weight.

Figure 10-14 is a set of curves to illustrate two principal factors and their interaction. First, the top set of curves shows that the design depth of rigid pavement increases more rapidly at low than at high daily E 18-kip axle applications. Second, the middle curve shows in dollars per cubic yard the decreasing cost of the pavement as the depth increases. When

these two factors--one a dampening increase in design depth and the other a dampening decrease in pavement cost per cubic yard-are combined, the result is a slightly decreasing rate of increase in pavement cost as the maximum axle-weight limits are increased from single/tandem limits of 18/32 kips to 26/44 kips.

CHAPTER 11

ECONOMY OF VEHICLE LENGTH - METHOD 4

In general, the greater the weight of payload per vehicle the less it costs in cents per ton-mile to transport cargo. Additional pounds of cargo per vehicle trip may be obtained in one of two ways: (1) by increasing the maximum limit of axle weight and increasing the gross vehicle weight limit accordingly or (2) by increasing the number of axles on the vehicle so that higher gross weight may be obtained without increasing the legal limit of axle weight. More axles per vehicle may be obtained by operating longer vehicles and combinations--more particularly by using two and three cargo units per vehicle combination. Thus, it is desirable to determine the economy of vehicle length in addition to determining the economy of axle-weight limit.

1. VEHICLE LENGTH AND ITS SIGNIFICANCE

Were it not for curvature on highways, street corners in urban areas, and ramps at interchanges, extremely long vehicles would be practical from the standpoint of highway design. On the other hand, the vehicle of a practical length for operation on the highway is restricted in its maneuverability at loading docks and at termini. Highways, both urban and rural, can accommodate vehicle combinations up to a limit of 65 or 70 feet without undue

interference to other vehicles in the traffic stream and without too much offtracking on horizontal curves and ramps.

To obtain the 65- or 70-foot length by using a tractorsemitrailer with full trailer achieves the maximum maneuverability with a minimum of offtracking. The trailers in such a combination would be 27 to 30 feet in length. The combination with two or three cargo bodies provides another advantage to the transport industry in allowing the line-haul--or intercity haul-to be made with a longer combination vehicle. The trailers can be used separately in urban areas, and they may be simultaneously loaded and unloaded at the freight dock.

The advantage to the transport industry of two or three cargo bodies per combination is significant. But there is greater advantage with the 27-foot trailer than with the 40-foot trailer. The additional cube space of the 40-foot trailer is of no advantage to the trucker when cargo is being hauled that weighs more than about 20 pounds per cubic foot loaded and when the axleweight limits are 18,000 and 32,000 pounds for single and tandem axles, respectively. Thus the haulers of light-density products are interested in more cargo space. The haulers of heavierdensity cargo could get along satisfactorily using body lengths of less than 40 feet.

Vehicle length should not be considered separately from gross weight limits. The significance of the use of higher gross weights with the double-cargo combination is indicated by the fact

that in 1963 about 15 States raised their gross weight limits to approximately 73,000 pounds, and in 1965 and 1966 eleven States increased their legal limits on length of combinations to 65 feet.

2. LIMITATIONS OF THE TRUCK WEIGHT STUDIES

The truck weight studies in a particular State are influenced not only by the law of that State but also by the laws of the surrounding States. A State permitting longer vehicles than do the surrounding States will not have the maximum use of the longer combination vehicle, because the interstate heavy truck traffic is governed by the minimum legal limits of either weight or dimension existing in the States where a vehicle on a specific trip is to travel.

It is to be remembered when examining the results of analysis of the economy of vehicle length that these results are prepared on the basis that there is no legal limit on gross vehicle weight. This is an important assumption, and its importance might be illustrated by considering the States in the West.

Several western States permit a gross weight of 76,000 pounds. They also permit 65-foot double-cargo combinations. On the other hand, the double-cargo combination is not used as extensively in the West as it would be if the gross vehicle weight limit were higher than 76,000 pounds. The reason for this is that with the 3-S2 tractor-semitrailer and an 18,000/32,000pound axle-weight limit, the vehicle loaded to axle-weight capacity

will weigh about 73,000 pounds gross. Therefore, the double-cargo combination is not of much advantage, particularly in hauling high-density products, because it could add only 3,000 pounds gross above the maximum for the 3-S2. The extra tare weight on the double-cargo combination would take up more than the 3,000-pound gross weight advantage gained. Therefore, in the western States, no payload advantage could come about by use of the double-cargo combination except when additional cubage is desired and when terminal functions are favorable.

3. PROCEDURE USED IN METHOD 4--ECONOMY OF VEHICLE LENGTH

The analysis of economy of the maximum length of vehicles and combinations may be made by setting up different fleets (mixes of various class of vehicles), each fleet being restricted by different maximum length of single-unit trucks, trailers, and trailer combinations. Each different fleet is assigned to haul the same total tons of payload for a unit of distance, say one mile. This approach was used in Method 4.

A. Selection of Length Limits

Five fleets were considered according to the length limits of individual vehicles and of vehicle combinations given in table 11-1. The selection of the length limits of the various vehicles was somewhat arbitrary. The lengths, however, are based upon what is practical, what the logical next steps in vehicular

, 4	•
le lengths used in Method	ength.
used	cle L
lengths	of Vebicle
of vehicle	s of the Economy
g	the
Combinations	Analysis of t
8	
יד-דו	
Table 11	

	Tractor with semi and full	traller (2-S1-2, 2-S2-3 3-S2-4)		65	65	65	70
feet	Tractive truck and	full trailer (2-3, 3-4)	1952 194	55	ŝ	65	70
Vehicle maximum length, feet	Tractor with	(2-Sl, 2-S2, 3-S2)	\uparrow	20	55	55	55
Ve	Single unit	(2D, 3A)		35	35	9 1	O 1
	and fit could	TATTATT	\rightarrow	27 to 40	27 to 40	27 to 40	27 to 40
Identification	Table headings	Length limits ^g	1962 law	35/50 55/65	35/55 60/65	40/55 65/65	40/55 70/70
Ide	Computer	DO.	18	50	R	24	26
JE	quinu d	iet2	0		CU	e	4

First length (35 feet) applies to single unit trucks; second length (50 feet) applies to tractor with semitrailer; third length (55 feet) applies to a tractive truck with full trailer; and fourth length (65 feet) applies to a tractor with semitrailer and full trailer.

2)

design would be from the standpoint of transport practice, and what the present law is.

B. Assignment of Payload Total Weight to Vehicle Classes

The assignment of pounds of payload to each vehicle class was done on the basis of the 1962 and 1963 truck weight studies-the data used in Method 1 on analysis of the economy of axle weights--and by judgment, applied to the State laws which affected the observed data in the truck weight studies. The average payload per vehicle for all trips (including empty cargo bodies), tare weights, and average gross vehicle weights are given in table 11-2 for the East North Central Census Division and the primary rural highway system.

Vehicle and vehicle-combination empty weights used are those in tables 14-1, 14-2, and 14-3.

C. Assignment of Everage Payload Per Vehicle Within a Fleet and Determining the ADT of Each Vehicle Class

The average pounds of payload per vehicle, including empty vehicles, was established for each vehicle class by reference to the 1962 and 1963 truck weight data for each census division and highway system. See table 11-2 for these weights.

The number of vehicles in each vehicle class in the daily traffic stream and the average pounds of payload per vehicle were each determined in two steps. First, the vehicle classes were Table 11-2.--Average payload, empty, and gross veights of each class of vehicle in Mathod & East North Central--primary, rural

			Method 4 (year 1962)	Ter 1962)			Mathod 4 (year 1990)	ter 1990)	
Vehicle class	Weight, pounds	Step 1 35/50 55/65	Step 2 35/55 60/65	Step 3 40/55 65/65	Step 4 40/55 70/70	Step 1 35/50 55/65	Step 2 35/55 60/65	Step 3 40/55 65/65	Step 4 40/55 70/70
ສ	Payload	4, 235	4,235	4,837	4,837	4,235	4, 235	4,837	4,837
	Eapty veight	9, 220	9,220	9,895	9,895	9,220	9, 220	9,895	9,895
	Gross veight	13, 455	13,455	14,732	14,732	13,455	13, 455	14,732	14,732
Ř	Payload	9,227	9,227	10,518	10,518	11,903	11,903	13,619	13, 619
	Eapty weight	15,635	15,6 35	16,585	16,585	15,635	15,635	16,585	16, 585
	Gross weight	24,862	24,8ô2	27,103	27,103	27,538	27,538	20,204	30, 204
2-51	Payloed	6,064	6, 667	6,667	6,667	7,823	8,610	8, 61 0	8, 610
	Empty veight	18,950	19, 625	19,625	19,625	18,950	19,625	19,625	19, 625
	Gross veight	25,014	26, 292	26,292	26,292	26,773	28,235	28,235	28, 235
2-52	Fayload	13, 659	15,072	15,072	15,072	17,620	19,471	19,471	19,471
	Empty veight	23, 550	24,500	24,500	24,500	23,550	24,500	24,500	24,500
	Gross veight	37, 209	39,572	39,572	39,572	41,170	43,971	43,971	43,971
3-8	Payload	13,059	23,099	23,099	23,099	27,093	29, 804	29, 804	29,804
	Empty weight	28,190	29,140	29,140	29,140	28,190	29, 140	29, 140	29,140
	Gross weight	49,192	52,239	52,239	52,239	55,283	58, 944	58, 944	58,944
3-2	Payload	22, 542	24,581	26, 625	28,688	29,079	31, 717	34 , 3 68	36,984
	Empty veight	26, 000	26,675	21, 350	28,025	26,000	26, 675	27, 350	28,025
	Gross weight	48, 542	51,256	52, 975	56,713	55,079	58, 392	.61, 718	65,009
3=4	Payload	27,575	29, 989	32,575	34, 988	35,572	38, 739	41,914	45,053
	Empty weight	31,300	32, 250	33,200	34, 150	31,300	32, 250	33,200	34,150
	Gross weight	58,375	62, 239	65,775	69, 138	66,872	70, 989	75,114	79,203
2-S1-2	Payload	21,575	21,575	21,575	23, 230	27, 832	27,832	27 ,832	29,985
	Empty weight	28,500	28,500	28,500	29, 040	28, 500	28,500	28,500	29,040
	Gross weight	50,075	50,075	50,075	52, 270	56, 332	56,332	56,332	59,025
2-S2-3	Payload	27,541	27,541	27,541	29. 721	35,528	35,528	. 35,528	38, 154
	Empty veight	35,400	35,400	35,400	36, 160	35,400	35,400	35,400	36, 160
	Gross veight	62,941	62,941	62,941	65, 881	70,928	70,928	70,928	74, 314
3-S2-4	Payload	31, 997	31, 997	31, 997	34,380	41,276	41,276	41,276	414, 314
	Empty veight	40, 400	40, 400	40, 400	41,160	40,400	40,400	40,400	41, 160
	Gross veight	72, 397	72, 397	72, 397	75,540	81,676	81,676	81,676	85, 474

arrayed by increasing practical maximum gross vehicle weight. For each census division and each highway system, the percentage of each vehicle class in the truck ADT from 1962 truck weight study for combinations from the 2-Sl upward was plotted as a cumulative curve against the vehicle class shown in figure 11-1 for the primary rural highway system (System 3).

Because of the different legal limits in the ten census divisions, this plotting results in the family of curves in figure 11-1. The lowest solid curve represents the Pacific census division where the limit for combinations is 65 feet. The heavy dashed curve below the Pacific curve represents an estimate of the percentage distribution to be expected in all census divisions if all adopted the 65-foot maximum limit for two-cargo combinations.

The next step was to accumulate the pounds of payload per vehicle for each class from the 2-Sl upward and then to convert the pounds to the percentage of the total pounds carried by the total ADT.

Figure 11-2 is the result of this calculation. By using figures 11-1 and 11-2 in combination, first the percentage of the total ADT represented by a given class of vehicle is read from figure 11-1, and then the percentage of the total payload transported by this class of vehicle is read from figure 11-2.

The total pounds of payload to be transported by the ADT for each highway system and each census division is the same for

100 90 B ACCUMULATED PERCENTAGE OF THE VEHICLE COMBINATION (2-SI AND LARGER) ADT 80 70 A 60 50 40 I. NE 0 2. MA 3. SAN 4. SAS 000 Δ 30 5. ENC A m 7. ESC D 8. WSC 🖸 9 M 🖽 20 10. P Θ JUDGEMENT CURVE 10 0 10 20 30 40 50 60 70 80 90 100

ACCUMULATED PERCENTAGE OF TOTAL PAYLOAD CARRIED BY THE ADT

FIG. 11-2 ACCUMULATED PERCENTAGE OF THE ADT OF VEHICLE COMBINATIONS AR-RANGED BY INCREASING PRACTICAL MAXIMUM GROSS WEIGHTS, VS. THE ACCUMULATED PERCENTAGE OF TOTAL PAYLOAD CARRIED BY THE ADT.

Method 4 as for Method 1. This total poundage multiplied by the percentage to be carried by a specific class of vehicle gives the total pounds to be transported by that class of vehicle. This figure divided by the average pounds per vehicle gives the number of vehicles of that class to be found in the total ADT.

Because the 2D and 3A single-unit trucks were considered to be unaffected by the changes in length of vehicle combinations, the same payload per vehicle and the same percentage of the total payload hauled by the ADT was assigned to these trucks. However, for steps 3 and 4, in which a 40-foot maximum length of singleunit truck is included, additional payload per vehicle was assigned to the 2D and 3A trucks over that assigned for the 35-foot maximum length.

D. Determining Number of E 18-kip Axle Applications

The E 18-kip axles for each class of vehicle for both rigid and flexible pavements were determined by reference to the results of Method 1. The average gross weight per vehicle by class for each highway system and census division was obtained by adding together the average tare weight and the average payload weight. Because of the different axle-weight and gross weight limits, there resulted ranges of average gross vehicle weights and corresponding E 18-kip axles per vehicle. See figure 11-3 for a plot of the curves for three vehicle classes.

FIGURE 11-3.-SAMPLE SET OF CURVES FOR THE PRIMARY RURAL SYSTEM TO ILLUSTRATE HOW THE NUMBER OF E-18 KIP AXLES PER VEHICLE BY VEHICLE CLASS WAS DETERMINED FROM PLOTTING THE DATA OF METHOD 1 FOR TWO AXLE WEIGHT LIMITS FOR EACH CENSUS DIVISION

4. RESULTS OF THE ANALYSIS BY METHOD 4

Three sets of tables are presented to show the results of the analysis of vehicle length. Table 11-3 gives the number of vehicles in the ADT, 1962 and 1990, for each step increase in vehicle and combination length for system 3, census divisions 5 and 6. On a National basis, table 11-4N gives for each highway system the highway cost and motor vehicle operating costs for each step increase in vehicle and combination length for the 20-year period from 1965 through 1984 and the increments of change between increases in length step.

The analysis of the data proceeded as in Methods 1 through 4 with the expectation that the end point would be a benefit-cost ratio. But as the calculations shown in table 11-4N were made, it became evident that for many road systems in many census divisions, the construction costs decreased instead of increased with increased vehicle length. With a negative increment of investment outlay, the benefit-cost ratio would have no significance. The economy of increments of vehicle length must then be made by comparison of equivalent uniform annual costs. Table 11-4N shows only the change in highway cost, the decrease in motor vehicle operating costs, and the sum of these two changes.

Table 11-6 (National basis) gives the ratio of the costs computed in Method 4 for steps 1, 2, 3, and 4 to the costs under the 1962 laws for the following factors at each of the four added vehicle length limits:

		GRAND TOTAL		3221.0	3173.8	3157.2	3131.5	3124.4		4006.0	3957°0	3933.8	3904.7	3894.8		1563.0	1551.4	1545.3	1533.4	1530.7		1815.0	1804.7	1796.3	1783.7	1780.1
55		SUB TUTAL		438.0	390.8	374.2	348.6	341.4		541.0	492.0	468.8	439.7	429.8		176.0	164.4	158.3	146.4	143.7		204.0	193.7	185.3	172.7	169.1
r 1962	d	219		•	5.4	5.4	5.4	5.0		• 0	7.5	7.5	7.5	7.0		•	2•0	2•0	2.0	1.9		0.	2.7	2.7	2.7	2.5
ADT for division		217		• 0	12.0	12.0	12.0	11.1		• 0	16.8	16.8	16.8	15.6		•	4 • 5	4.5	4 • 5	4.2		•	6.0	6•0	6.0	5.6
e ADT s divis		c7		0•	20.6	18.9	17.4	16.2		•	28.8	26.4	2424	22.7		0.	7.6	7.0	6.5	6•0		• 0 •	10:3	9. 4	8.7	8.1
in the census	epi	215		5.0	21.1	21.1	21.1	19.6		6.0	29°5	29.5	29.5	27.4		••	7.8	7.8	7.8	7.2		• 0	10.6	10.6	10.6	9.8
and		C5 2		3.0	52.6	48.2	44.5	41.3		0 • †	73.5	67.4 2	62.2	57.8		0•	19.6	18.0	16.6	15.4		••	26.4 1	24.2 1	22.3 1	20.7
each class of vehicle by highway system and	economy		- 5	85°0`	76.8 5	69.8 4	69.8 4	69.9 4		136.0	107.4 7	97.6 6	97.6 6	97.6 5	ç	50.0	28.6 1	26.0 1	26.0 1	26.0 1		73.0	38.5 2	35.0 2	35.0 2	35.0 2
ay si	the e	352	System 1 CENSUS DIVISION												NDISINIO	33.0 5	4.6 2	4.2 2	4.2 2	4.2 2		41.0 7	6. 1 3	5.5 3	5.5 3	ó.5 3
n class nighway	BUT	252	System sus pivi	135.0	12.2	11.1	11.1	1.1.1		180.0	17.1	15.5	15.5	15.5												
	Z T D	152	CENS	46.0	26.1	23.7	23.7	23.7		40.0	36.4	33.1	33.1	33.1	CENSUS	13.0	9.7	8.8	8°8	8.8		10.0	13.1	11.9	11.9	11.9
Number of each cla and 1990, by highn		ЗА		22.0	22.0	22.0	19.3	19.3		27.0	27.0	27.0	23.6	23.6		15.0	15.0	15.0	13.1	13.1		17.0	17.0	17.0	14.9	14.9
-Number of and 1990,		20		142.0	142.0	142.0	124.3	124.3		148.0	143.0	148.0	129.5	129.5		65.0	65°0	. 65 • 0	56.9	56.9		63.0	63.0	63.0	55.1	55.1
11-3		25		35.0	35.0	35.0	35.0	35.0		49.0	49.0	49.0	49.0	49.0		14.0	14.0	14.0	14.0	14.0		18.0	18.0	18.0	18.0	18.0
Table 1		PANEL AND PICKUP		143.0	143.0	143.0	143.0	143.0		198.0	198.0	198.0	196.0	198.0		95.0	95.0	95.0	95.0	95.0		123.0	123.0	123.0	123.0	123.0
·		BUSES P		0.0	0°6	0°6	0.6	0°6		7.0	1.0	7.0	7.0	7.0		5.0	5.0	0.4	5.0	5.0		4 • 0	4 • O	4•0	4 ° 0	4 • 0
		PASS BI CARS		2596.0	:5.96.0	×596.0	2596.0	0°9650		3211.0	3211.0	3211.0	3211.0	3211.0		1273.0	1273.0	1273.0	1273.0	1273.0		1466.0	1466.0	1466.0	1466.0	1466.0
	Vehicle	length step.	feet	1202 1411	35/50/55/55	35/55/Co/65	40/53/53/65	01/22/22/10	2550	1962 201	35/50/55/05	35/25/60/65	40/55/65/65	¢0/22/20/20	2952	1528 101	35/50/55/65	35/55/ć0/ć5	40/55/65/65	01/02/25/24	1950	1952 ISN	35/50/55/65	35/55/60/55	40/55/65/65	10/22/10/10

U.S. DEPARTMENT OF CCARERE Bureau of Public Roads Office of Research and Development Table ||-4/N - Comparison of highway cost and motor vehicle operating cost for five levels of maximum length of vehicles and combinations, for the 20-year period 1965 through 1984 -- National average

Highway System 1. IR

Method of Analysis 4 with transition

Census Division All

/~	tions - feet,	10/55/	02/02
avenent	2	#0/22/	_
lexible P	vehicles &	35/55/	
F	aximum length of	35/50/	55/65
	Maximum	1962	lav
	s - feetly	40/55/	01/01
lt	outration	192/01	65/65
gid Pavemen	ehicles & c	35/55/	60/65
R1	length of v	35/50/	55/65
	Maximum	1962	
			•
4		E),	
		Cost Item	

COST OF PROVIDING ENCEMANY PACILITYLES

 Construction cost per mile: Pavement and shoulders 	213,097 208.979 210,287 211,784 212.518 179,164 75,116 176,610 778,394 779,456	208,979	210,287	211.784	212,518	179,164	175,116	176,610	178,394	124,456
- b. Bridge structures	200,634 200,634 200,634 200,634 200,634 200,634 200,634 200,634 200,634 200,634	200,634	200,634	200.634	200,634	200,634	200,634	200,634	200,634	200,634
c. Barthwork and drainage	190,465 190,316 190,357 190,403 190,426 190,465 190,063 190,191 190,342 190,429	190,316	190,357	190,403	190,426	190465	190,063	161'061	190,342	190,429
4. Total construction cost	604,196592929601,278602,821603,578 570,263565,813567,435569,370570,519	599,929	601.278	602,821	603,578	570,263	565,813	567,435	569,370	570,519
2. Equivalent uniform annual capital cost *	52,677	52,305	52,677 52.305 52,422 52,557 52,623 49,718 49,330 49,472 49,641 49,741	52,557	52,623	49,718	49,330	49,472	49,641	142,741
3. Incremental sumual cost *. Cepitel cost	1	-372	-372 + 117 + 135 + 66	+ 135	+ 66	ana.	- 388	-388 + 142 + 169 + 100	+ 169	00/+
b. Maintenance cost of pavement and shoulders	1	- 20	+ 7	+	+ +	J	- 15	·.9 +	+ 7	≯ +
c. Maintenance cost of structures	1	0	0	0	0	1	C	Ú	0	0
d. Total equivalent uniform annual hickney cont.	۱	-392	-392 +124 +143 +70	+ 143	+ 70	۱	-4:03	-403 +148 +176 +104	+ 176	+104
•		MOTO	MOTOR TRUCK OPERATING COST	ERATING CO	5			-		
4. Annual operating cost of wehicles affected by length limits:										

-2,449 231,907 207,504 199.528 190,946 188,497 INCREMENT CRAIME IN COMPLIED TOTAL ANNUAL MOTOR TRUCK OFERATING COST FLUE MANUL MICHARY CONT -24,403 -7,976 -8,582 1 231,907 207,504 199,528 190,946 188,497 -24,403 -7,976 -8,582 -2,449 ŀ Incremental change in combined and da 5. Incremental squivalent uniform decre-ments in annual vehicle operating cost..... b. Total eguivelent uniform ennual operating cost * 0 6 0 a For 1965 AUT 6

* Calculated at 6 percent interest rate per annum and 20 years.

1

highway cost-dollars

motor truck cost plus annual

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full 6

-2,345

-8,406

-24,806 - 7,828

î

-24,775 -7,852 -8,439 -2,379

CC:MERCE Roads	TO ACT OF SHORE
U.S. DEPARTMENT OF C Bureau of Public R	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT

length of vehicles and combinations, for the 20-year period 1965 through 1984 -- Mational average Table //- // # Comparison of highway cost and motor vehicle operating cost for five levels of maximum

Highway System 2. IU

Method of Analysis 4 with transition

Census Division All

	Rigid Pavement	Lexister Parencer
i	Maximum length of vehicles & combinations - feet	Maximum length of vehicles & combinations - feetly Maximum length of vehicles & combinations - feetl'
Cost Item	1962 35/50/ 35/55/ 40/55/ 40/55/	1962 35/50/ 35/55/ 40/55/ 40/55/
	- 184 55/65 60/65 65/65 70/70	1av 55/65 60/65 65/65 70/70
	COST OF INOVIDING HIGHAY FACILITIES	

COST OF FROVIDIDS EIGENAL FACILITIES	· 216,496 214,963 215,841 217,563 218,051 182,796 181,381 182,548 184,824 185,416	1,294,3141,294,3141,294,3141,294,2141,294,3141,294,3141,294,3141,294,3141,294,3141,294,3141,294,314	492,871 492,813 492,841 492,874 492,910 492,871 492,728 492,830 493,024 493,074	2003,681 2,002,0702,002,002,9962,004,771 2,005,275 1,969,981 1,968,423 1,969,6921,972,1621,372,804	1 174552 174,621 174,786 174,830 171,753 171,617 171,728 176,943 171,999	-139 + 79 + 155 + 44136 + 111 + 215	-10 +7 +13 +46 +7 +13	0 0 0 - 0	-149 + 86 + 168 + 48 142 + 118 + 228	MOTOR TRUCK OPERATING COST		201 222 222 225 225 784 299 718 299 102 366 271 222 022 325784 299.718 299.102
	182,7	1,294,3	492,8	1,969,9.	171.72		1	1	1			366.2
STUTUES	218.051	1294.314	492,910	2,005,275	174,830	+ + +	+ +	0	+ 48	DST		2 99.102
DOENAY PA	217.563	1,294,314	492,874	2.004.771	174,786	+ 155	+ /3	0	+ 168	PERATING O		812 666
ROVIDING B	215,841	294.314	492,841	2,002.996	174,631		+ 7	0	+ 86	R TRUCK OF		182300
COST OF P	214,963	412,462	492,813	2,002,070	174,552	-139	- 10	0	-149	OTOM		
	216,496	1,294,314	492,871	2,003,681	174,691	1	1	1	1			100110
	1. Construction cost per mile: a. Pavement and shoulders	- b. Bridge structures	c. Earthwork and drainage	d. Total construction cost	2. Equivalent uniform annual capital cost *	3. Incremental annual cost	b. Maintenence cost of pavement and abouiders	c. Maintenance cost of structures	d. Total equivalent uniform gunual		4. Amnuel operating cost of wehicles affected bylougth limits: a. For 1965 ADT	b. Total equivalent uniform annual

-557 -7,120 -25,838 -33,391 ł -568 -33,398 - 7,152 -25,898 l highery cost-dollars Incremental change in combined and did. motor truck cost plus annual 6

THERE THERE CHARGE IN COURTIED TOTAL MINUAL MOTOR TRUCK OFFICIAL COST FLUE AND AND A COST

-616

-33,249 -7,238 -26,066

۱

-616

-33,249 -7,238 -26,066

۱

5. Incremental squivalent uniform decrements in annual vehicle operating cost. * Calculated at 6 percent interest rate per annum and 20 years.

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and Aull trailer combination/fourth, tractor, semitrailer, and full trailer combination.

Office of Research and Development U.S. DEPARTMENT OF COMERCE Bureau of Public Roads

Table/+-4 No- Comparison of highway cost and motor vehicle operating cost for five levels of maximum average length of vehicles and combinations, for the 20-year period 1965 through 1994 =-National average

£ ŝ Highway System

Method of Analysis 4 with transition

LIA Census Division

TACH
ž
ETC BNAY
H
E E
FROV
9
5

 Construction cost per mile: a. Pavement and shoulders 	. [156,503 153,458 154,548 155,494 156,658 131,142 127,602 128,772 131,096 131,979	\$153.458	154,548	155,494	156,658	\$131,142	27,602	128,772	131,096	131,979
- b. Bridge structures	31,194	31,194 31,194 31,194 31,194 31,194 31,194 31,194 31,194 31,194 31,194 31,194	31,194	31,194	31.194	31,194	31,194	31,194	31,194	31,194
c. Earthwork and drainage	86,710	86,710 86,606 86,641 86,687 86,710 86,710 86,382 86,483 86,684 86,759	86,641	36,687	86,710	86,710	86,382	86,483	86,684	86,759
d. Total construction cost	274,407	274,407271,258272,383273,830274,562249,046245,178246,449248,974249932	272,383	273,830	274,562	249,046	245,178	246,449	248,974	249,932
2. Equivalent uniform annual capital	23,924	23,924 23,650 23,748 23,874 23,938	23,748	23,874	23,938	21.713	21,376	21,487	21,713 21,376 21,487 21,707 21,790	21,790
3. Incremental annual cost a. Capital cost	1	- 274	+ 98	+126 +64	+ 64	1	-337	111+	-337 +/// +220	+ 83
b. Maintenence cost of pavement and shoulders	1	-15	e +	+ 7	+ 7 + 3	ł	- 12	+ 4	90 +	₩ ₩
c. Maintenance cost of structures	1	0	0.	0	0	ł	0	0	0	0
d. Total equivalent uniform annual hichway cont .	١	-289	-289 +104 +133 +67	+ / 33	+ 67	1	-349	+115	-349 +/15 +228	+ 18.6
•		MOTIC	MOTOR TRUCK OPERATING COST	ERATING CC	ST					
4. Annuel operating cost of vehicles affected byleugth limits:										

-

* Calculated at 6 percent interest rate per annum and 20 years.

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

+46

-5,617 -1,526 -2,358

I

+ 27

-5,557 -1,537 -2,453

۱

Incremental change in combined annual highery cost-dollars

6

motor truck cost plus annual

46,438

50,705 49,064 46,478

55,973 50,705 49,064 46,478 46,438 55,973

07-

-5,268 -1,641 -2,586

1

04 -

-5,268 -1,641 -2,586

ł

5. Incremental squivalent uniform decrements in annual vehicle operating cost.

b. Total equivelent uniform annual operating cost *

• ۰

a. For 1965 ADT

CCST

INCREMENTAL CHARGE IN CONBINED TOTAL ANTUAL MOTOR TRUCK OFERATING COST FLUE ANTUAL WIGHNAY

Table 1-1/1/- Comparison of high ay cost and motor vehicle operating cost for five levels of maximum length of vehicles and combinations, for the 20-year period 1965 through 1984=-National average

4. PU Highway System

transition Method of Analysis 4 with

ALL Census Division **O**O

Cost Item Maximum length of Vehicles & combinations - feetJ/ Maximum length of Vehicles & combinations - feetJ/ 1962 35/50/ 35/50/ 35/55/ 40/55/ 1962 35/55/ 40/55/ 10/75/ 18v 55/65 60/65 65/65 70/70 1av 55/65 65/65 70/70 0 0 70/70 1av 55/65 65/65 70/70		Rivid Pavement	
	i	Maximum length of vehicles & combinations - feet M Maximum length of vehicles & combine	lations - fee
- IRV 55/65 60/65 65/65 70/70 IAV 55/65 60/65 COST OF PROVIDING HIGHARY FACILITIES	Cost Item	1962 1 35/50/ 35/55/ r0/55/ 1 0/55/ 1 1962 1 35/50/ 35/55/ r0/55/	1/ 10/55/
COST OF ROVIDIN ENERGY FACILITIES		. 1av 55/65 60/65 65/65 70/70 1av 55/65 60/65 65/65	5 70/70
		COST OF FROVIDING ENGEVELY FACILITYIES	

		COST OF F	ROVIDINA	COST OF PROVIDING ELICENAY FACILITIES	Selimite					
· 1. Construction cout per mile:	\$61,496	760,006	160,767	164,074	164,473	136,081	134,103	134,923	139,208	139,668
- b. Bridge structures	119,813 119,813 119,813 119,813 119,813 119,813 119,813 119,813 119,813 119,813 119,813	119,813	119,813	119,813	119, 813	119,813	119,813	119,813	119,813	119,813
c. Earthvork and drainage	173,963 173,905 173,932 174,043 174,057 173,963 173,776 173,846 174,232 174,273	173,905	173.932	174,043	174,057	173,963	173.776	173.846	174,232	174,273
d. Total construction cost	455,272453,724 454,512 457,930 458,343 429,857 427,692 428,582433,253 433,754	453,724	454,512	457,930	458,343	429,857	427,692	428,582	433,253	433.754
2. Equivalent uniform annual capital cost *	39,693	39,558	39,627	39,693 39,558 39,627 39,725 39,961	39,961		37,288	37,477 37,288 37,366 37,773	37,773	37,817
3. Incremental annual cost a. Cepital cost	1	-135	+ 69	+ 69 + 298	+ 36	۱	-189		+ 78 + 407 + 44	+ + 4
<pre>b. Maintenance cost of pavement and</pre>	1	11	+ 6	-11 + 6 + 23	m +	1	- 9	+ +	+ 22	4
c. Maintenance cost of structures	1	0	• •	0	0	1	0	0	0	0
d. Total equivalent uniform annual bichway cont.	1	-146	+ 75	-146 + 75 + 321	+ 39	۱	- 198		+ 82 + 429	+ 46
		MOTOM	R TRUCK OF	MOTOR TRUCK OPERATING COST	ST					
4. Annual operating cost of vehicles affected by length limits:										

+ 663 134,415/117,984 /15,938/106,791/107,454 INCREMENT CHANCE IN CONDINED TOTAL ANNUAL MOTOR TRUCK OFFAUTING COST FUEL MUNICIPAL CONT -16,431 -2,046 -9,147 I 134,415 117,984 115,9381106,791 107,454 +66312+16--2,046 -16,431 ١ a. For 1965 ADT 5. Incremental squivalent uniform decre-ments in annual vehicle operating cost...... b. Total equivelent uniform annual operating cost *

+ 709 - 8,718 -16,629 -1,964 1 - 8,826 + 702 -16,577-1,971 1 6. Incremental change in combined annual highway cost-dollars motor truck cost plus annual

* Calculated at 6 percent interest rate per annum and 20 years. 1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full trailer combination/fourth, tractor, semitraller, and full trailer combination. नि

U.S. DEPARTMENT OF CCMMERCE Bureau of Public Roads Office of Research and Development

Table //- ///. Comparison of highway cost and motor vehicle operating cost for five levels of maximum average length of vehicles and combinations, for the 20-year period 1965 through 1994 -- National average

SR ŝ Highway System

Method of Analysis 4 with transition

ALI Census Division

/	16 - feetd'	10/55/	70/70
ement	combination	HO/55/	65/65
lexible Pav	vericles &	m	60/65
	length of	35/50/	55/65
	Maximum	1962	lav
	6 - feetly	11/55/04	0L/0L
n¢	combinations	40/55/	65/65
igid Pavener	hicles & e	35/55/	60/65
Rig	ength of ve	35/50/	55/65
	Maximum 1	1962	law
		Cost Item	

COST OF PROVINITY HIGHLAY PACITUTES

			TO ISON	COST OF PROVIDING BUGGWAI FACTIMITIES	TREAKL FAL	CHI THE					
]-1	 Construction cost per mile: Payement and shoulders 	\$84,352	83,331	· \$84,352 83,331 83,637 84,741 84,839 50,68,808 67793 68,067 68,238 69,328	84,741	\$4,839	\$68,808	\$67.793	\$68,067	69,238	69.328
8	b. Bridge structures	2.244	9,244	9.244	9,244	4,244	9,244	9,244	9,244	9,244	9.244
	c. Darthwork and drainage	34,250	34,216	34,250 34,216 34,225 34,260 34,262	34,260	34,262	34,250	34,166	34,186	34,250 34,166 34,186 34,285 34,292	34,292
	d. Total construction cost	127,846	126,791	127,846126,791 127,106 128,245128,345 112,302 111,203 111,497 112,767112,864	128,245	128,345	112,302	111,203	111.497	112,767	112,864
N	2. Equivalent uniform annual capital cost *	11,146		11,054 11,082 11,181 11,190	11,181	11,190	6.791		9,695 9,721	9,832	9,840
'n	3. Incremental emual cost a. Cepital cost	ł	-92	+ 28	+ 99	6 +	t	- 96	+ 26	111+	% +
	b. Maintenance cost of pavement and aboulders	١	m I	/ +	т н	0	١	- 2	0	+ 2	0
	c. Maintenance cost of structures	١	0	0.	0	0	t	0	0	0	0
	d. Total equivalent uniform annual hichway cont	1	-95	-95 + 29 + 102	+102	6 +	1	-98		+ 26 + 113	+ 8
	•		MOM	MOTOR TRUCK OPERATING COST	ERATING CO	IST					
-	4. Annual operating cost of vehicles				,						

9,105 0 CUST INCREMENTAL CHARGE IN CONDINED TOTAL ANNUAL MOTOR TRUCK OFERATING COST FLED MANUAL MIGHMAY 9,105 126 -9.876 -238 10,114 + 63 10,051 ł 9,105 0 9.105 127 -9,876 238 I 11/01 e S S + 10.051 1 Incremental change in combined annual Inoremental equivalent uniform decrements in annual vehicle operating cost. b. Total equivelent uniform annual operating cost * a. For 1965 ADT affected by length limits: 6 \$

-669 209 * Calculated at 6 percent interest rate per annum and 20 years highway cost-dollars

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

00

+

-658

-212

35

ł

Ł

5

+

١

1 22

ſ

motor truck cost plus annual

CC:MERCE Roads	Development
U.S. DEPARTMENT OF Bureau of Public	Office of Research and

Table 11-11%. Comparison of highway cost and motor vehicle operating cost for five levels of maximum length of vehicles and combinations, for the 20-year period 1965 through 1984 =-National average

Highway System 6. SU

Method of Analysis 4 with transition

TTY Census Division

	Rigid Pavement	Flexible Pavement
	Maximum length of vehicles & combinations - feetly	ions
Cost Item	1962 35/50/ 35/55/ 40/55/ 40/55/	1962 35/50/ 35/55/ 40/55/ 40/55/
•	55/65 60/65 65/65	55/65 60/65 65/65
	COST OF BROWINTER HIGHWAY PACILITY	

 Construction cost per mile: Pavement and shoulders 	88,982 87,837 88,179 89,015 89,153 472,930 71,712 472,093 473,147 73,327	87,837	\$88,179	89,015	89,153	÷72,930	\$71,712	\$72,093	*73,147	73,327
- b. Bridge structures	40,814	40,814	40,814 40,814 40,814 40,814 40,814 40,814 40,814 40,814 40,814 40,814 40,814	40.814	40,814	40,814	40,814	40,814	40,814	40,814
c. Earthvork and drainage	49,078	49,030	49,078 49,030 49,051 49,078 49,082 49,078 48,973 49,004 49,094 49,09	49,078	49,082	49,078	48,973	49.004	49.094	49,109
d. Total construction cost	178,874	177681	178,044	178,907	179,049	162.822	161,499	161,911	163,055	178,874 177,681 178,044 178,907 179,049 162,822 161,499 161,911 163,055163,250
2. Equivalent uniform annual capital cost *	15,595	15,491	15,595 15,491 15,523 15,598 15,610 14,196 14,080 14,116 14,216 14,233	15,598	15,610	14,196	14,080	14,116	14,216	14,233
3. Incremental annual cost a. Capital cost	1	-104		+ 32 + 75 + 12	+ 12	1	-116	+ 36	-116 + 36 + 100	+ 17
b. Maintenence cost of pavement and shoulders	1	- 5		+ 1 + 4	+ /	1	M 1	+ +	+	1 +
c. Maintenance cost of structures	(0	0.	0	0	1	0	0	0	0
d. Total equivalent uniform annual hichway cost	1	-109	-109 +33 +79	+ 79	+ /3	1	- 119		+ 37 + 103	+ 18
		MOTY	MOTOR TRUCK OPERATING COST	ERATING CC	ST					
4. Annual operating cost of vehicles										

4. Annual operating cost of vehicles affected bylength limits: a. For 1965 ADT										
b. Totel equivelent uniform annuel operating cost *	28,999	26,913	26,436	24,264	24,395	28,999	26,913	26,436	24,264	28,999 26,913 26,436 24,264 24,395 28,999 26,913 26,436 24,264 24,395
5. Incremental squivalent uniform decre- ments in annual vehicle operating cost	1	-2,086	- 477	- 477 - 2,172 + 131	+ 131		-2,086	-2,086 -477 -2,172 +131	-2,172	+ 13/
	INCREAD	TAL CHAIRDE	IN CONBIN	ED TOTAL A	NOTOM LAUG	R TRUCK OF	ERATING CO	TUCRETAIL CHARGE IN CONBINED TOTAL ANNUAL MOTOR TRUCK OFFERING COST FLUX AND	MUCIN TIM	TEDD Y

+ 149 Calculated at 6 percent interest rate per annum and 20 years.
 I' First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full - 440 -2,069 -2,205 ١ -2,195 - 444 -2,093 +144 ١ bightey cost-dollars motor truck cost plus annual

6. Incremental change in combined annual

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

							Fatio	io to Step	ep 0	
	Step O	Step 1	Step 2	Step 3	Step 4	Step O	Step 1	Step 2	Step 3	Step 4
1. Interstate rural										
EUAHC, \$ EUAHOC, \$	55,822 231,907		55,555 199,528		55,767 188,497	1.000	0.993	0.995 0.860	0.998 0.823	0.999 0.813
EUARC + EUANOC, \$ Hay. constr. cost, \$ 1952 ADT	287,729 604,196 1 035	262,934 599,929 844	255,083 601,273 807	246,643 602,821 756	244,264 603,578 733	1.000	0.914	0.886 0.995 0.780	0.857 0.999	0.849 0.599 0.708
2. Interstate urban	Ì									
EUAHC, \$ FIIA-NOC. \$	180,060 255.271		179,997 325.784		180,213 299.102	1.000	0.999	0.999 0.839	1.000	1.001 0.817
EUAHC + EUANOC, \$ 546,331 Hay. constr. cost, \$2,003,631 2	546,331 2,003,631	2,002,090	505,781 2,002,996	479,883	479,315 2,005,275	1.000	0.999	0.926	0.878	0.877
1962 ADT	1,466		1,261		1,121	1.000	0.879	0.860	677.0	0.765
3. Prinary rural										
EUAHC, \$ FIJANNOC, \$	25,905 55,973	25,615 50.705	25,719	25,852 46,478	25,919 46,438	1.000	0.989	0.993	0.830	1.001
EUARC + EUANVOC, \$	81,878 271, 107	76,320	74,783		72,357 27h 562	000.1	0.932	0.913	0.833	0.834
1962 ADT	364	312	301		273	1.000	0.857	0.827	0.766	0.750
4. Primary urban										
EUAHC, \$ ETIANTOC \$	43,008		42,937 115,938		43,297 107 454	1.000	0.997	0.998	1.006	1.007 0 799
	177,423		158,875	150,049	150,751	1.000	106.0	0.895	0.0	0.850
Hay. constr. cost, \$ 1962 ADT	803 803	423, 724 689	474, 575 675		470,343 600	1.000	0.858	0.041	0.756	

: for Method 4, economy	- rigid pavement
Mational averages	of vehicle length
Table 11-6 1	

11-21

							Rat	Ratio to Step O	ep 0	2
	o danc	T danc	z dere	S date	step 4	Step 0	Step 1	Step 2	Step 3	Step 4
5. Secondary rural										
EULIC, \$	11,671	77,576	11,604	11,707	11,716	1.000	0.992	166.0	1.003	1.004
EULANOC, 4	10,051	20,114	9,876	9,105	9,105	000	1.000	0.983	0.00	0.906
Hay. constr. cost, \$	127,846	126,791	127,106	128,245	128,345	1.000	0.992	466.0	1.003	1.004
1962 ADT	67	62	61	55	27	1.000	0.969	0.953	0.859	0.844
6. Secondary urban										
EUAHC, \$	16,557	16,449	16,482	16,561	16,574		0.993	0.995	1.000	1.001
EUALIVOC, \$	28,999	26,913	26,436	24,264	24,395		0.928	0.912	0.837	0.841
EUAHC + EUANVOC, \$	45,556	43,362	42,918	40,825	40,969	1.000	0.952	0.942	0.896	0.899
HWY. CONSTR. COST, \$	178,874	177,681	178,044	178,907	179,049		0.993	0.995	1.000	1.001
TUR TOC	16T	178	174	157	155		106.0	0.833	0.797	0.787

Table 11-6. -- National averages for Nathod 4, economy of vehicle length - rigid pavement

EUAHC--Equivalent Uniform Annual Highway Cost. EUANVOC--Equivalent Uniform Annual Motor Vehicle Operating Cost.

Uniform costs calculated at 6 percent per year interest rate for 20 years 1965 through 1984. Basis of Step 0 is the 1962 legal limits of length and axle weight.

(1) Equivalent uniform annual highway cost (EUAHC) for construction and maintenance.

(2) Equivalent uniform annual motor vehicle operating cost (EUAMVOC).

(3) The total of (1) and (2) (EUATC).

(4) Total construction cost for pavement and shoulders, bridge structures, and earthwork and drainage.

(5) 1962 daily number of trucks.

5. DISCUSSION OF RESULTS OF METHOD 4

An examination of tables 11-3 and 11-6 shows that the increase in the limits of vehicle length from the 1962 law results in a significant reduction in the truck ADT. The percentage reduction varies with the highway system and census division.

An examination of table 11-6 discloses that the vehicle length increases from the 1962 legal limits to the 35/50/55/65foot limits (Step 1) result in decreases in highway construction costs of from \$1,055 per mile (secondary rural system) to \$4,267 (Interstate rural system). These decreases in construction cost result from a decrease in the E 18-kip axle applications. The use of longer vehicles and combinations having a greater number of axles results in heavier gross vehicle weights per vehicle combination but fewer vehicles in total (see table 11-3) to haul the same tons of cargo. Also, for the double-cargo combinations, there is a greater ratio of payload weight to tare weight than for two separate single-cargo vehicles having a combined cargo cubic capacity equal to that of the double-cargo-body combination.

Perhaps the most significant comparison of transportation costs can be made by comparing the costs under the 1962 law to those under the 40/55/65/65-foot length limits (Step 3), which approach the limits indicated by changes in State laws since 1962. The changes are as follows for rigid pavement, all six highway systems, and 10 census divisions:

Percentage change

	Greatest decrease	Greatest increase (+) or least decrease (-)
a. Equivalent uniform annual highway cost	- 0.9	+ 1.3
b. Equivalent uniform annual motor vehicle operating cost	-30.1	- 2.1
c. Combined EUAHC and EUAMVOC	-25.3	- 1.4
d. Highway construction cost	- 0.9	+ 1.3
e. 1962 daily number of trucks	-39.2	- 6.8

On a straight dollar basis, the reductions from the 1962 base condition to Step 1 length limits in the National average (table 11-6) show a range of reduction of \$95 (secondary rural) to \$392 per mile (Interstate rural) in the equivalent annual uniform highway costs and a range of change in truck operating

11-24

cost per mile of highway from an increase of \$63 on the secondary rural system to a decrease of \$33,249 per year per mile on the Interstate urban system.

Overall highway transportation economy would be increased materially by Nationwide use of the three-unit combination-tractor, semitrailer, and full trailer--with a maximum length of 65 feet. These increased length limits would result in a 14 to 27 percent reduction in the truck ADT from the 2D upward.

CHAPTER 12

ECONOMY OF SIMULTANEOUS INCREASES IN THE LIMITS OF AXLE WEIGHT AND OF VEHICLE LENGTH

The spread in the range of State maximum limits for both axle weight and vehicle length gives reason to consider the economy of simultaneous increases in axle-weight and length limits. Chapters 10 and 11 develop separately the transportation economy for axle weight and for vehicle length limits, respectively. It remains, then, to combine Methods 1-M (axleweight economy) and 4 (vehicle length economy) into one analysis, identified as Method 6.

1. PLAN OF METHOD 6

The bases for comparison are the results of Method 1-M for axle-weight limits and a modification of Method 4, identified as Method 4-M, for the length limits prevailing in 1962. Thus, the economy of the combination of methods was tested for each of ten census divisions and six highway systems in a matrix of 25 cells--five axle-weight limits and five vehicle length limits, each including the 1962 legal status.

Method 4 was modified in one factor to become Method 4-M. Method 4 was based on the empty weights, horsepower, and tractor weights given in Chapter 14 and on the E 18-kip axle applications of Method 1 at the base condition. Method 4-M is Method 4 with

12-1

the base E 18-kip axle applications adjusted upward to produce the minimum pavement depth used in Method 1-M. Therefore, Methods 1-M and 4-M are identical at Step 0 and the base (1962 law) axle-weight limit.

How Methods 1-M and 4-M were combined is explained in detail in the section on procedure for Method 6, which follows: The combination of methods, like the methods from which it is derived, includes the 29-percent increase in payload per vehicle from 1962 to 1990 and the transition period. The Method 6 analysis was made for rigid pavement only.

2. PROCEDURE USED IN METHOD 6

The plan followed for determining the transportation economy of simultaneous increases in axle-weight limits and vehicle length limits was a merging of the procedures for Methods 1-M and 4-M. The work involved in Method 6, therefore, was to compute the highway and vehicle costs for the interior cells of the matrix formed by four axle-weight levels above the minimum base of 18/32 kips and four length steps above the base of the 1962 legal limits.

In order to reduce the volume of detailed calculations and to hold assumptions to the minimum, a system of percentage relationships was developed, based upon Methods 1-M and 4-M, by which the ADT and the E 18-kip axle applications for each vehicle class could be extended to the right from the vertical and downward from the horizontal base cells to the interior cells. The matrix below indicates the cells where the cost data are supplied from Methods 1-M and 4-M and the blank cells to be filled in with costs developed by Method 6.

Method 4-M factor length		Meth	od 1-M fact	ors	
limit-Step	Single	e/tandem	axle-weight	limits, kip	05
No.	18/32	20/35	22/38	24/41	26/44
0	Method 1-M and	Method	Method	Method	Method
(1962 law)	Method 4-M	l-M	l-M	l-M	1-M
1	Method 4-M				
2	Method 4-M				
3	Method 4-M				
4	Method 4-M				

Note: The blank cells represent the combination of increases in axle weight and vehicle length for which highway and motor-vehicle cost data are to be supplied from Method 6.

3. RESULTS OF METHOD 6

To provide the basis for comparing the relative economy between any pair of the 25 cells, the base results for seven factors are summarized in table 12-1N for the six highway systems in the Nation as a whole. Table 12-1N- Summary of highway and truck operating; cost, truck ADT, and pavement depth under a range of exterweight limits and of vehicle length limits; rigid pavement.

Note: Combination of Methods 1-M and 4 with transition period and with paylond increase. Entries apply to one centerline-mile of new construction. Tons of payloud varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

National summary -- System 1, Interstate rural

	Gina	lc/tandcm nx	a votebt ma	vimm lietto	kina
Cost item, number of trucks and pavement depth			1	1	
	18/32	20/35	22/38	24/41	26/44
Step 0 - 1962	legal weight	and length I	****		
Highway construction cost 1/	613.115	616.111	620 159	625.863	631.26
Equivalent uniform annual highway capital cost 2/	53,454	53,716	54,069	54,566	55,037
Equivalent uniform annual highway cost 3/	56,599	56.880	57,260	57.793	58.299
Equivalent uniform annual truck operating cost 2/	232.044	228.713	224,003	218,657	215,181
Total equivalent uniform annual transportation cost	288.643	285.593	281,263	276.150	273,1180
Daily number of trucks - 1962/1990 4/	1035/2537	1005/2464	96312312	912/2241	866/219
Pavement depth (inches)	9.24	9.35	9.50	9.68	9.84
Step 1 - Maxim	mm length of	vehicle and	combination	5 - feet 2/ 3	35/50/55/65
Highway construction cost $1/$	618 112	611.678	615,671	621.279	626 60
Equivalent uniform annual highway capital cost 2/	53,071	53,329	53,677	54,166	54,630
Equivalent uniform annual highway cost 3/	56.216	56.493	56.868	57.393	57.892
Equivalent uniform annual truck operating cost 2/	207.574	205.682	203.262	200 692	198 93:
Total equivalent uniform annual transportation cost	263.790	262,175	260,130	258.085	256.82.
Daily number of trucks - 1962/1990 4/	844/2125	818/2058	784/1973		706/178
Pavement depth (inches)	8.90	9.01	9.16	9.33	9.48
Step 2 - Maxim	mum length of		combination	s - fcet 2/ 3	5/55/00/05
Highway construction cost $\frac{1}{2}$	610,132	613,117	617,136	622,773	1.28 120
Equivalent uniform annual highway capital cost 2/.	53, 194	.53.455	53,805	54.296	54,763
Equivalent uniform annual highway cost 3/	51 229	56.619	56.996	57.523	58.025
Equivalent uniform annual truck operating cost 2/	198 621	191 462	194 1111	199 221	191,119
Total equivalent uniform annual transportation cost	254 872	253 377.	251.440	250.844	2119 19
Daily number of trucks - 1962/1990 4/	807/2024	182/1961	150/1880	711/1785	674/169
Pavement depth (inches)	9.01	912	9.27	9.45	9.60
Step 3 - Maxim		vehicle nnd	combination	- feet 5/ 4	
Highway construction cost 1/	611 778	614,783	618 830	6.24. 197	1.29 8118
Equivalent uniform annual highway capital cost 2/	63.338	53,600	53 953	54 447	54.916
Equivalent uniform annual highway cost 3/	56.483	56.764	57.144	57.674	68 148
Equivalent uniform annual truck operating cost 2/	188 316	186.765	184 123	183 888	182 3/04
Total equivalent uniform annual transportation cost	244 199	243.529	2418/1	241.5/2	240.54
Daily number of trucks - 1962/1990 4/	156 11905	133/1846	712/1841	666 / 1682	- in the second
Pavement depth (inches)	9.14	9.25	9.40	9.58	9.716
Step 4 - Maxim	um length of		1.1.		0/55/70/70
Highway construction cost 1/		615.592			
Equivalent uniform annual highway capital cost 2/	53,407	53.670	54.024	54.520	54.990
Equivalent uniform annual highway cost 3/	56,552	56.835	57.216	57.748	. 58 25:
Equivalent uniform annual truck operating cost 2/	182 774	181,21,2	149 188	118 690	177 118
Total equivalent uniform annual transportation cost	239 326	238 198	23/ 1/1/	236 438	286 36
Daily number of trucks - 1962/1990 4	193/1811	711/1787	181/1712	and the second second	13 1548
Pavement depth (inches)	9.20	9.32	9.46	9.64	9.80
1/ Includes cost of pavement and shoulders, bridge st				1.47	1.00

2/ Calculated at 6 percent interest rate per annum and 20 years, 1965 through 1984.

3/ Includes annual cost of maintenance on surface and base, shoulders, and structures.

4/ Number includes only trucks from class 2D upward through two trailer combinations; stcp 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.

5/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/thiri, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

Table 12-IN- Summary of highway and truck operating cost, truck ADT, and pavement depth under a range of nxleweight limits and of vehicle length limits; rigid pavement. 12-5

Note: Combination of Methods 1-M and 4 with transition period and with payload increase. Entries apply to one centerline-mile of new construction. Tons of payload varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

Cost item, number of trucks and	Sing	lc/tandem nx	le weight ma	ximum limite	, 1:50
pavement depth	18/32	20/35	22/38	24/41	E. y alt
Step 0 - 1962	legal weight	and length	limits		
Fighway construction cost 1/	2009.978	2.013,019	2017.452	2.023,340	2,029,08
Suivalent uniform annual highway capital cost 2/	175,240	175,505	175,892		
quivalent uniform annual highway cost 3/	180,609	180,994	181,531		
Equivalent uniform annual truck operating cost 3/	368.086	357,380	346,460	332,350	323 250
Notal equivalent uniform annual transportation cost	548, 695	1	527,991	1	1
Daily number of trucks - $1962/1990 \frac{4}{}$		1410/4436	1341/4226	1248/3951	the second
Pavement depth (inches)	9.31	9.39	9.50	9.64	2.78
Step 1 - Maxim	nm length of	vehicle nnd	combination	8 - feet 2/ ;	35/50/55/05
lighway construction cost 1/	2.008,385	2.011, 1/23	2.015, 544	2.021.704	2,027,1/2
Equivalent uniform annual highway capital cost 2/	175,101	175,366	175,751	176.262	176,76
Equivalent uniform annual highway cost 3/	180,470	180,355	181,390	132.107	182,811
Equivalent uniform annual truck operating cost 2/	333, 103	325,503	316,357	303,800	296,513
otal equivalent uniform annual transportation cost	513, 8-13	506,358	497,747	1185,907	479.324
Daily number of trucks - $1962/1990$ $\frac{4}{}$	1288/4035	1239 13926	1179 13733	1097/3472	1027/32/0
Pavement dopth (inches)	9.19	9.27	9.38	9.52	9.65
Step 2 - Maxim	um length of	vehicle and	combination	s - fect 2/ :	35/55/60/65
lighway construction cost 1/	2009 293	2012.361	2.016.795	2022,671	2028,408
quivalent uniform annual highway capital cost 2/	175,180	175.448	175,834		176,847
Equivalent uniform annual highway cost 3/	180,5419		181,472		182.897
Equivalent uniform annual truck operating cost 2/	325.023	317,247	308,228	297,688	289.912
Cotal equivalent uniform annual transportation cost	505572	498, 184	489,700	479.878	472.809
Daily number of trucks - $1962/1990 \frac{4}{}$	126113982	1213 3827	1153 31,38	1072 13387	1003/3173
Pavement depth (inches)	9.2%	9.35	9.46	9.60	9.73
Step 3 - Maxim	um length of	vchicle and	combination	= fcct 2/ 1	ю/55/65/65
lighway construction cost 1/	2.011.144	2,014,209	2.018,668	2,024,570	2,030,333
quivalent uniform annual highway capital cost 2/	175,342	175,609	175,998	176,512	177.015
quivalent uniform annual highway cost 3/	180,711	181,098	181,636	182 357	183.066
quivalent uniform annual truck operating cost $2/$	296,294	289,464	281,547	272.637	265,74/7
otal equivalent uniform annual transportation cost	477.005	470,562	163, 183	154.994	4/4/8, 813
aily number of trucks - $1962/1990$ $\frac{4}{2}$	1136 13606	1093 13465	1040/3296	968 13073	906 12879
Pavement depth (inches)	9.40	9.49	9.60	9.74	9.88
Step 4 - Maxim	um length of	vehicle and	combinations	- feet 2/ 4	0/55/70/70
lighway construction cost 1/	2011660	2014731	2019,196	2025,106	2030,878
quivalent uniform annual highway capital cost 2/	175.386	175,654	176.044	176,559	177,062
		181,143	181,682	182. 403	133, 111
quivalent uniform annual highway cost 3/	180,155				and the second s
	291,723	284,944			261.399
quivalent uniform annual highway cost 3/			277,025	268,328	
Equivalent uniform annual highway cost $\frac{3}{2}$	291,723	284,944 466,087	277,025 458,707	268,328 450,751	261, 399 444, 510 892 12830

National summary -- System 2, Interstate urban

- ---- ----

2/ Calculated at 6 percent interest rate per annum and 20. years, 1965 through 1984.

3/ Includes annual cost of maintenance on surface and base, shoulders, and structures.

4/ Number includes only trucks from class 2D upward through two trailer combinations; stcp 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.

5/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

Table 12-1 N- Summary of highway and truck operating cost, truck ADT, and provement depth under a range of exterweight limits and of vehicle length limits; rigid payement.

Note: Combination of Methods 1-M and 4 with transition period and with payload increase. Entries apply to one centerline-mile of new construction. Tons of paylond varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

		<i>J</i> , <i>p</i> : 1			
Cost item, number of trucks and	Sing	le/tandom ax	le weight ma	ximm limits	, kipa
pavement depth	18/32	20/35	22/38	24/41	26/44
Step 0 - 1962	legal weight	and length :	limits		
Highway construction cost 1/	298,472	298,964	299.758	300,834	301,871
Equivalent uniform annual highway capital cost 2/	26.022	26,065	26, 134	26.228	26,319
Equivalent uniform annual highway cost 3/	28,002	28,048	28, 121	28.221	28318
Equivalent uniform annual truck operating cost 2/	56,018	54.860	53,425	51.892	50,99%
Total equivalent uniform annual transportation cost	84,020	82,908		80,113	79.310
Daily number of trucks - 1962/1990 4/	364 1460	353 1446		319 / 403	302 /38
Pavement depth (inches)	9.10	9.13	9.17	9.22	9.27
Step 1 - Maxim	um length of	vehicle and	combination	s - feet 2/	35/50/55/0
Highway construction cost 1/	294,419	294 903	295,680	296,730	297.74
Equivalent uniform annual highway capital cost 2/	25,669	25.711	25.779	25.870	25,95
Equivalent uniform annual highway cost 3/	27.649	27.694	27,766	27.863	27,958
Equivalent uniform annual truck operating cost 2/	50.833	49.810	418.4178	46,942	45.92
Total equivalent uniform annual transportation cost	78.482	77.504	76.2414	74,805	73.88.
Daily number of trucks - 1962/1990 4	313 1403	302 1389	287/370	268 1347	250/32
Pavement depth (inches)	8.73	8.76	8.79	8.84	8.89
Step 2 - Maxim	um length of	vehicle and	combination	s - fect 2/	35/55/60/6
Highway construction cost $\frac{1}{2}$	295,888	296.376	297. 160	298,220	299.24
Squivalent uniform annual highway capital cost 2/	25,797	25,840	25,908	26.000	26.08
Equivalent uniform annual highway cost 3/	27.777	27,823	27.895	27,994	28.08
Equivalent uniform annual truck operating cost 2/	48,816	47.847		45,306	14.314
Total equivalent uniform annual transportation cost	76.593	75,670	74.462	73.300	72,40
Daily number of trucks - 1962/1990 4	3011386	291/373	276 1354	258/332	241 / 31
Pavement depth (inches)	8.87	8.90	8.94	8.99	9.03
Step 3 - Maxim	um length of	vehicle and	combination	s - fect 5/	40/55/65/6
Highway construction cost 1/	297.777	298,270	299.063	300, 134	301, 160
Equivalent uniform annual highway capital cost 2/	25.962	26.005	26.074	26.167	26.25
Equivalent uniform annual highway cost 3/	27,942	27.988	28.061	28,160	28,25
Equivalent uniform annual truck operating cost 2/	45,710	44.822	413,651	42.532	411, 620
Total equivalent uniform annual transportation cost	73.652	72.810	71,712	70.692	69.87
Daily number of trucks - 1962/1990 4	279/359	2691347		239/309	223/29
Pavement depth (inches)	9.05	9.08	9.12	9.17	9.22
Step 4 - Maxim	um length of	vehicle and	combination	s - feet 2/ 1	+0/55/70/70
Highway construction cost 1/	298,729	299,224	300.023	301,098	302, 13
Equivalent uniform annual highway capital cost 2/	26,045	26,088	26 158	26,251	26,34
Equivalent uniform annual highway cost 3/	28,025	28,071	2.8.145	28,244	28,34
Equivalent uniform annual truck operating $\cos \frac{2}{2}$	44, 797	43,921	412,755	41,677	40,18
Fotal equivalent uniform annual transportation cost	72,822	71,992	70 900	69,921	69.121
Daily number of trucks - $1962/1990$ $\frac{4}{}$		264 1340	250 1323		219/28
Pavement depth (inches)	9.14	9.17	9.21	9.26	9.31
 Includes cost of pavement and shoulders, bridge state Calculated at 6 percent interest rate per summand Includes annual cost of maintenance on surface and 	d 20 years, 1	965 through	1984.		200

National summary -- System 3, primary rural

4/ Number includes only trucks from class 2D upward through two trailer combinations; step 0 through 2-trailer,

5 axle and other steps through 2-trailer, 9 axle.
5/ First figure is maximum length in fect of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

12-6

Table 12-1 N- Summary of highway and truck operating cost, truck ADT, and pavement depth under a range of axle-weight limits and of vehicle length limits; rigid pavement. 12-7

Note: Combination of Methods 1-M and 4 with transition period and with payload increase. Entries apply to one centerline-mile of new construction. Tons of payload varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

Cost item, number of trucks and	Sing	le/tandcm ax	le weight ma	ximm limits	, kipa
pavement depth	18/32	20/35	22/38	24/41	26/44
Step 0 - 1962	legal weight	and length :	limits		
Aighvay construction cost 1/		475,540	477.230	479.417	481.551
Equivalent uniform annual highway capital cost 2/	411.356	41,460	41.607	1	41.984
Equivalent uniform annual highway cost 3/	4/4/ 671	44.785	44,945	45,153	4/5 35.
Equivalent uniform annual truck operating cost 2/	134.610	128,190	121,647		112,06.
Total equivalent uniform annual transportation cost	179,281	172.975	166.592	160.374	157, 4118
Daily number of trucks - 1962/1990 4/	803 / 1292	758/1217	707 / 1133		605/971
Pavement depth (inches)	9.10	9.15	9.22	9.30	9.37
Step 1 - Maxim	num length of	vehicle and	combination	5 - fcct 5/	35/50/55/65
lighway construction cost 1/	472,488	473.679	475,361	477532	479.650
Equivalent uniform annual highway capital cost 2/	41.194	41,298	41,444	41,634	41.818
Squivalent uniform annual highway cost 3/	44,509	44,623	44,782	44.989	45.189
Equivalent uniform annual truck operating cost 2/	118,152	114,052	109.873	105,297	102,828
Total equivalent uniform annual transportation cost	162,661	158,675	154.655	150,286	148,017
Daily number of trucks = $1962/1990 \frac{4}{2}$	688/1116	657/1061	621/1000	577 1928	5401868
Pavement depth (inches)	8.94	9.00	9.06	9.14	9.21
Step 2 - Maxim	um length of	vchicle and	combination	s - feet 2/ ;	35/55/60/65
lighway construction cost $1/$	473 440	474,636	476.325	478,505	4/80,633
Squivalent uniform annual highway capital cost 2/	41,277	41.381	41.528	41,718	11.904
Equivalent uniform annual highway cost 3/	44692	44,706	44.866	45.073	45,276
Equivalent uniform annual truck operating cost 2/	115,425	111 437	107360	103.187	100 732
totaluivalent uniform annual transportation cost	160,117	156,143	152,226	148,260	146,008
Daily number of trucks - $1962/1990 \frac{4}{2}$	675/1090	644/1036	609/977	5651906	5291847
Pavement depth (inches)	9.04	9.09	9.16	9.23	9.30
Step 3 - Maxim	um length of	vehicle and	combinations	s - feet 5/ 1	0/55/65/65
lighway construction cost 1/	477,617	478,833	480,548	482,762	484,921
quivalent uniform annual highway capital cost 2/	41.641	41,747	41,897	42,090	412,278
quivalent uniform annual highway cost 3/	44,956	415,072	45,235	45, 4145	415, 6-19
Equivalent uniform annual truck operating cost 2/	104,870	101,229	97,560	93,910	91.714
otal equivalent uniform annual transportation cost	149,826	146,301	142,795	139355	137,363
willy number of trucks = $1962/1990$ $\frac{4}{}$	6071984	579 1936	547 1882	508 / 818	4176 / 165
avement depth (inches)	9.43	9.48	9.55	9.63	9.70
Step 4 - Maxim	um length of	vebicle and	combinations	- feet 2/ 4	0/55/70/70
lighway construction cost 1/	478,116	4179.335	481,055	483,273	485 436
quivalent uniform annual highway capital cost 2/	41.684	41,791	41.941	42,134	412,323
quivalent uniform annual highway cost 3/	44.999	45,116	45,279	415,4189	45,694
equivalent uniform annual truck operating cost $2/$	103,440	99,827	96 167	92.569	90.374
otal equivalent uniform annual transportation cost	148.439	144,943	141, 446	138,058	136,068
	1001001	572 1922	5401869	5021806	4691753
aily number of trucks - 1962/1990 4/ avement depth (inches)	6001971	JIL I ILL	0101061	0021000	10/11/00

National Summary -- System 4, primary urban

2/ Calculated at 0 percent interest rate per annum and 20 years, 1965 through 1984. 3/ Includes annual cost of maintenance on surface and base, shoulders, and structures.

4/ Number includes only trucks from class 2D upward through two trailer combinations; step 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.

5/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

Table 12-1 N - Summary of highway and truck operating cost, truck ADT, and pavement depth under a range of axle-weight limits and of vehicle length limits; rigid pavement.

Note: Combination of Methods 1-M and 4 with transition period and with payload increase. Entries apply to one centerline-mile of new construction. Tons of payload varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

National summary -- System 5, secondary rural

Cost item, number of trucks and	Sing	le/tandom nx	le veight ma	ximum limite	, kips
pavement depth	18/32	20/35	22/38	24/41	26/44
Step 0 - 1962	legal weight	and length	limits		
Highway construction cost $1/$	147.537	147,1.75	147,849	148.064	148.28
Equivalent uniform annual highway capital cost 2/	12.863	12.875	12,890	12,909	12.92
Equivalent uniform snnual highway cost 3/	13.387	13.400	13.416	13.436	13.45
Equivalent uniform annual truck operating cost 2/	10.068	9,777	9.451	9.048	8.810
Total equivalent uniform annual transportation cost	23.455	23.177	22.867	22.484	22.27
Daily number of trucks - 1962/1990 4/	64/92	61/89	59184	55/79	51/74
Pavement depth (inches)	8.00	8.01	8.02	8.03	8.05
Step 1 - Maxim	mum length of	vehicle and	combination	= - feet 2/ :	35/50/55/65
Highway construction cost $1/$	145,996	146,131	146.303	146.516	146.72
Equivalent uniform annual bighway capital cost 2/	12,729	12,740	12.755	12.774	12.19:
Equivalent uniform annual highway cost 3/	13,253	13.265	13,281	13,301	13,32
Equivalent uniform annual truck operating cost 2/	10.127	9.806	9,474	9.094	8 88
Total equivalent uniform annual transportation cost	23,380	23,071	22,755	22,395	22.202
Daily number of trucks - 1962/1990 4/	62194	59/89	54184	53179	49174
Pavement dopth (inches)	7.77	7.18	7.79	7.80	7.81
Step 2 - Maxim	mum length of	vehicle and	combination	- feet 5/ 3	35/55/60/65
Highway construction cost $\frac{1}{2}$	146.456	146.593	146.767	146.979	147.19.
Equivalent uniform annual highway capital cost 2/	12.71.9	12.181	12.796	12.814	12.833
Equivalent uniform annual bighway cost 3/	13.293	13.306	13.322	13. 341	13.361
Equivalent uniform annual truck operating cost 2/	9 877	9.570	9236	8 887	8.683
Tota, quivalent uniform annual transportation cost	23,170	22.876	22.558	22,228	22.044
Daily number of trucks - 1962/1990 4/	61/91	58/87	55/82	81/74	48/72
Pavement depth (inches)	7.84	7.85	7.86	7.87	7.88
Step 3 - Maxim				s - feet 2/ 1	
Highway construction cost $1/$	148.121	148.258	148 435	148.650	148 867
Equivalent uniform annual highway capital cost 2/	12.914	12,926	12.941	12.960	12.979
Equivalent uniform annual highway cost 3/	13.438	13.451	13.467	13.487	13 507
Equivalent uniform annual truck operating cost 2/	9.032	8.747	8,453	8.136	7,961
Total equivalent uniform annual transportation cost	22.470	22.198	21.920	211.23	21.468
Daily number of trucks - 1962/1990 4/	55183	53/79	50175	41. 170	44166
Pavement depth (inches)	8.09	8.10	8.11	8.12	8.14
Step 4 - Maxim	num length of	vehicle and		- feet 2/ 4	0/55/70/70
Highway construction cost $\frac{1}{2}$				148, 799	
Equivalent uniform annual highway capital cost 2/	12 927	12.939	12,954	12.913	12.992
Equivalent uniform annual highway cost 3/	13.451	13.464	13,480	13.500	13.520
Equivalent uniform annual truck operating cost 2/	8942	8 658	8.311	8.051	7.810
Total equivalent uniform annual transportation cost	22.393	22.122	21 861	21.551	21.390
Daily number of trucks - 1962/1990 4/	55/82	52 178	50/74	46/69	43165
Pavement depth (inches)	01	8.12	8.13	8.15	8.16

2/ Calculated at 6 percent interest rate per annum and 20 years, 1965 through 1984.

3/ Includes annual cost of maintenance on surface and base, shouldcrs, and structures.

5/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

^{4/} Number includes only trucks from class 2D upward through two trailer combinations; step 0 through 2-trailer, 5 axle and other steps through 2-trailer, 9 axle.

Table 12-1 N- Summary of highway and truck operating cost, truck ADT, and pavement depth under a range of axle-weight limits and of vehicle length limits; rigid pavement. 12-9

Note: Combination of Methods 1-M and 4 with transition period and with payload increase. Eatries apply to one centerline-mile of new construction. Tons of payload varies, but is held constant for the axle weight limit level and vehicle length steps within a highway system and census division.

Cost item, number of trucks and	Sing	le/tandes nx	le weight ma	ximum limits	, kips
pavement depth	18/32	20/35	22/38	24/41	26/44
Step 0 - 1967	legal weight	and length	limits		
ighvay construction cost $\frac{1}{2}$	193936	196,072	198.111	201.989	205.19
quivalent uniform annual highway capital cost 2/	16.908	17,095	17.330	17,610	17.890
quivalent uniform ennual highway cost 3/	17.870	18.074	18.331	18.637	18,94
quivalent uniform annual truck operating cost 2/	29.091	28,301	27.344	26,202,	25.52
otal equivalent uniform annual transportation cost	46.961	46.375	H5.675	44,839	44.464
aily number of trucks - 1962/1990 4/	1971250	190/230	180/228	168/213	157/199
avement depth (inches)	8.00	8.02	8.05	8.08	8.12
Step 1 - Maxi	mm length of	vehicle and	combination	s - feet 5/ ;	35/50/55/65
ighway construction cost $\frac{1}{2}$	192.317	194,510	197,210	200,415	213,616
quivalent uniform annual highway capital cost 2/	16.772	16,958	17.194	17,473	17.752
quivalent uniform annual highway cost 3/	17 734	17.937	18 195	18.500	18.805
quivalent uniform annual truck operating cost 2/	26.952	26.312	25.548	24,629	24.098
otal equivalent uniform annual transportation cost	44.686	44.249	43,743	43.129	42.903
aily number of trucks - 1962/1990 4/	1781229	171 / 221	163/210	152/ 196	143/184
rvement depth (inches)	7.77	7.79	7.81	7.85	7.88
Step 2 - Maxi	mum length of	vchicle and	combination	s - foct 2/ ;	35/55/60/65
ighway construction cost $1/$	192.841	194,976	197.678	200.884	204.080
quivalent uniform annual highway capital cost 2/	16.813	11, 999	17.235	17.514	17.193
quivalent uniform annual highway cost 3/	17.775	17 978	18236	18,541	18.840
quivalent uniform annual truck operating cost 2/	26.361	25,723	24.911	24.115	27.59
otal equivalent uniform annual transportation cost	44.136	43,701	43.201	42,656	42.43
aily number of trucks - 1962/1990 4/	174/224	11.8/216	160/205	149/192	140/ 180
avement depth (inches)	7.84	7.86	7.89	7.92	7.95
Step 3 - Maxi	mum length of	vehicle and	combination	- fect 2/ 4	ю/55/65/65
ighway construction cost 1/	193.992	196.129	198 835	202 047	205 252
quivalent uniform annual highway capital cost 2/	16,913	17,100	17.335	17,615	17.895
quivalent uniform annual highway cost 3/	17,815	18.079	18,336	18 642	18 948
quivalent uniform annual truck operating cost 2/	23,902	23.336	22.671	21.930	21.470
otal equivalent uniform annual transportation cost	41,777	41,415	41,007	40 572	40 418
ally number of trucks - $1962/1990 \frac{4}{2}$	157/202	. 151 / 195	144/185	134/173	126/ 16:
avement depth (inches)	8.01	8.04	8.06	8.10	8.13
Step 4 - Maxi	num length of	vehicle and	combinations	- feet 2/ 4	0/55/70/70
ighway construction cost $\frac{1}{2}$	194 179	196.317	199.024	202,236	205 444
quivalent uniform annual highway capital cost 2/	16 929	17.116	17.352	17,632	17,912
quivalent uniform annual highway cost 3/	17.891	18 095	18.353	18.669	18 91.5
quivalent uniform annual truck operating cost $2/$	23,628	23.064	22.395	21,656	21.190
otal equivalent uniform annual transportation cost	41,519	41,159	40,748	40.315	40,155
ally number of trucks - 1962/1990 4/	1551 200	150/ 1921	1421 183	133/171	1241 160
avement dcpth (inches) // Includes cost of pavement and shoulders, bridge s	8.01f	8.06	8.09	8.12	8.16

National Summary -- System 6, secondary urban

3/ Includes annual cost of maintenance on surface and base, shouldcrs, and structures.

Number includes only trucks from class 2D upward through two trailer combinations; step 0 through 2-trailer, 4 5 axle and other steps through 2-trailer, 9 axle.

5/ First figure is maximum length in fect of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth, tractor, semitrailer and full trailer combination.

12-10

Actually, because table 12-1N gives the results of Methods 1-M, 4-M, and 6, it may be used in comparing the economy of increases in axle-weight limits, vehicle length, and of combined axle weight and length. The form of table 12-1N was chosen because (a) it adapts itself to presentation of the significant end products, (b) certain of the basic factors were previously presented in the results of Methods 1-M and 4-M, and (c) the decreasing highway costs from one length step to another prevent calculation of a benefit-cost ratio.

In table 12-2N, a summary and analysis of table 12-1N shows the ratio to the base values of the corresponding values at increased axle-weight limits and vehicle length limits. The values presented are (a) highway construction costs, (b) truck ADT, (c) equivalent uniform annual truck operating cost, and (d) equivalent uniform annual highway cost.

4. DISCUSSION OF THE RESULTS OF METHOD 6

The results of the analysis of economy of increases in axle-weight limit indicate high probable economy, as shown by the benefit-cost ratios in the lower right-hand corner of table 12-2N. The increases in vehicle lengths likewise result in pronounced truck operationg economy, as shown by the index ratios in the lower left-hand corner of table 12-2N. When the increase in axle-weight limits is accompanied by an increase in the vehicle length limits, the economy gained is still more striking. Table 12-2 N- Differences and ratios of bighway cost, truck cost, and ADT, indicating the relative according to increases is existence in the relative according to relative according to exist a set of the relative according to the relative according to

Note: All costs are for one centerline-mile of highway. Construction cost includes cost of pavement and shoulders, bridge structures, and earthwork and drains, a mintenance cost includes annual cost on surface and base, shoulders and structures. Truck ADT is Step 0 includes trucks from elses 2D upward through two-trailer 5 axis other steps through 2-trailer 9 exis.

Based on results from methods 1-M and 4 as given in table 12-1. National summary -- System 1. Interstate rural

	11	ational	y Sy	rstem 1,	, Interstate rural						
Step - Length		Single/tandem	exla veight	iimite, kipe			Single/tender	s exle weight	itmite, hip		
ocep - Delejui	18/32	20/35	22/38	24/41	26/hh	18/32 20/33 22/38 24/61 26					
	Increase ((+) or daeren	se (-) in con	struction oo	st from basa	Increase (+) or decrease (-) in 1962 truck ADT from base					
0 (1962 law)	Basa 613,115	+2,996	+ 7,044	+12,7142	+18,150	Pres 1.035	- 30	- 72	-123	-169 .	
1 (35/50/55/65) 1/	-4,403	- 1,437	+ 2,556	+ 8,164	+ 13,427.	-191	-217	-251	-291	-329.	
a (33/35/60/65) y	-2,983	+ 2	+4,021	+9,658	+15,005	-228	-253	-285	-324	-361.	
3 (40/35/65/65) 1/	-1,337	1.1,668	+5,715	+11,382	+11,71.2	-279	-302	- 333	-369	-402.	
\$ (\$0/55/70/70) ¥	- 540	+2,477	+6,535	+12,219	+113609	-302	-324	- 354	- 389	-422.	
		Ratin of eo	netruction co	st to base			Patio c	of truck ADT	to base		
0 (1962 lav)	1.000	1.005	1.011	1.021	1.030	1.000	0.971	0.930	0.881	0.837 .	
1 (35/50/55/65) ¥	0.993	0.998	1.004	1.013	1.022	0.815	0.790	0.157	0.719	0.682.	
a (35/55/60/65) ^y	0.995	1.000	1.007	1.016	1.024	0.780	0.156	0.725	0.687	0.651	
3 (40/55/65/65) 1/	0.998	1.003	1.009	1.019	1.027.	0.730	0.708	0.678	0.643	1.612.	
h (h0/35/70/70) ¥	0.999	1.004	1.011	1.020	1.029.	0.108	0.687	0.658	0624	0.592	
	Increas annual	a (+) or deen truck operation	reass (-) in ing cost from	equivalent un base	iform		sa (+) or dec highway cost		aquivalent u	niform	
0 (1962 lav)	Pasa					Bees			,		
	232 044	-3,331	-8,041	-13,387	-16,863		+281	+ 66	+1.194	+ 1,700	
1 (35/50/35/63)	- 24,470	-26,362	-28,182	- 3/, 352	-33,112	- 383	-106.	+2.69	+ 194-	+1,273.	
2 (33/35/60/63) ¹ /	-33,510	-35,291	-37,600	- 38, 723	-40,577	-260	+20	+ 397	+ 92.4-	+1,426	
3 (40/55/65/65) ¥	- 43,728	- 45,219	-47.32	-48,156	-49.680	-116	+ 165	+ 51/5	+1,075	+ 1,579.	
4 (40/35/70/70) ¥	-49,270	- 50,781	-52,856	-53.354	-54,936	- 47	+ 236	+ 617	+1,147	+ 1,654	
		Ratio of equi truck operation				Ratio of de cost to inc	creass in aqui resse in squi	ivalent unifor	re annual tr me ennual high	uck operating	
0 (1962 law)	1.000.	0.986	0.965	0.942	0.927		11.9	12.2	11.2	9.9	
1 (35/50/55/65) ¥	0.894	0.886	0.876	0.865	0.857	2]	-2]	107.0	39.5	25.6	
2 (35/55/60/65) ¹ /		0.848			•	21	1764.6	94.7	41.9	28.5	
3 (40/55/65/65) ¹ /	0.811.	0.805.	0.796	0:192	0.786	2]	274.4	86.8	44.8	31.5.	
h (h0/55/70/70) 1/	0.788	0.781	0.772	0.170	0.763	2]	215.2	85.7	4.6.4	33.2.	

If First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourth. tractor, semitrailer and full trailer combination.

2/ Highway construction cost decrease, therefore, the results are highly favorable.

Table 12-2N- Differences and ratios of bigbway cost, truck cost, and ADT, indicating the relative accounty of increases is alloweight limits and in vehicle length limits; rigid payment.

Note: All costs are for one contarline-mild of highway. Construction cost includes cost of pavement and shouldars, bridge structures, and earthwork and draimage; mintensuce cost includes annual cost on surface and base, shouldars and structures. Truck ADT is Step 0 includes trucks from alses 2D upward through two-trailer 5 exts, other steps through 2-trailer 9 exts.

Based on results from methods 1-M and 4 as given in table 12-1. National summary -- System 2, Interstate urban

1					, Interstate urban					
	Single/tandem	exle veight	limite, kipe		Single/tendes exle weight limits, hips					
18/32	20/35	22/38	24/41	26/44	18/32 20/35 22/38 24/41					
Increase ((+) or decrea	e (-) in con	struction co	t from bane	Increase (+) or decrease (-) is 1962 truck ADT from base					
Base 2,009,978	+3,041	+7,474	+ 13,362	+19,110	BASS 1.466	- 56	-125	-218	-297.	
-1,593	+ 1,445	+5,866	+11,726	+17,450	-178	-227	-287	- 369	-439	
- 685	+ 2,383	+ 6,817	+12,693	+18,430	-205	-253	-313	- 394	- 463 .	
+ 1,166	+ 4,231	+ 8,690	+14,592	+20,355	-330	-373	-426	- 498	- 560.	
+1,682	+4,753	+ 9,218	+15,128	+20,900	-345	- 388	-441	-512	- 574	
	Ratio of cor	etruction co	et to base			Ratio c	f truck ADT	to base		
1,000	1.001	1.004	1.007	1.009.	1.000	0.962	0.915	0.851	0.797	
0.999	1.001	1.003	1.006	1.009.	0.879	0.845	0.804	0.748	0.701	
1.000	1.001	1.003	1.006	1.009.	0.860	0.827	0.186	0.731	0.684	
1.001	1.002	1.004	1.007	1.010.	0.775	0.746	0.709	0.660	0.618	
1.001	1.002	1.005	1.008	1.010.	0.765	0.735	0699	0.651	0.608	
Increase ecmul	truck operation	rease (-) in ing cost from	equivalant un	iform				equivalent u	niform	
Pase				•	Base					
31.8.086	-10,706	-21,626	-35,736	-44,836	180.609	+ 385	+922	+1,641	+2,347	
-34,683	-42,583	-51,729	-64,286	- 71,573	- 139	+ 246	+ 781	+1,498	+2,202	
-43,063	-50,839	-59,858	- 70, 398	-78,174	-60	+ 328	+ 863	+1,581	+ 2, 2.88	
-71,792	- 75,622	- 86,539	-95,449	-102,339	+102	+289	+1,027	+1.748	+2,457	
-76,363	- 53 142	91,061	-99,158	-106,687.	+146	-1 534	+1073	+1,194	12,502	
1.000	0.971	0.941	0.903	0.878	-	27.8	23.5	21.8	19.1	
0.906	0.884				2]	173.1	66.2	42.9	32.5	
0.883	0.862	0.837	0.809	0.788	2]	155.0	69.4	44.5	34.2	
	,	0.165	0. 141	0. 722	703.8	160.8	84.3	54.6	41.7	
0.193	0.774	0.163	0.729	0. 110	523.0	155.7	84.9	55.6	42.6.	
	18/32 Instruction 2,009,978 -1,593 - 6,85 + 1,166 + 1,682 1,000 1.001 1.000 0.999 0.363 -43,063 -1,792 -76,363 0.983 0.805	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Increase (+) or decrease (-) in construction con- mass 2,009,975 + 3,041 + 7,474 + 13,362 -1,593 + 1,445 + 5,866 + 11,726 -685 + 2,383 + 6,817 + 12,693 +1,166 + 4,251 + 8,690 + 14,592 +1,682 + 4,753 + 9,218 + 15,128 Patto of construction cost to base 1,000 1,001 1.003 1.006 1.000 1.001 1.003 1.006 1.000 1.001 1.003 1.006 1.000 1.001 1.003 1.006 1.001 1.002 1.005 1.008 Increase (+) or decrease (-) in equivalant w esemal truck operating cost from base 348,086 -10,706 -21,626 -35,736 -34,683 -42,583 -51,729 -64,286 -43,063 -50,839 -59,858 -70,398 -71,792 - 75,622 - 86,539 -95,449 -76,363 -53 142 - 91,061 -99,758 Patto of equivalent uniform semual truck operating cost to base 1.000 0.971 0.941 0.903 0.906 0.884 0.859 0.825 0.883 0.862 0.837 0.809 0.805 0.786 0.765 0.741	18/32 $20/33$ $22/36$ $24/41$ $26/44$ Increase (+) or decrease (-) in construction cost from base $2,009,975$ $+3,041$ $+7,4774$ $+13,362$ $+19,110$ $-1,593$ $+1.4445$ $+5,866$ $+11,726$ $+17.450$ -685 $+2,383$ $+6,817$ $+12,693$ $+18,430$ $+1,166$ $+4,231$ $+8,690$ $+14,592$ $+20,355$ $+1,682$ $+4.753$ $+9,218$ $+15,128$ $+20,900$ Batto of construction cost to base I.000 1.001 1.004 1.007 1.009 0.999 I.000 1.001 1.003 1.006 1.009 1.001 1.003 1.006 1.009 1.001 1.005 1.008 1.010 $.010$ 1.001 1.005 1.008 1.010 $.010$ 1.001 1.005 1.008 1.010 $.010$ 1.001 1.005 1.008 1.010	18/32 20/33 22/39 24/41 26/44 10/32 Inormase (+) or decresses (-) in construction cost free base Inormase Inormase 2,007],97E +3,041 +7,474/ +13,362 +19,110 I.46.6 -1,593 +1.445 +5,866 +11,726 +17.450 -178 - 685 +2,383 +6,817 +12,693 +18,430 -205 +1,166 +4,231 +8,690 +14,592 +20,355 -330 +1,682 +4,753 +9,218 +15,128 +20,900 -345 Batio of construction cost to base - - -345 - I.000 1.001 1.003 1.006 1.009 0.879 I.000 1.001 1.003 1.006 1.009 0.860 I.001 1.002 1.004 1.007 1.010 0.775 I.001 1.002 1.005 1.008 1.010 0.765 Increase -0.705 1.005 1.008 1.010 0.765 Increase -1.005 1.008 1.010 0.765 <td>18/32 20/33 22/35 24/41 26/44 18/32 20/35 Increases (+) or decreases (-) in construction cost from base Increases (+) or decreases (-) in construction cost from base Increases (+) or decreases (-) in construction cost from base Pass 2,009,975 $+3,041$ $+7,4714'$ $+13,362$ $+19,110'$ Increases (+) or decreases (-) in construction cost from base $-1,593$ $+1.445$ $+5,846$ $+11,726$ $+17.450'$ -17.8 -22.7 -6.85 $+2.383$ $+6,817$ $+12,693$ $+18,430'$ -20.5 $-2.53'$ $+1,166$ $+4,231$ $+8,690'$ $+14,592'$ $+20,395'$ $-37.3'$ $+1,482'$ $+4.753'$ $+9,218'$ $+15,128''$ $+20,900''''''''''''''''''''''''''''''''''$</td> <td>18/32 20/33 22/39 24/41 26/44 10/32 20/35 22/39 Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base -1,573 +1,445 +5,866 +11,726 +17,450 -178 -227 -287 - 685 +2,383 +6,817 +12,673 +18,430 -205 -253 -313 +1,166 +4,251 +8,690 +14,572 +20,955 -330 -373 -4/26 +1,682 +4,753 +9,218 +15,128 +20,900 -345 -388 -441 Thetic of construction cort to base Thetic of construction cort to base Thetic of decrease (-) in construction cort to base Thetic of decrease (-) in construction cort to base Thetic of construction cort to base Thetic of decrease (-) in construction cort to base Thetic of decrease (-) in construction cort to base <!--</td--><td>10/32 20/35 22/39 24/41 26/44 10/32 20/35 22/39 24/41 Increase (4) or decrease (-1 in construction cort free base Increase (4) or decrease (-1 in construction cort free base The construction cort free base - 1/593 +1/445 +5,866 +11,726 +17,450 -178 -227 -287 -369 - 485 +2,383 +6,817 +12,693 +18,430 -205 -253 -513 -394 + 1,166 +4,531 +8,690 +14,592 +20,355 -330 -97,3 -4/26 -4/98 + 1,166 +4,753 +9,218 +15,128 +20,900 -3455 -388 -441 -512 The of construction cort to base This of construction cort to base Intro of construction cort to base The construction cort to base This 0.1 1.0001 1.002</td></td>	18/32 20/33 22/35 24/41 26/44 18/32 20/35 Increases (+) or decreases (-) in construction cost from base Increases (+) or decreases (-) in construction cost from base Increases (+) or decreases (-) in construction cost from base Pass 2,009,975 $+3,041$ $+7,4714'$ $+13,362$ $+19,110'$ Increases (+) or decreases (-) in construction cost from base $-1,593$ $+1.445$ $+5,846$ $+11,726$ $+17.450'$ -17.8 -22.7 -6.85 $+2.383$ $+6,817$ $+12,693$ $+18,430'$ -20.5 $-2.53'$ $+1,166$ $+4,231$ $+8,690'$ $+14,592'$ $+20,395'$ $-37.3'$ $+1,482'$ $+4.753'$ $+9,218'$ $+15,128''$ $+20,900''''''''''''''''''''''''''''''''''$	18/32 20/33 22/39 24/41 26/44 10/32 20/35 22/39 Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base mass Increase (+) or decrease (-) in construction cort from base -1,573 +1,445 +5,866 +11,726 +17,450 -178 -227 -287 - 685 +2,383 +6,817 +12,673 +18,430 -205 -253 -313 +1,166 +4,251 +8,690 +14,572 +20,955 -330 -373 -4/26 +1,682 +4,753 +9,218 +15,128 +20,900 -345 -388 -441 Thetic of construction cort to base Thetic of construction cort to base Thetic of decrease (-) in construction cort to base Thetic of decrease (-) in construction cort to base Thetic of construction cort to base Thetic of decrease (-) in construction cort to base Thetic of decrease (-) in construction cort to base </td <td>10/32 20/35 22/39 24/41 26/44 10/32 20/35 22/39 24/41 Increase (4) or decrease (-1 in construction cort free base Increase (4) or decrease (-1 in construction cort free base The construction cort free base - 1/593 +1/445 +5,866 +11,726 +17,450 -178 -227 -287 -369 - 485 +2,383 +6,817 +12,693 +18,430 -205 -253 -513 -394 + 1,166 +4,531 +8,690 +14,592 +20,355 -330 -97,3 -4/26 -4/98 + 1,166 +4,753 +9,218 +15,128 +20,900 -3455 -388 -441 -512 The of construction cort to base This of construction cort to base Intro of construction cort to base The construction cort to base This 0.1 1.0001 1.002</td>	10/32 20/35 22/39 24/41 26/44 10/32 20/35 22/39 24/41 Increase (4) or decrease (-1 in construction cort free base Increase (4) or decrease (-1 in construction cort free base The construction cort free base - 1/593 +1/445 +5,866 +11,726 +17,450 -178 -227 -287 -369 - 485 +2,383 +6,817 +12,693 +18,430 -205 -253 -513 -394 + 1,166 +4,531 +8,690 +14,592 +20,355 -330 -97,3 -4/26 -4/98 + 1,166 +4,753 +9,218 +15,128 +20,900 -3455 -388 -441 -512 The of construction cort to base This of construction cort to base Intro of construction cort to base The construction cort to base This 0.1 1.0001 1.002	

If First figure is maximum length in fest of a single unit truck/second, tractor semitration combination/third, tractive truck and full combination/fourth, tractor, semitration and full trailer combination.

g/ Highway construction cost decrease, therefore, the results are highly favorable.

12-12

Table 12-2N - Differences end ratics of highway cost, truck cost, end ADT, indicating the relative economy of incremees is alloweight limits end in vehicle length limits; rigid pavement.

Note: All costs are for one centerline-mile of highway. Construction cost includes cost of pavement and shoulders, bridge etructures, and marthwork and draine, as maintenance cost includes annual cost on surface and base, shoulders and structures. Truck ADT is Step 0 includes trucks from class 2D upward through two-trailer 5 exls, other steps through 2-trailer 9 exls.

Based on results from methods 1-M and 4 as given in table 12-1.

National summary -- System 3, primary rural

	1											
Step - Length		Single/tendem	exle veight	limite, kipe		Single/tendem exle weight limits, hips						
	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44		
	Increase	(+) or deorem	me (-) in con	struction co	t from bane	Increase (+) or dearenses (-) in 1962 truck ADT from base						
0 (1962 lav)	Base' 272,112	+492	+ 1,286	+ 2,262	+3,399	Base 364	-11	-26	-45	-62.		
1 (35/50/55/65) 1/	-4.053	- 3,569	-2,792	-1.742	- 729	-51	-62	- 77	- 96	-114.		
£ (35/55/60/65) ½	-2,584	- 2,096	-1,312	-252	+ 169	-63	- 73	-88	-106	-123.		
3 (40/55/65/65) 1/	-695	-202	+ 591	+1,662	+2,694	- 85	- 95	-109	-125	- 141 .		
k (k0/55/70/70) ⊻	- 257	+ 752	+1,551	+2,626	+3,664	- 91	-100	-114	-130	- 145		
		Ratio of cor	nstruction co	st to base			Patio d	of truck ADT	to base			
0 (1962 lav)	1.000	1.002	1.004	1.008	1.011 .	1.000	0.970	0.929	0.876	0.830		
1 (35/50/55/65) 1/	0.986	0.988	0.991	0.994	0.997.	0.860	0.830	0.188	0.136	0.687		
e (33/55/60/65) ^y	0.991	0.993	0.996	0.999	1.002	0.827	0.199	0.758	0.709	0.662		
3 (40/55/65/65) ¹ /	0.998	0.999	1.002	1.005	1.009.	0.766	0.739	0.701	0.657	0.613		
h (h0/55/70/70) ½	1.001	1.002	1.005	1.009	1.012	0.750	0.125	1.687	0.643	0.607-		
		truck operation	rease (-) in	equivelent un		Incres	ee (+) or dec highway cost	rease (-) in	equivalent u	alform		
	Base	under operation	ing cost 1100			Base	urgues, con	I I FOIL DEBIG				
0 (1962 law)	56.018	-1,158	-2,593	-4,126	-5.026	28.002	+46	+119	+219	+316.		
1 (35/50/55/65) 1/	-5,185	-6,208	-7,540	-9,076	-10,093	- 353	- 308	-236	- 139	-44		
2 (35/55/60/65) ¹ /	-7,202	-8,171	- 9.451	-10,112	-11,704	- 225	-179	-107	- 8	+ 87.		
3 (40/55/65/65) ¹ /	-10,308	-11,196	-12,367	-13,486	-14,398	-60	-14	+59	+158	+254		
h (h0/55/70/70) 1/	-11,221	-12,097	-13,263	-14,341	-15,238	+ 23	+69	+143	+242	+339.		
		Ratio of equi truck operati				Ratio of de cost to inc:	aresse in squi ressa in squi	ivelent unifor valuet unifor	rm ennuml tru m ennuml high	ick operating way cost		
0 (1962 lav)	1.000	0.979	0.954	0.926	0.910	-	25.2	21.8	18.8	15.9		
1 (35/50/55/65) ¥	0.907	0.889	0.865	0.838	0.820	ل[د	2]	2]	2]	2]		
2 (35/55/60/65) ¹ /	0,871	0.854			0.791.	2]	2]	2)	2]	134.5		
3 (40/55/65/65) ^{1/}	0.816	0.800	0.119	0.759	0.143.	2]	2]	209.6	85.4	56.7.		
4 (40/55/70/70) ^{1/}	0.800	0.784	0.763	0.144	0.128.	487.9	175.3	92.7	59.3	44.9		

Pirst figure is maximum length in fest of e single unit truck/second, traotor semitrailer combination/third, tractive truck and full combination.

2/ Mighway construction cost decrease, therefore, the results are highly favorable.

• Table 12-2N- Differences and ratios of bighway cost, truck cost, and ADT, indicating the relative accounty of increases in axle-weight limits and in vehicle length limits: rigid payement.

12-14

Rote: All costs ers for one centerline-nile of highway. Construction cost includes cost of pavement and shoulders, bridge structures, and earthwork and drains, an interance cost includes annual cost on surface and base, shoulders and structures. Truck ADT is Step 0 includes trucks from loss 20 upward through two-trailer 5 sets, other steps through 2-trailer 9 sets. Based on results from methods 1-M and 4 as given in table 12-1.

National summary -- System 4, primary urban

	4	10.0101101	- outline	. <u>j</u> Dj	750Cm +,						
		Bingle/tandem	exle veight	limite, kipe		Bingle/tendes exle weight limite, kips					
Step - Length	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44	
	Increase	(+) or decrea	ne (-) in con	struction co	t from base	Increase (+) or decrease (-) in 1962 truck ADT from bas					
0 (1962 lav)	# <i>74</i> ,343	+1,197	+2,887	+ 5,074	+7,208	803	-45	-96	-153	-198	
1 (35/50/55/65) 1/	-1,855	-664	+1,018	+3,189	+5,307	-115	-146	- 182	-226	-263.	
E (35/55/60/65) ┘	-903	+293	+1,982	+4,162	+6,290	-128	-159	-194	-238	-274	
3 (40/55/65/65) ¥	+3.274	+4,490	+6,205	+ 8,419	+10,578	-196	-224	-256	-295	-327	
▶ (№/55/70/70) ¥	+3,773	+4,992	+6,712	+ 8,930	+11,093	-203	-23/	-263	-301	- 334	
		Ratio of co	nstruction co	st to base			Patio c	f truck ADT	to base		
0 (1962 lav)	1.000	1.003	1.006	1.011	1.015.	1.000	0.944	0.880	0.809	0.153	
1 (35/50/55/65) 1/	0.996	0.999	1.002	1007	1.011.	0.851	0.818	0.773	0.719	1.672	
2 (35/55/60/65) ¹ /	0.998	1.001	1.004	1.009	1.013	0.841	0.802	0.758	0.704	D.659	
3 (bo/55/65/65) ¥	1.007	1.009	1.013	1.018	1.022	0.156	0.721	0.681	0.633	0.593	
k (ko/55/70/70) ⊻	1.008	1.011	1.014	1019	1.023	0.747	0.712	0.672	0.625	0.584	
		truck operat			iform	Inores	se (+) or dec highway cost	from base	equivalent u	niform	
0 (1962 lav)	Pass 1/10	1.10	12010	16.000		Base			100	101	
	132.610	-6,420			-22,547	44.671	+114	+274	+482	+ 684	
1 (35/50/55/65) 4	-16.458	-20,558	-24, 737	- 29, 3/3	- 31,782	-162	-48	+///	+318	+ 518.	
2 (35/55/60/65) ¹ /	-19.185	-23,173	-27,250	-31,423	-33,878	+21	+35	+195	+402	+605	
3 (40/55/65/65) ¹ /	-29.740	-33,381	- 37,050	-40,700	-42,876	+285	+401	+ 564	+774	+978 .	
\$ (\$0/\$5/70/70) ¥	-31,170	-34,783	-38,443	- 42,041	-44,256		+445	+608	+818	+1.323	
			ivalent unifo						rm ennuml tr		
0 (1962 lav)	1.000	0.952	0.904	0.856	0.832	_	56.3	47.3	40.2	33.0	
1 (35/50/55/65) 1/					0. 164	2]	2]	222.9	92.2	61.4	
2 (35/55/60/65) 1/					0.748		662.0	139.7	78.2	56.0	
3 (40/55/65/65) ^{1/}	11							65.7	52.6	43.9	
4 (40/55/70/70) ^{1/}	0.768	0.742	0.114	0.688	0.671	95.0	78.2	63.2	51.4	43.2	
1/ Plant diman in				A							

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination.

g/ Highway construction cost decrease, therefore, the results are highly favorable

12-15

Table 12-2N - Differences and ratics of highway cost, truck cost, and ADT, indicating the relative economy of increases in exterweight limits: rigid parament.

Rote: All costs are for one centerline-mile of highway. Construction cost includes cost of pavement and shouldars, bridge atructures, and earthwork and drains, mintenauce cost includes annual cost on surface and base, shouldars and structures. Truck ADT is Step 0 includes trucks from class 2D upward through two-trailer 5 axle, other steps through 2-trailer 9 axle. Based on results from methods 1-M and 4 as given in table 12-1,

National summary -- System 5, secondary rural

		Single/tandem	exle weight	limite, kipe		Single/tandes exle weight limite, hips				
Step - Length	iB/32	20/35	22/38	24/61	26/44	18/32	20/35	22/38	24/41	26/14
	Increase ((+) or decree	#e (-) in con	struction co	t from base	Increase	(+) or decree	100 (-) in 19	62 trook ADT	fros base
0 (1962 184)	147,537	+138	+312	+527	+743	Base 64	- 3	- 5	- 9	-13.
1 (35/90/35/65) 1	-1,541	-1,406	-1,234	-1,021	- 808	-2	- 5	- 7	- 11	-15
a (35/35/60/65) 보	-1,081	- 944	- 110	-558	-344	- 3	- 6	- 9	- 13	-16.
3 (40/55/65/65) 1/	+ 584	+ 721	+ 898	+1,113	+1,330	- 9	- 11	-14	-18	-20.
€ (10/55/70/70) ¥	+ 733	+ 870	+1,046	+1,262	+1,479	- 9	-12	-14	-18	-21.
		Ratio of oor	netructico co	st to base		-	Patio d	of truck ADT	to base	
0 (1962 law)	1.000	1.001	1.002	1.004	1.005	1.000	0.953	0.922	0.859	0.797.
1 (35/50/35/65) ¹ /	0.989	N.990	0.992	0.993	0.995	0.969	0.922	0.891	0.828	0.765
2 (35/35/60/65) ¹ /	0.993	0.994	0.995	D. 996	0.998	0.953	0.906	0.859	0.797	0.750
3 (40/55/65/65) 5	1.004	1.005	1.006	1.008	1.009	0.859	0.828	0.781	0.719	0.688
k (ko/55/70/70) ⊻	1.005	1.006	1.007	1.009	1.010	0.859	0.813	0.781	0.719	0.672
		e (+) or deon truck operati			iform		se (+) or dec highway cost		equivalent u	niform
	Base					Base				
0 (1962 lav)	10.06.8	-291	-617	-1,020	-1,252	13.387	+13	+29	+49	+69
1 (35/50/55/65) 1	+59	-262	-594	- 974	-1,187	-134	-/22	-106	-86	-66
운 (35/55/60/65) 보	-191	-498	-832	-1,181	-1,385	-94	- 81	-65	-46	-26
3 (40/55/63/65) ^{1/}	-1,036	-1,321	-1,615	-1,932	-2,107	+51	+64	+ 80	+100	+ 120
4 (40/35/70/70) ¥	-1,126	-1,410	-1,697	-2,017	-2,198	+64	+77	+93	+113	+/33
		Ratio of equi truck operation				Ratio of de cost to inc	orease in equi	ivalent unifo	ra ecount tru m ecount big	ick operating
0 (1962 lav)	1.000	0.971	0.939	0.899	0.876		22.4	21.3	20.8	18.1
1 (35/50/55/65) 1/	1.006	0.974	0.941			213	3]	Э <u>ј</u>	3)	3]
2 (35/55/60/65) ^{1/}	0,981		0.917		~	3]	3]	3]	3]	3]
3 (40/55/65/65) ^{1/}					0.791.	20.3	20.6	20.2	19.3	17.6
(≥0/55/70/70) ¹ /			1		0.182		18.3	18.2	17.8	16.5.

y First figure is maximum length in fest of a single unit truck/second, tractor scattrailer combination/third, tractive truck and full combination/fourth, tractor, scattrailer and full trailer combination. 2/ Motor vehicle operating cost increase, therefore, benefits are negative.

3/ Highway construction cost decrease, therefore, the results are highly favorable.

Table 12-2N- Differences end ratice of bigbway cost, truck cost, and ADT, indicating the relative economy of increases is azle-weight limits end in vehicle length limits; rigid pavement.

12-16

Note: All costs are for one centerline-mile of highway. Construction cost includes cost of pavement and shoulders, bridge structures, and anythwork and drainage; minterance cost includes annual cost on surface and base, shoulders and structures. Truck ADT is Btep 0 includes trucks from class 2D upward through two-trailer 5 sells, other steps through 2-trailer 5 sells. Based on results from methods 1-M and 4 as given in table 12-1,

National summary -- System 6, secondary urban

	N		, secondary urban								
Step - Length	f	lingle/tendes	azle veight	limits, hips		Bingle/tenden exle veight limite, kips					
	18/32	20/35	22/38	24/41	26/hh	18/32	20/35	22/38	24/41	26/44	
	Increase (+) or decrea	we (-) in con	struction co	t from bane	• Increase (+) or dearense (-) in 1962 troak ADT from base					
0 (1962 lav)	193,736	+2,136	+4,841	+ 8,053	+11,259	Pase 197	-7	-17_	-29	-40	
1 (35/50/55/65) 1/	-1,559	+ 574	+3,274	+6,479	+9,680	-19	-26	-34	-45	-54.	
e (35/55/60/65) ¥	-1,095	-1,040	+3,742	+6,948	+10,150	-23	-29	-37	- 48	- 57	
3 (40/55/65/65) 9	+56	+2193	+ 4, 899	+8,111	+11,316	- 40	-46	- 53	-63	- 71	
▶ (₩0/55/70/70) ¥	+243	+2,381	5 088	+8,300	+11,508	-42	-47	-55	-64	- 73 .	
		Patio of co	nstruction co	st to base			Ratio c	f truck ADT	to base		
0 (1962 lav)	1:000	1.011	1.025	1.042	1.058.	1.000	0.964	0.914	0.853	0.797	
1 (35/50/55/65) 1/	0,992	1.003	1.017	1.033	1.050.	0.904	0.868	0.827	D.772	0.126.	
2 (35/55/60/65) ¹ /	0.994	1.005	1.019	1.036	1.052	0.883	0.853	0.812	0.756	0.111.	
3 (40/55/65/65) 1/	1.000	1.011	1.025	1.042	1.058.	0.797	0.766	0.731	0.680	0.640	
\$ (\$0/55/70/70) ¹ ∕	1.001	1.012	1.026	1.043	1.059.	0.187	0.761	0.721	0.615	0.629	
		truck operat			iform	Incres	se (+) or dec highway cost	rease (-) in from base	equivalent u	aiform	
0 (1962 lav)	Buse					Base					
0 (1902 180)	29.071	- 790	-1,747	-2,889	-3,570	17,870	+204	+461	+ 767	+ 1,073	
1 (35/50/55/65) 1/	-2,139	-2,779	-3.543	-4,462	-4;993	-136	+67	+325	+630	+935.	
e (35/55/60/65) ¥	-2,130	-3,368	-4,120	-4,976	-5,498	- 95	+108	+366	+671	+ 976	
3 (40/55/65/65) ¥	-5,189	-5,755	-6.420	- 7,161	-7.621	+.5	+209	+461-	+772	+1.078	
k (10/55/70/70) ⊻	-5,463	-6,027	-6,696	- 7,435	-7,901.	+21	+225	+ 483	+789	+1,095'.	
		Ratio of equi truck operation					orease in equi			ack operating	
0 (1962 lav)	1.000	0.913	0.940	0.901	0.817	·	3.9	3.8	3.8	3.3	
1 (35/50/55/65) 1/	0.926		D. 878			2]	41.5	10.9	7.1	5.3	
e (35/55/60/65) ¹ /	0.906	0.884	0.858	0.829	0.811	·2]	31.2	11.3	7.4	5.6	
3 (40/55/65/65) 1/	0.822	0.802	0.779	0.754	0.138	1037.8	27.5	13.8	9.3	7.1	
6 (60/55/70/70) 1/	0.812	0.793	0.770	0.744	0,128	260.1	26.8	13.9	9.4	7.2 .	

I/ First figure is maximum length in foot of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full combination/fourty tractor, semitrailer and full trailer combination.

2/ Righway construction cost decrease, therefore, the results are highly favorable.

But the economy of the combined increases in length and axleweight limits is not the sum of the two individual economies, but usually less than the sum.

The extremely high benefit-cost ratios in the lower right-hand corner of table 12-2N are the result of just slight increases in the equivalent uniform annual highway costs. Any such slight increase in costs is somewhat lacking in precision, but when divided into the much larger sum of dollars of decrease in truck operating cost (benefit) produces a benefit-cost ratio too large to believe. Nevertheless, very high economy does exist, as indicated by footnote No. 2 on the table (table 12-2N) for those cells where the highway costs decrease with a combined increase in axle-weight limit and vehicle length limit.

The national figures (combined 10 census divisions) for each of the six highway systems offers a good picture of the overall consequences of combined increases in axle-weight limits and vehicle length limits. Table 12-4 is a national summary showing the results separately for each of the four length-limit steps. The benefit-cost ratios vary as follows:

System	1.	Interstate rural	0.9	to	7.3
System	2.	Interstate urban	9.7	to	24.9
System	3.	Primary rural	9.2	to	21.6
System	4.	Primary urban	10.7	to	37.3
System	5.	Secondary rural	8.8	to	33.9
System	6.	Secondary urban	1.5	to	4.7

	POPERCE	Roads	Development
	ម ភ	Public	BIG
•	ā	2	чСР
ì	E	Ы	Resear
•		reau of	Re
		ž	Ы
i	0.0		Ce

g

Table 12-4. - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984. National average

Census Division All STT 1 1 25/55/60/61 J Method of Analysis 6 with transition STEP 012 (35/50/55/65) 1/ Interstate rural Highway System 1.

1 (0)		dalts. kips	Ň	
a/m/cc/	erent	velaht 1	54/42	
100/00/00/00/ 02/ 01/ JTTD	Rigid Paverant	naxtmu	22/38	
270		Single/tanden axle maximum weight limits.	20/35	
		Stagle/t	18/32	
		s, kips	26/144	
- 10/1/0	eat	Single/tenden axle weight national limits, kips	T4/42	
In I In I I I man	Rigid Pavenent	weight ta	22/38	
	α ,	anden axle	20/35	
		Single/t	18/32	
		Acres 44		

COST OF PROVIDING RIGEMAY PACILITIES

1											
ri -	<pre>l. Construction cost per mile:</pre>	215.847	215847218387220765222,996224,953 217,24921921921 222,22924488 226469	220,765	222,996	224,953	217.249	219.821	222,229	22.4.488	7.26469
	b. Eridge structures	197.746	197.746 261.047 204,347 207.648 210,948	204,347	207648	210,948	197746	201047	197.746 201.047 204,347 207.648 210,948	207,648	210,948
	c. Earthwork and drainage	190,391	190.391 190.478 190.559 190,635 190,701 190.390 190.477 192,560 190,637 190.703	90,559	190,635	190,701	190.390	190.477	190,560	90,637	190.703
	d. Total construction cost	603.984	603984 609912 615 671 621,279 626,602 605,385 611,345 617,136 622,773 628,120	515,671	\$21.279	626,602	605,385	611.345	617,136	622.773	628.120
0	2. Equivalent uniform annual capital cost *	52,658	52.658 53,175 53,677 54,166 54,630	53,677	54.166	54,630	52,780	53,300	52,780 53,300 53,805	54,296	54,763
ŝ	3. Incremental amual cost a. Capital cost	1	517	502	484	764		520		167	467
	b. Maintenance cost of pavement and sboulders	١	13	12	//	10	1	61	12	11	07
	c. Maintenance cost of structures	1	2.5	25	25	25	1	25	. 25	25	22
1	d. Total equivalent uniform annual highway cost	1	555	539	525	499	1	558	542	527	502
1			NOM	MOTOR TRUCK OPERATING COST	ERATING CO	ST					
-				-		F					

191.467 1,854 197614 194,444 193,321 1,123 3,170 3,862 RATIO OF ARRIVAL DECREASE IN MOTCH TRUCK OPERATING COST TO ARRUAL FIGEWAY COST 201.476 ł 198.932 1,760 210,599 206,567 203,262 200,692 2,570 3,305 4,032 ł 5. Incremental equivalent uniform decrements in annual vehicle operating cost. b. Total equivalent uniform annual operating cost * a. For 1965 ADT 6. Ratio of incremental reduction in Amual operating cost of vehicles affected by axle veight limits:

truck operating cost to incremental increase in equivalent annual highway cost.

Calculated at 6 percent interest rate per annum and 20 years.
YFirst figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tructive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination.

3.7

7.7

5.8

6.0

I

5.0

4.9

6.1

7.3

I

12-18

Office of Research and Development U.S. DEPARTMENT OF CONDENCE Bureau of Public Roads

Table12-4. - Comparison of highway cost and motor vehicle operating cost for five levels of axle veight raxinum limits by each of four raximum length of vehicles, for the 20-year period 1965 through 1934: National average

All ב STEP PCUR (40/55/70/70) Census Division 1 Method of Analysis 6 with transition STEP TEREE (40/55/65/65) H Interstate rural Highway System].

	ADDALES ENGINE	s, kips Single/tender evie maximum weight limits, kips	26/44 1 13/32 20/35 22/33 24/41 26/44	
1eid Pave-ent.		veight maximum limits	22/33 24/41	
œ		Single/tanden axle w	18/32 20/35	
	1		Cost 1tem	

FACILITIES
RIGENAY
ROVIDIEN
6
cost

	600010									
	·	221,480	223,421	226.210	228.217	219,659	222,234	224.741	227.046	227.063
D. Eridge structures	197,746	201.047	204,347	207648	210.948	197.746	201,047	197,746 201,047 204,347 207,648 210,948 197,746 201,047 254347 207,648		210.942
c. Earthvork and drainage	190.389	190.389 190.477 190.562 190 639 190.713	190,562	190,639	190.713	190.389	190.479	130.562 190 640	010 640	190.708
d. Total construction cost	607,008	607,008 613,004 618,830 624,497 629,878	618,830	624,497	629.878	607.794	613,810	607794 613.810 613 50 525.334 630.724	425,334	630.724
2. Equivalent uniform annual capital cost *	52.922	53,445	53,953	54.447	54.916	52.991	53,515	54,024	54.520	54,990
3. Incremental emunal cost a. Capital cost	I	523	508	494	469	1	524	603	496	470
b. Maintenance cost of pavement and shoulders	I	13	12	11	01	1	/3	12		01
e. Maintenance cost of structures	I	25	25	25	25	1	25	25	2.5	25
d. Total equivalent uniform annual Mehrry cost	I	561	545	530	504	1	562	545	532	505
		MOTOM	MOTOR TRUCK OPENALING COST	ERATEN CO	IS					
b. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										

177,108 1,582 493 178.690 179.183 2,845 185,352 182,033 3,319 ţ 187,526 184,723 183,888 182,364 1,524 835 2.803 3,377 190.903 1 5. Incremental equivalent uniform decre-ments in annual vehicle operating cost........... b. Total enviralent uniform annual operating cost *

RATIO OF AUGUAL DECREASE IN MOTICA TENCK OPENATION COST TO AUGUAL HIGHAY COST

		-	7	
		0		
		(1	2.5	
		c L	1.0	
			1	
		1	0,7	
		-	9	
		1	1.2	
		~)	2	provide the mine and 20 man
		I		Finns Tor
6. Ratio of incremental reduction in	truck operating cost to increastal	increase in equivalent annual	high ay cost	# Calculated at 6 percent internet rate r

pulculates at o percent interest rate per annum and 20 years. First figure is maximum length in feet of a single unit truck/second, tractor semitralier combination/third, tractive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination. न

1

ŧ

U.S. DEPARYENT OF CONNERCE Bureau of Public Roads Office of Research and Development

Table12-4. - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four readimum length of vehicles, for the 20-year period 1965 through 1984; Mational average

Highway System 2 Interstate urban, Method of

Į

Method of Analysis 6 with transition

) <u> </u>	Rigid Pavezett	imits, kips Single/ta wie maximum weight limite	1 26/44 18/32 20/35 22/38 24/41
STEP 0:E (35/50/55/65) H	Rigid Pavenent	anden axle veight meximum limits,	20/35 22/39 24/41
		Single/te	18/32

COST OF PROVIDING ELGENAY PACILITIES

 L. Construction cost per mile: A. Parement and shoulders 	219,873	221.807		223,670 225,453 227,103	227.103	220,772	222.742	220,772 222,742 224,621 226,418	226.418	228,081
b. Eridge structures	1,291,193	291.193 1,295,211 1,299,229 1,303,246 1,307,264	1.299.229	1.303.246	1,307,264	1,291,193	,295,211	1,291,1931,295,2111,299,2291,303,2461,307,264	,303,246	1,307.264
c. Farthrork and drainage	492,815	492.882	492,945	493,005	493,061	492,815	492,382	492.945	493,007 493,063	493,063
d. Total construction cost	2,003,881	2,003,881 2,009,900 2.015,844 2,021,704 2,027,423 2,004,789 2,010,835 2,016,795 2,022,671 2,028,408	2.015,344	2.021.704	2,027423	2.004.730	2,010,835	2,016,795	2,022,671	2,028,408
2. Equivalent uniform annual capital cost *	174,708	175.233	175,751	176,252 176,761	176,761	174, 787	175,315	175,834 176,347	176.347	176,847
3. Incremental annual cost e. Capital cost	1	525	518	511	664	-	523	5/9	5/3	500
b. Maintenance cost of pavement and shoulders	L	15	14	13	12	1	15	+/	13	13
c. Maintenance cost of structures	1	193	193	193	193	1	193	561.	193	193
d. Total equivalent uniform annual bighyey cost	١	733	725	217	704	1	736	726	612	706
	•	MOIL	MOTCH TRUCK OPERATING COST	ERATING CO	ST					
 Ammual operating cost of vehicles affected by axle veight limits: Tow lock arm 							•			

289.912 7,776 297,633 10.540 341.140 323.062 308,228 14.834 18,078 ł 296,513 7,2.87 316,357 303,800 12,557 14.985 349,598 331,342 18,256 ١ a. For 1965 ADT 5. Incremental equivalent uniform decre-ments in annuel vehicle operating cost.......... b. Total equivalent uniform annual operating cost *

RATIO OF ARRUAL DECREASE IN MOTCH TRUCK OPENATING COST TO ARRUAL BIGENAY COST

11.0 14.7 20.4 24.6 Ł 10.4 17.5 20.7 24.9 ī truck operating cost to incremental increase in equivalent annual highway cost. 6. Ratio of incremental reduction in

• Calculated at 6 percent intervit rate per annum and 20 years.

y first figure is maximum leagth i feet of a single unit truck/second, tractor semitrailer combination/third, tructive truck and full trailer combination/fourth, tructive truck and full

12-20

Census Division

office of Research and Development U.S. DEPARTNENT OF CONTENUE Bureau of Public Roads

Table12-4. - Comparison of highway cost and motor vehicle operating cost for five levels of axie veight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984; National average

26/44 Single/tanden axle maximum weight limits, kips ALI 24/41 Census Division STEP FOUR (40/55/70/70) Rigid Pavement 22/38 20/35 18/32 26/44 Single/tender exle weight maximum limits, kips Method of Analysis 6 with transition SIEP TERE (40/55/65/65) H 24/42 Rigid Pavenent 22/33 20/35 18/32 Interstate urban Cost Item Elebury Syster 2.

		COST OF 1	OF IROVIDING B	EIGEAN FACILITIDS	SCIETE					
 Construction cost per mile: Pavennt and shoulders 	222,605	224,584	226.492	228,316	230.004	223,117	225,105	227,020	228,852	230,548
b. Bridge structures	1.291,193	1,295,211	291,193 1,295,211 1,299, 229 1,303,246 1,307,264	1,303,246	1,307.264	1,291,193	1,295,211	1,299,229	1,291,193 1,295,211 1,299,229 1,303,246 1,307,264	1307.264
e. Earthwark and drainage	492,815	432.882	492.947	493,008	493,065	492.814	492,882	492.947	493,008	493,066
d. Total construction cost	2,006,613	2,012.677	2,006,613 2,012,677 2,518,668 2,024,5702,030,333	2,024,570	2,030,333	2,007,124 2,013,198	2,013,198	2,019,196	2,019,196 2,025,106 2,030,878	2,030,878
2. Equivalent uniform annual capital cost *	174,947	175,475	175,998	176.512	177,015	174,991	175521	175521 176,044	176.559	177,062
3. Incremental annual cost	1	528	523	514	503	1	530	523	515	503
b. Maintenance cost of pavement and shouldars	1	15	14	14	13	•	15	14	/3	12
c. Maintenance cost of structures	1	193	193	193	193	1	193	193	193	193
d. Total equivalent uniform annual bieftery cost	1	236	730	721	709	1	738	730	721	708
		MOTOR	R TRUCK OF	TRUCK OPERATIN COST	ST					
 Arguel operating cost of vehicles affected by axle veight limits: a. For 1965 ADT										
b. Total equivalent uniform annuel operating cost *	310,391	294,549	281,547	272.637	265.747	305,812	290,035	277,025	268,328	261.399
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost	1	15.842	13,002	8,910	6,890	1	15.777	13,010	8,697	6,929

• Celculated at 6 percent interest rate per emun and 20 years.

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

9.8

12.1

17.8

21.4

ł

9.7

12.4

17.8

21.5

ł

RATIO OF ALEUAL DECREASE IN MOTICA TEUCK OFENERIES COST TO ALEUAL EIGENAY COST

CONTRERCE	Roads	. Development
U.S. DEPARIMENT CF	Bureau of Public	Office of Research and

Table12-4. - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984; National average

Primery rural Highway System 3.

Method of Analysis 6 with transition

		STEP	STEP ONE (35/50/55/65)	5/55/65) ¥			SIL	STEP THO (35/55/60/65	55/60/65) 4	
		æ	Ugid Pavenent	eat				Rigid Pavenent	neat	
Seat 14	Single/t	andem axle	/tandem axle veight maximum limits, kips	timun lin1	s, kips	Siczle/	anden axle	r cumixen	Single/tanden axle maximum weight limits.	, kips
	18/32	20/35	22/38	24/42	26/144	18/32	20/35	. 22/38	24/42	26/44

COST OF PROVIDING ELGEWAY PACILITIES

1. Construction cost new mile.										
•	· . 176.036 176.586 177.135 177,673 178.176 1177,498 178,058 178.615 179.162 179.672	176.586	177,135	177,673	178.176	177,498	178,058	178.615	179.162	179672
b. Eridge structures	30.831	31,324	31,816	31,816 32,308	32,801	30,831	31.324	31.816	32.308	32.801
e. Barthwork and drainage	86,690	86,690 86,710	86.729	86.729 86.749 86.766	86,766	86,690	86,710	1	86,750	86,763
d. Total construction cost	293,557	294,620	295,680	296,730	297.743	293.557294,620 295,680 296,730297,743 295,019 296,092 297,160 298,220 299,241	296,092	277.160	298,220	299,241
2. Equivalent uniform annual capital cost *	25,594	25,686	25,779	25,870	25.959	25,721	25,815	25908	26,000	26,089
3. Incremental annual cost a. Capital cost	1	92	93	16	89	1	46	53	92	89
b. Maintenance cost of pavement and aboulders	١	2	8	2	2	١	R	И	m	7
e. Maintenance cost of structures	•	4	4	7	4	1	4	. 4	7	4
d. Total equivalent uniform ennual highway cost	١	98	66	79	56	1	100	66	66	56
	•	NOM	OR TRUCK OF	MOTOR TRUCK OPERATING COST	ST					
 4. Amual operating cost of vehicles affected by axle veight limits: a. For 1965 ADT										
								į		

44,314 992 50.325 48,285 46,567 45 306 1:2:1 1,718 2,040 Ł 48,478 46,942 45,925 1,017 1.536 1,788 50,266 2,121 52,387 ł b. Total equivalent uniform annual operating cost * 5. Incremental equivalent uniform decre-ments in annual vehicle operating cost..........

RATIO OF ARRIVAL DECREASE IN MOTCH TRUCK OPERALING COST TO ARRIVAL BIGEWAY COST

- 21.6 18.1 15.8 10.7 - 20.4 17.4 12.7
- 10.7
- 10.7
10.7
- 21.6 18.1 15.8 10.7
- 21.6 18.1 15.8
- 21.6 18.1
- 21.6
1
entel
6. Ratio of incremental reduction in fruck operating cost to incremental increase in equivalent annual highway cost
 Natio of increantal reduction truck operating cost to in increase in equivalent and Mghvay cost.

t

• Calculated at 6 percent interest rate per annum and 20 years. • First figure is maximum length in fect of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination.

12-22

ALI

Census Division

Office of Research and Development U.S. DEPARTMENT OF CONSIENCE Bureau of Public Roads

Table 12-14. - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1981% National average

Eighury Systen 3. Primery rural	Method of Analysis 6 with transition	sis 6 with trens	Ition		Census	Census Division All	11
	SEF THEE	(ho/55/65/65)	1	and a start	STEP FOUR (40/55/70/70)	F (01/01/2)	
	Rigid	Rigid Pavement			Righd Paverent	rement	
	Single/tander axle weight maximum l	ight cextum lin	linits, kips	Single/tanden axle caximum veight limits, k	de cadama	reight limit	s, kips
Cost item	18/32 20/35 2	20/35 22/33 24/41 26/44	26/44	18/32 20/35	5 22/38 24/41	24/41	26/144
	-						

FACTULITIES
REGENAL
ROVIDIN
8
tsoo

		COST OF	COST OF PROVIDES BIGERAY FACILITIES	IICENAL FAC						
 L. Construction cost per mile: a. Favenant and shoulders 	. 179.378 179.948 180.517	179.948	180,517	181075 181.596	181.596	180,325 180.901 181.476	180.901	181.476	182,040	182.566
b. Bridge structures	30,831	31,324	31.816	32,308	32.801	30.831	31.324	31,816	32,308	32,801
e. Earthwork and drainage	86,689	86,710	86.730	86,751	86,769	86.691	86.710	86.731	86.750	86, 769
d. Total construction cost	296,898	297.982	299.063	300,134	301,166	297,847	298,935	300,023 301,098	301,098	302,136
2. Equivalent uniform annual capital cost *	25,885	25,980	26.074	26,167	26,257	25.968	26,063	26.158	26,251	26,342
3. Increantal emund cost a. Capital cost	J	95	44	93	90	J	95	95	93	16
b. Maintenance cost of pavement and aboulders.	1	8	2	7	8	•	5	7	ы	2
c. Maintenance cost of structures	I	7	4	4	4	. 1	4	4	4	77
d. Total equivalent uniform annual Methray cost	1	101	001	99	96	1	101	101	66	26
		MOTOR		TRUCK OPERATING COST	ST					
 Amnual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT 										
b. Total contralent uniform annual operating cost *	47,069	45,216	43,651	42,532	41,620	46,146	44.313	42.755	41,677	40.780
5. Incremental equivalent uniform decre- ments in annuel vehicle operating cost.	1	1,853	1.565	6111	912	1	1833	1.558	1,078	897

• Calculated at 6 percent interest rate per annum and 20 years. 6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost.

1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

RATIO OF AUGUAL DEGRESSE IN PERCH TRUCK OPERATING COST TO AUGUAL HIGENAY COST

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

9.2

10.9

15.4

18.1

ł

9.5

11.3

15.7

/ 8.3

١

CONTERCE	Roads	Development	
U.S. DEPARIMENT OF COMPERCE	Bureau of Public Roads	Office of Research and Development	

by each of four raxdmum length of vehicles, for the 20-year period 1965 through 1984: National average Tablel2-4, - Comparison of highway cost and motor vehicle operating cost for five levels of axle veight maximum limits

Rigid Favenent Sicgle/tanden arde maximum weight limits, kips Ceasus Division All STEP THO (35/55/60/65) H Single/tandem axle weight manimum limits, kips Method of Anelysis 6 with transition -Th STEP OLE (35/50/55/65) Rigid Pavenent Primary urban Cost 1tem Eighway System 4.

		COST OF 1	COST OF PROVIDING HIGHAY FACILITIES	DCENAY PAC	STITUS					
 Construction cost per mile: Sevement and shoulders 	178,183	178,183 178.978 179.765 180.535 181.254 179,131 179,934 180,729 181,508 182.235	179.765	180.535	181.254	179.131	179.934	180,729	181,508	182.235
b. Bridge structures	118,850	118,850 120.224 121.597 122,970 124,344 118,850 120,224 121.597 122,970 124,344	121.597	122,970	124.344	118,850	120.224	121.597	122.970	124.344
e. Barthwork and drainage	173,941	173,941 173,970 173,999 174,027 174,052	173,999	174.027	174.052	173,941	173,970	173,941 173,970 173,999	174.027	174,054
d. Total construction cost	470.974	470.974 473,172 475,361 477,532 479,650	475,361	477,532	479,650	471.922	474.128	471.922 474.128 476.325 478,505 480,633	4.78,505	480.633
2. Zquivalent uniform annual capital cost *	41.062	41,062 41,254 41,444	41,444	41,634	81877	41,145	41,337	41,528	41,718	41,904
3. Incremental amumal cost a. Capital cost	١	192	190	190	184	1	192	161	190	186
b. Maintenance cost of pavement and aboulders	1	S	Ś	S	4	1	Ŋ	S	رمر	γ
e. Maintenance cost of structures	1	12	12	12.	12	1	12	. 12	12	12
d. Total equivalent uniform annual bighway cost	١	209	207	207	200	1	209	208	207	203
		NOW	MOTOR TRUCK OPERATING COST	ERATER CO	JST					
 Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT 										
b. Total equivalent uniform annual										

123.777 115,987 109.873 105,297 102.828 121,011 113,365 107,360 103,187 100.732 2.455 4.173 6.005 7646 RATIO OF ARRIVAL DECREASE IN MOTCH TRUCK OPERATING COST TO ANRIVAL EDGEWAY COST ١ 2.469 4.576 6,114 7,790 ١ Incremental equivalent uniform decre-ments in annual vehicle operating cost...... operating cost * ń

6. Ratio of incremental reduction in

20.2 28.9 36.6 ١ 12.3 22.1 29.5 37.3 ۱ truck operating cost to incremental bighury cost. . .

12.1

• Calculated at 6 percent interest rate per annum and 20 years. • First figure is miximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tructive truck and full trailer combination fourth, tractor, semitrailer, and full trailer combination.

26/44

24/41

22/38

20/35

18/32

26/44

24/41

22/38

20/35

18/32

CONTENCIE	Roads	Development
U.S. DEPARTNENT OF CURLENC	Bureau of Public	office of Research and

- Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984; National average Table 12-4.

MELTION OF ADDITION OF ALL ALL ALL ALL ALL ALL ALL ALL ALL AL	JICD LIEDSIC	uct:		Census	Census Division ALL	
CP TEREE (40/55	5/65/65) ¥		S	TP FOUR (40/	F (01/01/5	
Rigid Pavene	ent			RIGID Par	rement	
exle weight max	ciraum limit:	s, kips	Single/tanden a	whe maximum	reight limit	s, kips
/35 22/33	24/42	26/44	18/32 20/3	15 22/38	24/42	26/144
P To R EXLe	REE (40/5) tigid Pavene veight can veight can 22/33	SEF TIME (40/55/65) <u>y</u> Rigid Pavenent len exle weight maximum linit: 20/35 22/33 24/41	.ts, kips 26/44			STEP F Sincle/tander exte 18/32 20/35

COST OF PROVIDED ELGENAY PACILITIES

<pre>l. Construction cost per mile: . Pavenent and shoulders</pre>	. 183,283 184,122	184.122	184,951	185.763 186.521	186,521	183,780 184,623 185,457 186,273 187,035	184.623	185.457	186,273	187.035
b. Bridge structures	118,850	120.224	118,850 120,224 121,597	122,970	124,344	118.850	120,224	121,597	122.970	118.850 120.224 121,597 122,970 124,344
e. Earthwork and drainage	173,939	173,939 173,970	174,000	174,000 174,029	174,056		173,970	174,001	174.030	174,057
d. Total construction cost	476,072	478,316	476,072 478,316 480,548	482,762 484,921	484,921	476.569	478,817	476,569 478,817 481,055 483,273 485,436	483,273	485,436
2. Equivalent uniform annuel capital cost *	41,506	41.506 41.702	41, 897	42.090	42,278	41,550	971.746	41,941	42,134	42.323
3. Incremtal annual cost a. Capital cost	I	196	195	193	188	1	196	195	193	189
b. Maintenance cost of pavenent and shouldars	1	S	S	S.	4	1	S	Ŋ	Ŋ	4
e. Maintenance cost of structures	1	12	12	12	12	١	12	12	12	12
d. Total equivalent uniform annual Møbury cost	T	213	212	210	204)	213	212	210	205
		MOTY	MOTOR TRUCK OPENATING COST	ERATIN CO	ST					
 Amoual operating cost of vehicles affected by axle veight limits: a. For 1965 ADT 										
b. Total contratent uniform annual operating cost *	109.791	109.791 102923	97.560	93,910	61.714	108.348 101.519	101.519	96,167	92,569	90.374

• Calculated at 6 percent interest rate per ennem and 20 years. 1/ First figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination.

10.7

17.1

25.2

32.1

Ł

10.8

17.4

25.3

32.2

I

2,195

3,598

5,352

6,829

١

2,196

3,650

5,363

6,868

I

5. Incremental equivalent uniform decre-

ments in annual vehicle operating cost.

6. Retio of incremental reduction in

RATIO OF ARRIVAL DECREASE IN MOTICA TRUCK OPENATION COST TO ARRIVAL RECEIVER COST

Office of Research and Development U.S. DEPARDENT OF CONCERCE Bureau of Public Roads

Table 12.4, - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984: National average

Census Division All Method of Analysis 6 with transition Secondary rural Highway Systen 5.

		STEP	STEP ORE (35/50	0/55/65) H			STEP THO	STEP THO (35/55/60/65)	-71
		R	tigid Pavenent	ent			Rigid I	Paveneat	
Acres 12	Single/t	andem axle	velcht manimum 1	tirun linits,	s, kips	Single/te	Single/tandem axle maximum weight	u weight limit	ts. kips
	18/32	20/35	22/39	24/42	26/44	18/32	20/35 22/38	8 24/41	26/144
					Ĩ				

COST OF PROVIDING EIGEWAY PACILITIES

 Construction cost per mile: 										
a. Pavement and shoulders	· · 102,465 102,536 102.612 102.693 102,774 102,925 102,988 103.075 103.156 103.238	102,536	102.612	102.693	102,774	102.925	102.988	103.075	103.156	103.238
b. Eridge structures	. 9.180	9,310	9.439	9.568	9.698	9,180	9.310	9.439	9.568	9698
e. Earthwork and drainage	34.248	34,248 34,250	-	34,252 34,255	34.257	34, 257 34, 247 34, 250 34 253 34 255	34,250	34.253	34,255	34,257
d. Total construction cost	145.893	45.893 146,096 146,303 146,516 146,729 146,352 146,558 146,767 146,979 147,193	146,303	146,516	146.729	146,352	146,558	146.767	146.979	147.193
2. Equivalent uniform annual capital cost *	12,720	12,720 12,737	12,755	12,774	12.793	12.760	12,778	12,796	12,814	12.833
3. Incremental amual cost a. Capital cost	1	17	18	19	19	. 1	18	18	18	61
b. Maintenance cost of pavement and shoulders	1	0	0	0	0	1	0	0	0	0
c. Maintenance cost of structures .	1	1	/	/	-	1		-	-	-
4. Total equivalent uniform annual Mighyry cost	1	18	19	20	20	1	61	61	61	20
	•	MOTOR	OR TRUCK OF	TRUCK OPERATING COST	ST					
A. Munual operating cost of vehicles affected by axle veight limits: - To. 105. arr										

8,683 204 8,887 349 9.236 485 9.721 595 10,316 1 8,831 213 460% 380 9.474 487 610 9.961 10.571 ۱ a. For 1965 ADT 5. Incremental equivalent uniform decre-ments in annual vehicle operating cost..... b. Total equivalent uniform annual operating cost *

RATIO OF ARRIVAL DECREASE IN MOTCH TRUCK OPERATING COST TO ARRIVAL BIGEWAY COST

18.4
31.3
1
10.7
19.0
25.6
33.9
0. Matio of incremental reduction in truck operating cost to incremental intrease in equivalent annual highway cost

• Calculated at 6 percent interest rate per annum and 20 years. I first figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination.

office of Research and Development U.S. DEPARTMENT OF CURSIENCE Bureau of Public Roads

Table 12-44 - Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits by each of four maximum length of vehicles, for the 20-year period 1965 through 1984; National average

Elghury System 5. Secondary rural	Met	Method of Analysis 6 with transition	lysis 6 w	th treast	tion			Census	Census Division All	11
		SEP LER	STEP TEREE (40/55/65/65).	/65/65) ¥			STEP	STEP FOUR (40/55/70/70)	F (01/01/5	
		R1	Rigid Pavezent	nt				Rigid Pavezent	ereat	
	Single/ta	ingle/teader exis veisht maximum limits, kips	weight max	from linit	s, kips	Single/t	ander axle	rextern v	Single/tanden axle maximum weight limits, kips	, kips
Cost Item	18/32	18/32 20/35 22/33 24/41 26/44	22/33	24/42	26/44	18/32	20/35	22/39	18/32 20/35 22/38 24/41 26/44	26/14

		COST OF 1	COST OF PROVIDING RIGEMAY FACILITIES	DGEVAY FAC	SHITIC					
 Construction cost per mile: Pavenet and shoulders 	· . 104,589 104,663 104,743 104,827 104,911	104,663	104,743	104.827	116.401	104.737	104,811	104.737 104.811 104.891 104.975	104,975	105,060
b. Bridge structures	2.180	9,310	9.437	9,568	9,698	9.180	9.310	9,439	9.568	9.698
c. Earthwork and drainage	34,248	34,250	34,253	34,255	34,258	34.248	34.251	34. 253	34.256	34.258
d. Total construction cost	14.8,017	14.8,223	148,223 148,435 148,650 148,867	148,650	148.867	148.165	148,372	148,165 148,372 148,583 148,799	148,799	149,016
2. Zquivalent uniform annual capital cost *	12.905	12,923	12,941	12,960	12,979	12,918	12.936	12,954	12,973	12.992
3. Increantal emusicost a. Capital cost	1	18	18	61	61	1	18	18	61	61
b. Maintenance cost of parement and shoulders	١	0	0	0	0		0	0	ò	0
e. Maintenance cost of structures	1	1	1		`	1	-	-	-	-
d. Total equivalent uniform annual	1	19	19	20	20	1	. 61	.61	20.	50
1		MON	MOTOR TRUCK OPERATING COST	ERATER CC	ST					
 Amual operating cost of vehicles affected by acle veight limits: a. For 1965 ADT 										
b. Total equivalent uniform annual operating cost *	9,415	8,881	8,453	8,136	7,961	9.325	8,791	8.371	8,051	7,870
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost.	1	534	428	317	175	١	5.34	420	320	181
RATIO OF	RATIO OF ARRIVAL DECREMENT IN PERCENTING	REASE DI	DUCI EUC	C OPERATIN	COST TO	COST TO ALUINL HIGE/AY COST	TAY COST			
6. Retio of incremental reduction in truck operating cost to incremental inference in equivalent ennual inferaty cost.	1	28.1	22.5	15.9	8.8	ı	28.1	22.1	16.0	9.1

• Calculated at 6 percent interest rate per ennum end 20 years. • Virst figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

	CONTAINCE	Bureau of Public Roads	s of Research and Development
	ម	Y	pul
•	DEPARTMENT	Pub	ч Ц
1	Ë	y	CER
	A a	nea	Res
	-	H	넝
Ì	υ.s.	14	8
			Office

by each of four maxdumum length of vehicles, for the 20-year period 1965 through 1984; Mational average Table 12-4 .. Comparison of highway cost and motor vehicle operating cost for five levels of axle weight maximum limits

Secondary urban Highway Systen 6.

Method of Analysis 6 with transition

All Ceasus Division

		STEP	STEP 01E (35/50/55/65)	0/55/65) H	*		STEP THO (35/55/60/65)	5/55/60/65)	-
		R	Rigid Pavenent	ent			Rigid Par	Pavenent	
Conce dame	Single/t	tandem axle veight mattimum limits.	weight car	timu limit	ca. kips	Stagle/	Single/tandem axle maximum weight 11	weight limits	ts. kips
	18/32	20/35	22/38	24/42	26/144	18/32	20/35 22/38	24/41	26/144

COST OF PROVIDING EDGEVAY PACILITIES

 Construction cost per mile: Rayment and shoulders 	· . 102.381 102.572 102.771 102.975 103.174 102.844 103.037 103.239 103.444 103.644	102.572	102.771	102,975	103,174	102,844	103,037	103,239	103.444	103,644
b. Bridge structures	39.363	42.358	45,352	48,346	51,341	39,363	42,358	45,352	45,352 48,345	51,341
c. Farthvork and drainage	49.073	49.080	49.087	760°67	49.101	43,073	49,080	49,037	49.094	1
d. Total construction cost	190,817	194,010	194,010 197,210	200.415 203,616	203.616	191,280	174.475	191,280 174,475 197,678	200,884	204.086
2. Equivalent uniform annual capital cost *	16,636	16,636 16,915 17,194	17,194	17,473	17.752	16,677 16,955	16.955	17.235	17,514	17,793
3. Incremental annual cost a. Capital cost	1	279	279	279	279	I	278	280	279	279
b. Maintenance cost of pavement and shoulders	1	1	/		1	I	0	~	-	1
c. Maintenance cost of structures	1	25	25	25	25	1	25	.25	25	25
<pre>d. Total equivalent uniform annual highway cost</pre>	1	305	305	305	305	1	303	205	305	305
		MOTY	MOTOR TRUCK OPERATING COST	PERATING CC	T ST					
 A. Amual operating cost of vehicles affected by axle weight limits: e. For 1965 ADT 										

522 23,593 24,115 856 24,971 1,168 26,139 1,436 27,575 ١ 24,098 531 24,629 616 25,548 1.180 26,728 1,439 28,167 L 5. Incremental equivalent uniform decre-ments in annual vehicle operating . b. Total equivalent uniform annual operating cost *

RATIO OF ANNUAL DECREASE IN MOTCH TRUCK OPENALING COST TO ANNUAL BIGHAN COST

	1.7	
	2 80	
	ы 8. 19	
4800 91	4.7	
	1	
	1.7	
	3.0	
	3.9	
	4.7	
	1	
	o. Matto or informating reduction in fruck operating cost to incremental increase in equivalent annual highway cost	
C Detto	b. Ascio o truck Iner- highw	

~

• Calculated at 6 percent interest rate per annum and 20 years. I First figure 18 miximum length in feet of a single unit truck/second, tractor scaltrailer combination/third, tractive truck and full trailer combination/fourth, tractor, semitrailer, and full trailer combination.

 6. Ratio of increased reduction in truck operating cost to increase in equivalent annual discrease in equivalent and 20 years.

 • Calculated at 6 percent interest rate per ennua end 20 years.

 • Viset figure is maximum length in feet of a single unit truck/second, tractor semitrailer combination/third, tractive truck and full

trailer combination/fourth, tractor, semitrailer, and full trailer combination.

12-29

. S

Just why the 0.9 ratio occurs on the Interstate rural system at the 24/41-kip limit was not investigated. Overall, however, the benefit-cost ratios are exceptionally high.

CHAPTER 13

SUMMARY AND ANALYSIS OF THE ECONOMY OF VEHICLE DIMENSIONS AND WEIGHTS BASED ON STUDIES MADE BY A. T. KEARNEY AND COMPANY UNDER RESEARCH CONTRACT

During 1964 and 1965, A. T. Kearney and Company, management consultants of Chicago, Illinois, under contract with the Bureau of Public Roads, made two studies to discover the advantages to be gained by liberalizing motor vehicle dimension and weight limits. This chapter outlines their approach, taken independently from those of the Bureau of Public Roads, and gives the main results of their studies.

The results of the consultant's studies were used by the Bureau of Public Roads to conduct an engineering economy analysis comparing the costs and related benefits of possible liberalizations of motor vehicle dimension and weight limits. Therefore, this chapter also presents a check on the economy of motor vehicle dimensions and weights developed in analysis Method 1 (Chapter 10).

1. PLAN OF STUDY

The 30 liberalized levels of dimensions and weights shown in table 13-1 were the basis of the consultant's studies. It was assumed that at each of these levels would be carried the line-haul cargo tonnage transported by highway vehicles in 1960, broken down by the commodity density ranges shown in table 13-2.

-2																			
Vehicle classification included	3-82 3-82	3-S2	3-S2	3-52	2-S2-3, 3-S2-4	2-82-2, 3-82-3, 3-82-4 2-81-2, 3-82-2, 3-82-4		2-82-2, 3-82-4 2-81-2, 3-82-2, 3-82-4	3-52-3, 3-52-4 2-52-2, 3-52-4 2-51-2, 3-52-4	0-00-0 2 20 1	5-82-3, 5-82-4 3-82-8, 3-82-4 2-82-2, 3-82-4		3-S2-4 3-S2-4 3-S2-3, 3-S2-4	3-S2-4	3-S2-4 3-S2-3, 3-S2-4	-4-4-	3-S1-2-2, 3-S2-3-2, 3-S2-4-4	3-S2-3-3, 3-S2-4-4	3-81-2-2, 3-82-3-3, 3-82-3-2, 3-82-4-4
Cargo body length, fect	o			>	21			->	e		>	, of	?		\rightarrow	21			->
No. of cargo bodies				\rightarrow	01										\rightarrow	m			\rightarrow
Total length, feet	55			~	65			→	75				 4						->
Single/tandem axle limit, kips	18/32 22/38	26/44	18/32			22/38 26/44	18/32	22/38 26/44	18/32 22/38		18/32 22/38 25/111	cc/81	22/38 25/14	18/32	22/38 25/44	18/32	56/177	18/32	111/02
Width, inches	ۇ¢_	_>	102	\rightarrow	36	>	102	>	· %	>	102	∢ ∢	,—>	102	>	. 96-	>	102	->
Reight, feet	13.5																		->
Liberalized level no.	-10	I M	<i>.</i> # 1	no	2	00 00	10	12	54 54 5		11 71 81		<u>१</u> % त	22	23 24	25	27	28	ର ଜ

Table 13-1. -- Liberalized levels of vehicle dimension and axle veight limits studied by A. T. Kearney and Compan

												13	-3
	Comnodities included 2/	Common carrier dispatch, miscellaneous	Common carrier dispatch, volume limit attained	Common carrier dispatch, weight limit attained	Lumber and dimension stock	Bag fertilizer and prepared feeds	Gasoline, primary forest products, dairy farm products, wheat, corn,	Kerosine, crude petroleum	Stone, gravel, sand, iron & steel scrap, phosphate rock, liquid fertilizer, cement slag, coal, $\frac{3}{3}$ and pulpwood logs $\frac{1}{4}$		Commerce Commission certified carriers of general freight (common carriers) modities	Coal is considered the "H" level although the density is 50 lb./cu.ft. because it is carried in an open top type cargo lody for which the maximum density is 40.5 lb./cu.ft.	Pulpwood logs are considered in the "H" level although the density is 45 lb./cu.ft. because they are carried in open top type cargo bodies for which the maximum critical density is 40.5 lb./cu.ft.
3	lt./cu.it. Effective average	6.0	5.11	23.5	30.0	35.0	45.0	55.0	57.5+	of the Kearney report	Commission certified c	rel although the densi r for which the maximu	in the "H" level altho type cargo bodies for
	Density level.		8	1	32.4	37.4	7.74	57 .4	57.5+		tate Commerce (r commodities	red the "H" lev type cargo body	re considered : i in open top ¹
	Minimum	3 8 8	1		27.5	32.5	H2.5	52.5	57.5	Taken from exhibit 2	Includes Interstate Commerce and the 19 major commodities	Coal is considered . in an open top type	Pulpwood logs are c they are carried in 40.5 lb./cu.ft.
	Cormodity density level	A	д	U	Q	E	ધ્ય	Ċ	н	T /1	<u>2/ 1</u> 8	<u>3</u> / C	

Table 13-2. -- Commodity density levels 1/

The average distance of haul and amount of load per trip were used to estimate the total vehicle miles for each commodity density level. The average load per trip varied according to the liberalized level of vehicle dimension and weight limits. The total vehicle miles for each liberalized level of dimension and weight is the sum of the vehicle miles of travel for all commodity density ranges.

The approach by means of liberalizing dimension and weight limits was based on the assumption that competitive factors would force the highway transportation industry to select a single type of trailer combination having the minimum number of axles necessary to carry the maximum permissible load. This assumption was the reason for the use of more than one class of vehicle within a liberalized level. It permitted use of the minimum number of axles for each commodity density range.

Of the total 1960 line-haul tonnage transported in highway vehicles, as shown in table 13-3, 67.37 percent was found to be accounted for by the 19 major commodities represented by commodity density levels designated D, E, F, G, and H in table 13-2. General freight, 7.26 percent of the total tonnage, is represented by commodity density levels A, B, and C. All other tonnage, which includes 40 additional miscellaneous commodities, amounted to 25.37 percent of the total. The "all-other-tonnage" group was analyzed using the portion that showed highway shipment characteristics similar to the average for the I.C. C. certified carriers of general freight.

As grouped and analyzed by A. T. Kearney and Company	Tons (add 000)	Percent of total
19 Major commodities	1,848,961	67.37%
ICC certified carriers of general freight*		7.26
All other tonnage	696,257	25.37
Total 1960 highway tonnage **	2,744,446	100.00%

Table 13-3. -- Line-haul tonnages transported in highway vehicles, by special classification, United States, 1960

Sources: * Class I and II data - Trinc's Blue Book of the Trucking Industry, 1961, Trinc Associates, Ltd., Washington, D.C. Class III data - Selected Statistics of Class III Motor Carriers of Property for the Year, 1960, Interstate Commerce Commission, Washington, D. C.

> ** Intercity Freight Haulage, by Commodity, Shipping Density and Type of Transport, 1960, M. F. Kent, Highway Research Board, 43rd Annual Meeting, Washington, D. C.

For both the 19 major commodities and the group comprising all other tonnage, the consultant reduced the total tons to be hauled by the tons moved on single-unit trucks carrying payload weight less than could be carried using the 1960 dimension and weight limits. Table 13-4 shows the resulting line-haul tons that would have been affected by liberalization of vehicle dimensions and weights and the respective vehicle-miles and ton-miles of travel. It should be noticed that there is an effective 40-percent reduction in the total tons hauled (2.74 to 1.64 billion tons).

As shown in table 13-4, although the 19 major commodities represent two-thirds of the total affected line-haul tonnage, they represent only one-third of the total vehiclemiles and ton-miles of travel. All other tonnage, accounting for 22 percent of the total affected line-haul tonnage, also represents roughly one-third of the total vehicle-miles and ton-miles of travel.

2. CORRELATION OF VEHICLE-MILE ESTIMATES

Based on the year 1960, the Kearney report estimated that 13.46 billion vehicle-miles of travel would have been affected by vehicle dimension and weight liberalization. The figure is based on reduction of the 1960 total line-haul tonnage by approximately 40 percent, representing the tonnage moved in singleunit vehicles at payloads less than those possible using the 1960 vehicle dimension and weight limits. It is also based on

Table 13-4. -- Estimated line-haul tonnage, miles of vehicle travel and ton-miles that would likely be affected by vehicle weight and size limit liberalization by special classification, 1960

As grouped and analyzed by A. T. Kearney and Company	Line-haul tons (add 000)	Miles of vehicle travel (add 000)	Ton-miles (add 000)
19 Major commodities	1,064,525	3,965,400	57,948,800
ICC certified carriers of general freight (1)	199,228	4,801,155	51,157,852
All other tonnage group	380,852	4,690,187	56,743,831
Total	1,644,605	13,456,742	165,850,483

(1) Includes ICC reported data for general freight commodity groups only. Other commodity groups transported by ICC certified carriers are included in the 19 major commodities and the all other tonnage data. liberalized level no. 1 (3-S2, 55-foot overall length, 40-foot trailer, 96-inch width, 18/32-kip single/tandem axle weights) at maximum payload conditions.

For comparison, the publication HIGHWAY STATISTICS for 1960 reports 61.3 billion vehicle-miles of travel on main rural roads. The figure is based on all types of trucks and combinations, including single units. It also reflects all degrees of loading--empty, partially loaded, and fully loaded.

3. VEHICLE-MILE ESTIMATES

An illustration will convey a better understanding of the technique used to estimate line-haul vehicle mileage saved. If 450,000 pounds of freight were hauled 100 miles in 10 vehicles, each effectively limited by dimension and weight regulations to 45,000 pounds of payload (5-axle semitrailer combinations with gross vehicle weights of 73,000 pounds and empty weights of 28,000 pounds), the total line-haul mileage for these vehicles would be 1,000 miles. But if the vehicles were permitted to carry 50,000 pounds of payload each, it would take only 9 vehicles to carry the 450,000 pounds a distance of 100 miles. Nine vehicles times 100 miles results in 900 vehicle-miles which, when subtracted from 1,000 vehicle-miles, equals 100 vehiclemiles saved by the increase in payload carrying capacity from 45,000 to 50,000 pounds.

The miles of vehicle travel that could be and would likely be affected by liberalizing of vehicle dimension and

weight limits were projected by the consultant to the year 1990, based on an average growth rate of 2.75 percent from 1960. These results are shown below in 5-year intervals:

Years	Miles of vehicle travel (1,000)
1965 to 1970 1970 to 1975 1975 to 1980 1980 to 1985 1985 to 1990	81,414,603 93,241,973 106,787,544 122,300,926 140,067,986
Total	543,813,032

Based on an assumed starting year of 1965 for authorizing increased vehicle dimension and weight limits-recognizing that conversion to increased limits would be authorized gradually by individual States--the consultant determined that a probable annual conversion rate of 10 percent, or a total of 10 years, would be required before all miles of vehicle travel were actually covered by increased vehicle limits. Therefore, the following adjustments were made in the projected miles of vehicle travel shown above, assuming that the 10-percent conversion rate, or a 10-year period starting with 1965 would be required before all States authorized the increased limits:

Years	Adjusted miles of vehicle travel (1,000)
1965 to 1970 1970 to 1975 1975 to 1980 1980 to 1985 1985 to 1990	24,865,975 75,099,323 106,787,544 122,300,926 140,067,986
Total	469,121,754

The effects of liberalizing motor vehicle dimension and weight limits to any of the 30 levels were determined for 1960 in terms of the miles saved as a percentage of the 13,456,742,000 vehicle-miles of travel that could have been affected in 1960. The resulting percentages are shown in table 13-5.

Based on the estimated rates of conversion by carriers to utilization of the 30 levels of vehicle dimensions and weights, the estimates in table 13-6 were made to show the potential accumulated decrease in miles of vehicle travel up to the year 1990 resulting from the line-haul transportation of freight in maximum payloads.

4. SECOND STUDY

A. T. Kearney and Company performed under a second contract for the express purpose of developing detail on trucking operations helpful in the design of pavements and calculations of operating costs for the line-haul trailer combination under increased dimensions and weights.

A. Developing Possible Liberalization--Universal Application

To relate the 30 levels of dimension and weight limits to the degrees of pavement deterioration they cause, Kearney converted their effects to equivalent 18,000-pound axle applications (E 18 kips) for each census division. For instance, the Kearney report indicates that if highway freight in the New England census division were hauled in trailer combinations

Table 13-5. Estimated percent of miles of vehicle travel in line-haul transportation of freight that would not have been required in 1960 under 30 levels of increased vehicle dimension and weight limits $\frac{1}{2}$

Liberal- ized dimen- sion and weight level no.	Cargo-body length, feet	Number of cargo bodies	Cargo-body width, inches	Single/tan- dem axle- weight limits, kips	Percentage of miles of vehicle travel
1 2 3 4 5 6	40		96 102 	18/32 22/38 26/44 18/32 22/38 26/44	4.1 7.6 16.7 21.8 24.1 25.6
7 8 9 10 11 12	27	2	96 102	18/32 22/38 26/44 18/32 22/38 26/44	11.9 17.4 28.1 34.1 37.7 40.6
13 14 15 16 17 18	30		95 102	18/32 22/38 26/44 18/32 22/38 26/44	14.6 20.0 31.4 37.8 41.7 45.3
19 20 21 22 23 24	40		96 102	1.8/32 22/38 26/44 18/32 22/38 26/44	16.6 22.4 35.5 42.6 46.9 50.9
25 26 27 28 29 30	27	3	96 102	1.8/32 22/38 26/44 1.8/32 22/38 26/44	17.7 23.9 38.5 46.4 51.3 55.3

1/ Based on summary report of A. T. Kearney and Co.

Table 13-6. Projection from 1965 to 1990 of the potential decrease in accumulated vehicle-miles of travel resulting from line-haul transportation of freight in maximum payloads1/

Liberal- ized dimen- sion and weight level no.	Cargo-body length, feet	Number of cargo bodies	Cargo-body width, inches	Single/tan- dem axle weight lim- its, kips	Potential decrease in billions of vehicle- miles of travel
1 2 3 4 5 6	40 		96 102	18/32 22/38 26/44 18/32 22/38 26/44	Base 29.4 to 33.8 60.7 to 70.0 58.5 to 83.4 64.7 to 92.2 68.7 to 97.9
7 8 9 10 11 12	27	2	96 102	18/32 22/38 26/44 18/32 22/38 26/44	32.3 to 46.0 47.2 to 66.6 57.0 to 86.1 69.2 " 104.5 76.5 " 115.5 82.4 " 124.4
13 14 .15 16 17 18	30		96 102	18/32 22/38 26/44 18/32 22/38 26/44	34.1 to 55.8 46.7 to 76.5 38.1 to 96.2 45.8 " 115.8 50.6 " 127.8 54.9 " 138.8
19 20 21 22 23 24	цо		96 102	18/32 22/38 26/44 18/32 22/38 26/44	38.3 to 63.5 52.3 to 85.7 43.1 " 108.8 51.7 " 130.5 56.9 " 143.7 61.4 " 155.1
25 26 27 28 29 30	27	3	96 102	18/32 22/38 26/44 18/32 22/38 26/44	52.8 to 74.2 71.3 " 100.2 114.8 " 161.4 108.3 " 177.5 119.8 " 196.3 129.1 " 211.5

1/ Based on summary report of A. T. Kearney and Co.

of 55-foot overall length, with 40-foot semitrailers 96 inches wide, under 22,000-pound single- and 38,000-pound tandem-axle limitations, the total E 18-kip applications per mile of pavement would average 84,000 per year or 230 per day.

Table 13-7 indicates that universal use of the 27-foot doubles in combinations of 65-foot overall length and 102-inch width on all highway systems in the East North Central census division would produce 82 E 18-kip axle applications for every 100 E 18-kip axles it took in 1960 to haul the same amount of freight. The number of tons in each commodity density level, as a percentage of the total tons hauled, varies for the different census divisions. Therefore, the figures in table 13-7 are not necessarily representative of all census divisions.

B. Developing Possible Liberalization--Separate Highway Systems

The phase of the second Kearney study related to separate highway systems was based on the reasoning that, for over-theroad operations, competitive factors would force the highway transportation industry to select two classes of trailer combinations, one of which would have the minimum number of axles necessary to carry the maximum permissible payload on the primary and secondary highway systems and the other class similarly selected for higher gross loads on the Interstate system.

	Ratio of enticipated to mesent	E-18 effect, East North Central Census Division	0.85 0.82 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85	0.99 0.89 0.95 0.93 0.93	0.78 0.85 0.73 0.81 0.73	0.80
ement damage Company	Axle weight, kips	Tandem	% % % % % %	88888888888888888888888888888888888888	88888888	32
ttion in pav Kearney and	AXLe We KIDS	Single	81 81 81 81 81 81 81 81 81 81 81 81	81 81 81 81 81 81 81 81 81 81 81 81 81 8	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18
o of reloce d by A. T.	Vehicle	inches	802 8 29 8 10 8 10 10 10 10 10 10 10 10 10 10 10 10 10	102 96 102 102	962 962 96 102 96	102
showing ratio of relocation in pavement damage as determined by A. T. Kearney and Company	gth, feet	On Interstate systems	same same same same same 100 (40 double)	100 (40 double) 100 (40 double) 100 (40 double) 100 (40 double) 100 (40 double)	100 (27 triple) 100 (27 triple) 100 (27 triple) 100 (27 triple) 100 (27 triple)	100 (27 triple)
	Vehicle length, feet	On secondary and primary systems	65 (27 doubles) 65 (27 doubles) 75 (30 doubles) 75 (40 single)	55 (40 single) 65 (27 double) 65 (27 double) 75 (30 double) 75 (30 double)	55 (4:0 single) 55 (40 single) 65 (27 dcuble) 65 (27 double) 75 (30 double)	75 (30 double)
	[.theve]1 red	level ro.*	6110 61100 6100 6100	0422 0719 1319 1622	0125 0428 0725 1028 1325	1623

The first two digits represent the liberalized level permitted on secondary and primary highway systems. The third and forth digits represent the liberalized level permitted on the Interstate system. *

13-14

Table 13-7. -- Liberalized levels of highway freight vehicles

Table 13-7 lists 12 of the 36 paired classes of trailer combinations that were studied by the consultant. In the righthand column are the ratios of total anticipated E 18-kip axle applications of the paired classes to the total present E 18-kip effect of liberalized level number 1 of the 36 paired trailercombinations classes studied by the consultant. The table lists those pairs having a ratio of anticipated to present E 18-kip effect of less than 1.00. The lowest or most favorable ratio shown is 0.73 for pairing of 27-foot double trailers (65-foot overall length) and 27-foot triple trailers (100-foot overall length), all of which are 96 inches wide.

5. APPLICATION OF THE KEARNEY FINDINGS

An important application of the results of the Kearney studies is to serve as an independent check of the in-house studies of the desirable dimensions and weights of motor vehicles reported upon here. But in order to compare the Kearney results with those obtained by the project staff, it is necessary to translate Kearney's E 18-kip applications based on maximum loading conditions to the E 18-kip axles developed in analysis Method 1 (Chapter 10) on the basis of 1962 loading practice. The following paragraphs outline the adjustments that were made in order to attain comparability in results.

The E 18-kip axles reported by Kearney were adjusted to account for traffic growth to 1965 from his base year 1960. The average E 18-kip axles for the study period 1965 to 1984 were then determined using the electronic computer. The E 18kip axles for passenger cars and single-unit trucks were also added to Kearney's total, because they are included in Method 1.

The base E 18-kip axles at the 18/32-kip single/tandem axle-weight level for the 40-foot semitrailer combination (liberalized level number 1) in each census division was adjusted to the E 18-kip values developed in Method 1 from the 1962 truck weight study at the 18/32-kip single/tandem axle-weight level. The E 18-kip axles for each of the remaining liberalized levels were adjusted by the percentage used for liberalized level number 1. The costs of highway construction for pavement shoulders, bridges, earthwork and drainage, and maintenance costs were calculated as described for Method 1 in Chapter 10.

Loaded and empty vehicle-miles of travel were reported by Kearney for each commodity density level. The motor vehicle operating costs used were those developed in Chapters 9 and 10. The total motor vehicle operating cost for each liberalized level of motor vehicle dimension and weight was obtained by adding together the operating costs of all the commodity levels.

Two adjustments were made in the total operating cost of each liberalized level of vehicle dimension and weight. To adjust to a level representative of the study period, the costs were multiplied by the ratio to the 1960 E 18's of the total average E 18-kip axles for the study period shown by the computer printout. Then, to adjust for correlation with Method 1, the factor used to adjust E 18's to Method 1 was also applied to motor vehicle operating costs. Benefit-cost ratios were then calculated using the procedure described for Method 1 in Chapter 10. The results are shown in table 13-9.

6. ECONOMY OF HIGHER AXLE-WEIGHT LEVELS

The range of benefit-cost ratios resulting from use of the Kearney data for 40-foot single-axle trailers confirms the range of benefit-cost ratios for increases in axle-weight limits shown by Method 1. The benefit-cost ratios based on Kearney data show economy in higher axle-weight limits for all vehicle classifications studied. Only the 40-foot, double-trailer combination indicated a low benefit-cost ratio. The reason for this exception can be traced to the fact that, for the 40-foot double trailers at the 18/32-kip single/tandem axleweight level for vehicles 96 and 102 inches wide, two liberalized levels of vehicle dimension and weight represented limited conditions of payload weight for commodity density levels A, B, and C. For other liberalized levels of vehicle dimensions and number of trailers, at the above-stated conditions of vehicle axle weight and width, payloads were limited as to cube for commodity density levels A, B, and C, which range from O to 27.5 pounds per cubic foot.

e 1n	ys tems
Table 13-9, Ratio of incremental reduction in truck operating cost to incremental increase in	equivalent annual highway cost between axle weight levels for primery rural system
al to	5
mont	prime
incr	for
\$	4
COBt	leve
lng	1cht
Ę	2
ope	erte
ruck	den.
la t	betu
Ton	oat '
uc t	Ŭ
red	shva
tal	F
ame n	Leva
nor	
- Ho	Len(
9	1 va
Pat	100
-	
6-E	
-1	
Table	

vehicle width selicite width veights in kipe 26/44 26/44 26/44 29/32 3.7 3.7 3.7 91 3.7 4.0 26/44 26/32 3.7 3.7 2.9 3.7 4.0 26/44 26/32 3.7 4.0 2.9 91 3.7 4.0 2.9 91 3.7 4.1 4.3 9.5 4.1 4.3 3.5 3.5 4.1 4.3 3.5 3.5 4.1 4.3 3.5 3.5 4.1 4.3 5.6 3.5 4.1 4.1 4.1 1.0 2.5 3.5 3.5 3.5 4.1 4.1 4.1 1.1 2.6 3.5 3.5 1.1 2.6 3.6 5.0 1.1 2.6 1.1 5.5 1.1 9.1 10.4 8.2 1.1 9.1 9.1 9.1 9.1 9.1 9.1 9.1 1.1 9.1 9.1 9.1 1.1 9.1 9.1 9.1 1.1 9.1 9.1 <th>96 Inch maximum vehicle width Single/tandem axte veights in kips Single/tandem axte veights in kips $20/35$ $24/41$ $26/44$ $29/32$ $24/41$ $26/44$ $26/44$ $18/32$ $26/41$ $26/44$ $26/44$ $26/44$ $18/32$ 5.0 5.4 5.4 5.4 5.4 5.7 5.7</th> <th>96 fach maximum vehicle witch 102 fach maximum vehicle witch Single/fandem axle weights in https 24/41 26/44 28/41 Single/fandem axle weights in https 28/41 28/41 28/41 Single/fandem axle weights in https 28/41 28/41 Single/fandem axle weights in https 24/41 26/44 28/41 Single/fandem axle weights in https 3.6 3.7 2 5.7 5.7 3.4/41 Single/fandem axle weights 3.6 3.7 2.4/41 5.7 5.7 3.4/41 5.7 5.7 3.4/41 3.6 3.7 2.4/41 3.6 3.7 3.4/41 3.6 3.6 3.4/41</th>	96 Inch maximum vehicle width Single/tandem axte veights in kips Single/tandem axte veights in kips $20/35$ $24/41$ $26/44$ $29/32$ $24/41$ $26/44$ $26/44$ $18/32$ $26/41$ $26/44$ $26/44$ $26/44$ $18/32$ 5.0 5.4 5.4 5.4 5.4 5.7	96 fach maximum vehicle witch 102 fach maximum vehicle witch Single/fandem axle weights in https 24/41 26/44 28/41 Single/fandem axle weights in https 28/41 28/41 28/41 Single/fandem axle weights in https 28/41 28/41 Single/fandem axle weights in https 24/41 26/44 28/41 Single/fandem axle weights in https 3.6 3.7 2 5.7 5.7 3.4/41 Single/fandem axle weights 3.6 3.7 2.4/41 5.7 5.7 3.4/41 5.7 5.7 3.4/41 3.6 3.7 2.4/41 3.6 3.7 3.4/41 3.6 3.6 3.4/41
ctarms vehicle width $24/41$ $26/44$ $18/32$ 31 $24/41$ $26/44$ $26/44$ $18/32$ 31 5.4 3.7 $26/44$ $18/32$ 31 3.6 3.7 4.0 $26/44$ $18/32$ 31 3.6 3.7 4.0 $26/44$ $18/32$ 31 3.6 3.7 4.0 3.7 4.0 3.6 5.7 4.0 3.7 4.0 3.0 2.9 5.7 3.7 4.0 1.9 3.7 4.0 3.0 2.9 5.7 5.6 5.4 3.7 4.0 1.9 3.7 4.0 7.9 2.9 5.6 <td< td=""><td>cdmum vehicle vidth $24/41$ $26/44$ $28/32$ 31 $24/41$ $26/44$ $26/44$ $28/32$ 31 5.6 5.7 5.6 5.7 31 3.7 3.7 4.0 $26/44$ $18/32$ 31 5.6 5.7 3.7 4.0 3.7 3.7 1.9 3.7 4.1 3.6 5.7 3.7 4.0 6.5 7.4 7.9 2.9 5.7 3.7 4.0 5.6 5.4 3.7 4.0 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.6 $5.$</td><td>claume vehicle width 102 lact maximum vehicle axie vergate in kipe $2k/41$ $26/44$ $26/44$ $26/44$ $2k/41$ $2k/41$</td></td<>	cdmum vehicle vidth $24/41$ $26/44$ $28/32$ 31 $24/41$ $26/44$ $26/44$ $28/32$ 31 5.6 5.7 5.6 5.7 31 3.7 3.7 4.0 $26/44$ $18/32$ 31 5.6 5.7 3.7 4.0 3.7 3.7 1.9 3.7 4.1 3.6 5.7 3.7 4.0 6.5 7.4 7.9 2.9 5.7 3.7 4.0 5.6 5.4 3.7 4.0 5.6 5.7 5.7 5.6 5.7 5.6 5.7 5.6 $5.$	claume vehicle width 102 lact maximum vehicle axie vergate in kipe $2k/41$ $26/44$ $26/44$ $26/44$ $2k/41$
vidth sidth 1	width statt statt <th< td=""><td>vidth 102 inch maximum vahicle in kipe single/tandem axie verights in kipe solution single/tandem axie verights in kipe 5.7 - tundem axie verights 5.6 5.7 - tundem axie verights 3.7 - - - + - 24/41 2 5.6 5.7 - - - - - - 2 - 2 3.7 2.9 3.7 - - - - - - - - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 <</td></th<>	vidth 102 inch maximum vahicle in kipe single/tandem axie verights in kipe solution single/tandem axie verights in kipe 5.7 - tundem axie verights 5.6 5.7 - tundem axie verights 3.7 - - - + - 24/41 2 5.6 5.7 - - - - - - 2 - 2 3.7 2.9 3.7 - - - - - - - - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 <
26/44 18/32 26/44 18/32 26/44 18/32 26/44 18/32 25/44 18/32 25/44 19/32 25/44 19/32 25/44 19/32 25/44 19/32 25/44 19/32 25/44 19/32 25/9	26/44 18/32 26/44 18/32 26/44 18/32 26/44 18/32 25/44 18/32 25/44 19/32 25/44 15/44 19/32 25/44 15/54 15/44 15/44 15/54 15/44 15/54 15/44 15/54 15/44 15/55755 15/557 15/55 15/5575575 15/55755755 15/555755555 15/55555	26/bh 102 lach maximum vahiele 26/bh 18/32 Single/tandem axis weights 26/bh 18/32 20/35 24/bl 2 26/bh 18/32 20/35 24/bl 2 3.6 3.6 4.7 4.9 2 3.7 - 5.2 24/bl 2 3.6 - 5.0 2 24/bl 2 3.7 - 4.7 4.9 3.6 4.1 - 5.2 2.9 3.6 4.1 - 5.2 2.9 3.6 4.1 - 5.2 2.9 3.6 4.1 - 5.2 2.9 3.6 1.2 4.1 0.2 1.2 2.9 3.9 5.1 0.1 0.1 2.1 3.9 5.1 0.1 2.1 3.1 5.1 5.1 5.1 3.1 5.1 5.1 5.1 11.2 2.4 5.5 5.1 3.1 5.1 5.1 5.1 11.2 5.1 5.1 5.1 11.2 5.1 5.1 5.1 11.2 5.1 5.1 5.1
R R	No. Contraction of the second	102 lach maximum vahicle 32 20/35 24/41 2 31.0010/100 20/35 24/41 2 3.10 0.2 4.9 2 1.2 4.9 4.9 2 3.0 0.2 0.6 4.9 2 3.10 0.2 0.6 4.9 2 2 3.10 0.0 0.0 0.6 4.9 2 2 3.10 0.12 1.2 2 2 2 4 2 2 4 2 2 4 2 2 4 2 3 3 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>
102 Inch 20/35 Inch 20/35 20/35 4.7 4.7 7.2 3.3 3.3 4.7 7.2 4.7 7.2 3.3 3.3 3.3 4.7 7.2 1.2 8.0 9.5 8.0 8.1 1.2 8.1 1.2 8.1 1.2 8.1 1.2 8.1 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1	102 lach maximum vah Slugle/tandem axie vei 20/35 24/41 20/35 24/41 20,2 24/41 20,2 24/41 20,2 24/41 20,3 24/41 20,3 24/41 20,3 24/41 20,3 24/41 20,3 20,5 20,3 20,5 20,3 24/41 20,3 20,5 20,3 20,5 20,3 20,5 20,3 20,6 30,9 5.1 21,0 2.3 21,0 2.3 21,0 2.4 21,0 2.5 21,0 2.5 21,0 2.5 22,4 2.5 21,0 2.6 21,0 2.6 21,0 2.6 21,0 2.6 22,4 2.6 22,6 2.6 22,6 2.6 20,7 2.6 20,8 <td< td=""><td>Адаши vehicle axie veights axie veights axi</td></td<>	Адаши vehicle axie veights axie veights axi
	вахдани veh вахдани veh 24/41 24/41 24/41 24,41 4.9 3.6 3.6 3.6 5.5 5.5 5.5 5.5 5.5 5.5 5.5 5	Адаши vehicle axie veights axie veights axi

For commodity density levels A, B, and C, which together in this case account for some 75 percent of the total vehiclemiles of travel, an increase in axle-weight limits usually permitted the dropping of one axle, resulting in a lower gross vehicle weight and thus lower operating costs. But the condition of limited weight for the 18/32-kip single/tandem axle-weight level for the 40-foot double trailers did not permit the dropping of an axle when axle-weight limits were raised by Kearney to the 22/38-kip single/tandem level. Therefore, the net result of adding together the operating costs for all commodity levels was an operating-cost increase instead of a decrease.

7. INCREASED VEHICLE WIDTH

Increase in vehicle width from 96 inches to 102 inches results in increased payloads for commodities that fill cargo bodies as to cube: that is, when the vehicle is visibly fully loaded by volume. But the increase in width--and thus the increase in vehicle empty weight--decreases the allowable payload. The two conditions in which cube-full and weight-full trailers are increased in width are therefore economically counterbalancing.

Decisions as to the economy of increases in width for specific vehicle classifications must be based on the net result for all commodity density levels. In general, the benefit-cost ratios in table 13-10, based on the Kearney data, show that it would be economical to increase vehicle widths from 96 inches to 102 inches. 13-20

_ Table 13-10 Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost resulting from an increase in vehicle width from 96 inches to 102 inches on the Primary Rural Highway System

Census Division		Cargo body length (feet) and number of cargo	Single/tandem axle weights in kips				
	gion	body units	18/32	20/35	24/41	26/44	59/1tyt
1.	NĽ	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	44.1 24.6 21.0 48.9 14.5	28.6 52.0 · * 17.6 -	21.9 * 8.0	20.1 283.3 * 4.7 [.] -	19.3 9.8 * 5.8 7.4
2.	MA	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	40.3 14.2 9.4 76.3 7.9	27.3 24.3 17.4	22.9 9.2 11.5	20.5 66.9 8.9 -	23.1 16.0 .2 *
5.	ENC	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	44.8 • 13.7 22.6 32.6 5.5	18.1 29.8 * 14.2 -	15.2 110.3 <i>J</i> 8.4	16.4 65.7 J 78.7 J	21.3 10.8 _J 6.9 10.6
6.	WNC	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	21.1 19.6 24.6 12.4 14.0	19.0 * 26.2 *	14.9 * _J 28.4	12.0 31.6 - 16.2 *	14.7 8.1 - 6.9 4.5
7.	ESC	40 ft single 27 fw double 30 ft double 40 ft double 27 ft triple	69.9 28.5 26.7 3 ¹ 4.0 21.6	38.8 * 14.5 -	30.3 * _/ 11.5	. 25.4 * 9.5 *	22.8 12.0 _/ 9.1 10.9
8.	WSC	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	89.7 12.1 57.4 41.3 20.3	34.7 -7.3 - 22.9	22.1 -0.3 18.6	20.5 16.8 - 14.5 -	28.3 19.6 - 13.3 15.4
9.	M	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	0.9 10.8 10.5 7.6 29.6	0.0 * 4.6 25.8 -	0.4 * 3.7 52.6	0.0 * 7.2 30.3 -	0.2 4.9 * 11.1 1.4
10.	Р	40 ft single 27 ft double 30 ft double 40 ft double 27 ft triple	-1.5 20.8 15.0 14.4 *	2.5 41.7 * 0.6 *	2.3 13.3 * 0.5 *	2.7 89.2 * 0.4 *	3.1 * 4.7 13.1

* Annual highway costs decreased and annual motor vehicle operating costs decreased.

- Annual highway costs decreased and annual motor vehicle operating costs increased by an equal or greater amount.

J Annual highway costs decreased and annual vehicle operating costs increased by a lesser amount.

The only vehicle classifications for which increased width is indicated to be questionable economy are the 27-foot double and triple trailers and the 30-foot double trailer. Reasons can be given for these conditions. For commodities resulting in loads with limited cubes, there is a limit of increased vehicle width and thus of payload and gross vehicle weight where additional axles are needed in order to prevent axle-weight overload. Additional axles mean lower E 18-kip axle applications and highway costs but also higher practical maximum gross vehicle weights and vehicle operating costs. Therefore, for those commodity density levels where an increase in width was accompanied by the need for an additional axle, there are no benefits or decreases in motor vehicle operating costs. The liberalized levels of motor vehicle dimension and weight that contained one or more commodity density levels requiring additional axles for an increase in vehicle width from 96 inches to 102 inches are shown below:

Commodity density level 1/	Liberalized l	Vehicle	
	96-inch vehicle width	102-inch vehicle width	classification
D, E	8	11	27-foot doubles
А,В,С.	15	18	27-foot doubles
A,B,C,D,E	26	29	27-foot triples
E	27	30	27-foot triples

1. See table 13-2 for types of commodities.

The need for additional axles is the significant factor in determining the economy of increasing width from 96 inches to 102 inches for the 27-foot trailers. For the 30-foot double trailer combination, it was found that a correction of the Kearney vehicle empty weight to show orderly increases in empty weight with increases in width would cause the 30-foot doubletrailer combination to show economy for increases of width from 96 inches to 102 inches.

8. SUMMARY

The engineering economy analyses based on the studies of A. T. Kearney and Company indicate that economy is to be gained from the use of higher axle-weight limits than those now existing. The analyses, therefore, verify the findings of Method 1.

The analyses also indicate that general overall economy can be gained by increasin vehicle width from 96 inches to 102 inches.

The A. T. Kearney and Company studies indicate that there would be economic and service advantages for the trucking industry in the use of trailers with double-cargo as compared with single-cargo bodies. State legal overall length limits of 65 feet would be necessary before adequate double-trailer combinations could be operated.

CHAPTER 14

TRANSPORTATION FACTORS IN HAULING 2,000 TONS OF PAYLOAD ONE MILE AND THE MARGINAL LIMITS OF VEHICLE WEIGHTS

Understanding of the significance of the results in chapters 10, 11, and 12 on the economy of axle weight and vehicle length may be enhanced by a study of the equivalent 18-kip axle applications and motor vehicle operating cost which result from hauling 2,000 tons of payload one mile by each individual class of vehicle and by hypothetical fleets. A logical extension of both the analysis of the economy of axle weight and vehicle length and of the 2,000 ton study is to determine the ultimate limits of axle weight and gross vehicle weight beyond which there would be no further economy of transportation.

1. EMPTY WEIGHT OF VEHICLES RELATED TO AXLE-WEIGHT AND GROSS WEIGHT LIMITS

The trucking industry is desirous of keeping the empty, or tare, weight of vehicle as low as is sound, consistent with safety, dependability, reasonable operating cost, and suitability to the cargo carried. As axle weight increases, the vehicle empty weight must also increase to provide the desirable

structural strength and braking ability. As the gross vehicle weight increases, the weight of the power vehicle must also increase to provide for the desired speed and acceleration.

A. Tare Weight of Tractors

Table 14-1 gives the tare weight of 2-axle and 3-axle tractors for a range of practical maximum gross combination weights from 25,000 to 280,000 pounds. This table was developed by reference to manufacturers' catalogs and truck weight data, and extended by judgment.

B. Weights of Empty Trailers

By reference to manufacturers' catalogs and other sources of information, table 14-2 was prepared to show the average weight of empty trailers by length and number of axles. In general, these weights correspond closely to the weight of the closed-van trailer and to axle-weight limits of 18/32 kips. From tables 14-1 and 14-2 it is possible to develop the empty weight of any tractor-trailer combination according to trailer length and axle arrangement.

C. Empty Weights of Various Vehicle Classes at a Range of Axle-Weight Limits

The tare (empty) weights in tables 14-1 and 14-2 plus other information were used as the basis for obtaining the weights for specific classes of vehicles at specific lengths as given in table 14-3 for the 18/32 kip axle-weight limit.

Table 14-1.	Net horsepower and tare weight of tractor related to
	practical maximum gross vehicle combination weight
	based upon truck weight studies, manufacturers' data,
	and judgment.

Practical maximum gross combi-	Net available	Tare weight of	tractor, pounds \mathcal{Y}
nation weight to be pulled, 1,000 pounds	horsepower	2-axle	3-axle
25	128	6,220	
30	138	6,800	10,300
40	158	7,960	11,250
50	178	9,120	12,200
60	198	10,280	13,150
70	218	11,440	14,100
80	238	12,600	15,050
90	258	13,760	16,000
100	278	14,920	16,950
120	318	17,240	18,850
140	358	19,560	20,750
160	398	21,880	22,650
180	338		24,550
200	378		26,450
220	418		28,350
240	458		30, 250
260	498		32,150
280	638		34,050

Y The tare weight reflects any added weight necessary for increased axle-weight limits because of the resulting increase in practical maximum gross vehicle weight.

Table 14-2. -- Weight in pounds of empty trailers for use in combinations of vehicles at the 18/32 single/tandem axle-weight limits

Trailer width of 96 inches.

Weight of dollies:	single-axle, 2,600 pounds; two-axle, 5,000 pounds.
--------------------	---

Trailer	Semit	railer	Ful	ll trailer	
length, feet	l axle	2 axles	. 2 axles	3 axles	4 axles
20	6,300		8,900		
22	6,570		9,170		
24	6,840		9,440		
25	6,975	9,120	9,575	11,720	14,120
26	7,110	9,310	9,710	11,910	14,310
27	7,245	9,500	9,845	12,100	14,500
28	7,380	9,690	9,980	12,290	14,690
30	7,650	10,070	10,250	12,670	15,070
32	7,920	10,450	10,520	13,050	15,450
35	8,325	11,020	10,925	13,620	16,020
40	9,000	11,970	11,600	14,570	16,970
42	9,270	12,350	11,870	14,950	17,350
45	9,675	12,920	12,275	15,520	17,920

		70	37									2 ⁴ ,350	27,350	30,150	
	30-foot tractive truck & full trailer	65	32									23,675	26,675	29,475	
	tractive ul trail	60	27									23,000	26,000	28,800	
venicies	30-foot	55	22									22,325	25,325	28,125	
IO SUCIJ	tor- Ller & railer	02	29.5						30,330	38,360	45,260				
COMPLOR	Tractor- semitrailer & full trailer	65	27						29,790	37,600	44,500				
	Tractor- semitrailer	55	45	·		18,075	23,020	27,320						6	
rengton L	Tractor- semitrail	50	40			17,400 18,075	22,070 23,020	26,370 27,320							
IOF ULLEFENT LENGTH LIMITS AND COMPLEXIONS OF VEHICLES	unit ik	40	8	10,100 10,775	13,800 14,750										-
TO JOI	Single-unit truck	35	1	10,100	13,800										
		Total length limit, feet	Trailer length, feet						>						
	Class of	Vehicle		26D	3-A	2-S1	2-S2	3-S2	2-S1-2	2-S2-3	3-S2-4	2-2	3-2	3-3	

Table 14-3.-- Empty weights of different classes of vehicles and combinations for different length limits and combinations of vehicles

Table 14-4 gives the empty weights of the single-unit trucks 2D and 3A and of the tractor-semitrailer series for the range of axle-weight limits from 18/32 to 60/95 kips.

The increase in tare weight with increased axle-weight limits was extended from the 18/32 limits by the use of the 1963 truck weight data. A plot was made of truck empty weights versus practical maximum gross vehicle weights. The practical maximum gross vehicle weight that would exist at each axleweight level was obtained by first determining from the graph the increment of tare weight for each increment of practical maximum gross vehicle weight based on the next higher axleweight limit.

D. Practical Maximum Gross Vehicle Weights

To calculate the number of vehicles required to haul 2,000 tons of payload and the operating cost of these vehicles, it is necessary to determine the practical maximum gross weights. For this computation, the practical maximum gross vehicle weight is defined as the sum of the maximum legal weights of the loadcarrying axles plus the weight on the front, or steering axle. Table 14-5 gives the practical maximum gross vehicle weights for the same series of classes of vehicles and axle-weight limits as were used in table 14-4.

Table 14-4.-- Empty weights of various vehicle classifications for axle-weight limits up to 60/95 kips

Vehicle					31	ngle/tand	Single/tandem axle-weight limits	ight limi	ts - kips					
Class	Item	18/32	20/35	22/38	24/41	26/44	28/47	32/53	36/59	40/65	TL/mm	11/84	52/83	60/95
R ,	Incremental empty weight Total empty weight	9,220	2,200	1,800 13,220	1,600 14,820	1,500 16,320	1,400 17,720	2,220 19,920	1,900 21,820	1,700 23,520	1,600 25,120	1,500 26,620	1,475 28,095	2,725 30,820
×	Incremental empty veight Total empty veight	15,640	1,430 17,070	1,290 18,360	1,200 19,560	1,150 20,710	1,050 21,760	2,000 23,760	1,900 25,560	1,800 27,360	1,700 29,060	30,560	1,400 31,960	2,800 34,760
2-SI	Incremental tractor weight Incremental trailer weight Total empty weight		500 1,150 19,050	20,500 20,500	21 800 800 800	500 700 23,000	500 600 24,100	1,000 1,100 26,200	1,000 1,000 28,200	1,000 900 30,100	1,000 800 31,900	1,000 ⁷ 700 33,600	1,000 600 35,200	2,000 1,050 38,250
2-32	Incremental tractor weight Incremental trailer weight Total empty weight	22,070	625 875 23,570	625 775 24,970	625 675 26,270	625 625 27,520	625 565 28,710	1,250 1,020 30,980	1,250 910 33,140	1,250 810 35,200	1,250 710 37,160	1,250 610 39,020	1,250 510 40,780	2,500 800 44,080
3-S2	Incremental tractor weight Incremental trailer weight Total empty weight	- - 26,370	650 875 27,895	650 775 29,320	650 700 30,670	650 650 31,970	650 600 33,220	1,300 1,100 35,620	1,300 1,000 37,920	1,300 900 10,120	1,300 800 42,220	1,300 700 11,220	1,300 600 146,120	2,600 1,050 49,770
2-S1-2	Incremental tractor weight Incremental trailer weight Total empty weight:		975 2,300	975 1,900	975 1,600	975 1,400	975 1,200	1,950 2,200	1,950 2,000	1,950 1,800	1,950 1,600	1,950	1,950 1,200	3,900 2,100
		29,790 33,300	33,065 36,575	35,940 39,450	38,515 42,025	40,890 44,400	43,065 46,575	47,215 50,725	51 ,165 54,675	54,915 58,425	58,465 61,975	61,815 65,325	64,965 68,475	70,965 74,475
2-52-3	Incremental tractor weight Incremental trailer weight Total amnity weight.	• •	1,750	975 1,550	975 1,400	975 1,300	975 1,200	1,950 2,200	1,950 2,000	1,950 1,800	1,950 1,600	1,950 1,400	1,950	3,900 2,100
		37,600	40,325	42,850 47,790	45,225 50,165	47,500 52,440	49,675 54,615	53,825 58,765	57,775 62,715	61,525 66,465	65,075 70,015	68,425 73,365	71,575 76,515	77,575 82,515
3-92-4	Incremental tractor veight Incremental trailer veight	• •	1,175 1,750	1,175 1,550	1,175	1,175 1,300	1,175 1,200	2,350 2,200	2,350 2,000	2,350 1,800	2,350 1,600	2,350	2,350 1,200	4,700 2,100
	trailers trailers	49,440	47,425 52,365	50,150 55,090	52,725 57,665	55,200 60,140	57,575 62,515	62,125 67,065	66,475 71,415	70,625 75,565	74,575 79,515	78,325 83,265	81,875 86,815	88,675 93,615
								·						

Table 14-5 -- Practical maximum gross weights of several classes of vehicles for axle-weight limits up to 60/95 kips

Tutue Anda type B/3 A/14 B/3 A/14 B/3 <	-lebdelle						Stugle	Single/tandem axle-weight limits	xle-veigh		- kips				
Stearting Internation TA 5.2 9.0	class	Axle type	18/32	20/35	22/38	24/41	26/44	28/47	32/53	36/59	40/65	72/44	118/77	52/83	60/95
Streetisk Priver Priv	9	Steering Drive single Total	7.4 18.0 25.4	8.2 20.0 28.2	9.0 31.0	9.8 24.0 33.8					16.2 56.2	17.8 44.0 61.8		21.0 52.0 73.0	24 2 60.0 84.2
Biserting Brive studie T/6 8.0 8.3 8.5 8.6 8.7 8.9 9.1 9.3	Ř	Steering Drive tandem Total	9.6 32.0	10.2 35.0 45.2	10.8 38.0 48.8	11.4 41.0 52 4	0.0.0 0.0.0	12.6 47.0 59.6	13.8 53.0 66.8	15.0 59.0 74.0	16.2 65.0 81.2	17.4 71.0 88.4	18.8 77.0 95.6	19.8 83.0 102.8	22.2 95.0 117.2
Steering brive stadie 8.4 brive sent-tenden 8.4 brive sent-tenden 9.1 brive sent-tenden 9.4 brive sent-tenden	2-31	Steering Drive single Semi-single Total	7.6 18.0 18.0	8.0 8.0 9.0 9.0 9.0 9.0	8.3 22.0 52.3 52.3	8.5 24.0 24.0 56.5	8.92 9.90 9.90 9.90 9.90 9.90 9.90 9.90 9	8.7 28.0 28.0	8.9 32.0 32.0 72.9	9.1 36.0 31.1	9.3 10.0 10.0 10.0 10.0	9.5 44.0 44.0 97.5	9.7 48.0 48.0 148.0 105.7	9.9 52.0 52.0 113.9	10.3 60.0 130.3
Steartug Intre tandam 9.7 10.0 10.3 10.6 10.9 11.2 11.8 12.4 13.0 13.6 14.2 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0 13.0<	2ªS2	Steering Drive single Semi-tandem Total	8.8. 32.0 58.0 58.0 58.0 58.0	8.7 20.0 35.0 63.7	9.0 38.0 69.0	9.3 24.0 141.0 74.3	9.6 26.0 79.6		10.5 32.0 53.0 95.5	11.1 36.0 59.0 106.1	11.7 40.0 65.0 116.7	12.3 44.0 71.0 127.3	12.9 48.0 137.9	13.5 52.0 83.0 148.5	14.7 60.0 95.0 169.7
Steering Drive single 8.7 8.9 9.1 9.3 9.5 9.7 10.1 10.5 10.3 11.3 11.7 12.1 Drive single 18.0 20.0 22.0 24.0 26.0 28.0 32.0 36.0 44.0 52.0 52.0 52.0 54.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 44.0 55.0 55.0 46.0 46.0 55.0 55.0 46.0 55.0 55.0 46.0 55.0 55.0 46.0 55.0 55.0 46.0 55.0 57.0 46.0 55.0 57.0 46.0 55.0 57.0 46.0 55.0 47.0 55.0 46.0 55.0 46.0 46.0 46.0 57.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 46.0 <	3-S2	Steering Drive tandem Semi-tandem Total	9.7 32.0 32.0 73.7	10.0 35.0 80.0	10.3 38.0 86.3 8		0.0.1 11.0 98.9 98.9		11.8 53.0 53.0 117.8	12.4 59.0 59.0 130.4	13.0 65.0 143.0	13 6 71.0 71.0 155.6	14.2 77.0 77.0 168.2	14.8 83.0 83.0 130.8	16.0 95.0 95.0 206.0
Steering Drive single 9.3 9.7 10.1 10.5 10.9 11.3 12.1 12.9 13.7 14.5 15.3 16.1 Drive single 18.0 25.0 28.0 28.0 28.0 44.0 4	2-31-2	Steering Drive single Semi-single Trailer single Trailer single Total	8.7 18.0 18.0 18.0 18.0 18.0 80.7		9.1 22.0 22.0 22.0 97.1	9.3 24.0 24.0 24.0 24.0 105.3	9.5 26.0 26.0 26.0 113.5	28.0 28.0 28.0 28.0 28.0 28.0	10.1 32.0 32.0 32.0 138.1	10.5 36.0 154.5	10.9 40.0 170.9	11.3 44.0 44.0 187.3 187.3	11.7 48.0 48.0 48.0 48.0 48.0 203.7	12.1 52.0 52.0 52.0 52.0 220.1	12.9 60.0 60.0 60.0 62.0 252.9
Stearing 10.0 10.3 10.6 10.9 11.2 11.5 12.1 12.7 13.3 13.9 14.5 15.1 Drive tandem 32.0 35.0 35.0 41.0 44.0 47.0 53.0 55.0 71.0 77.0 53.0	2-52-3	Steering Drive single Semi-tandem Trailer ingle Trailer tandem Total	9.32 18.0 18.0 18.0 19.0 19.0 19.0 19.0 19.0	9.7 20.0 35.0 35.0 35.0	130.1 130.1 130.1	10.5 24.0 41.0 24.0 24.0 24.0 140.5	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	11.3 88.0 161.3 161.3	12.1 32.0 32.0 32.0 182.1 182.1	36.0 36.0 202:9 202:9	13.7 460.0 23.7 23.7	14.5 44.0 71.0 244.0 244.5	15.3 48.0 48.0 48.0 77.0 265.3	16.1 52.0 83.0 83.0 286.1	17.7 60.0 95.0 95.0 95.0
	3-s2-4	Steering Drive tandem Semi-tandem Trailer tandem Trailer tandem	0.00000 88.0000 88.0000	10.3 35.0 35.0 35.0 35.0 150.3	0.0.0 88.8 8.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9.0 9	10.9 41.0 41.0 41.0 41.0 174.9	13445.00 1847.00	11.5 47.0 47.0 47.0	224.000 233.000 254.000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.0000 255.00000 255.0000000000		23.3 65.0 65.0 65.0 65.0 273.3	13.9 71.0 71.0 71.0 297.9	14.5 711.0 711.0 711.0	15.1 83.0 83.0 83.0 83.0 347.1	16.3 95.0 95.0 396.3

2. EQUIVALENT 18-KIP AXLE APPLICATIONS AND VEHICLE OPERATING COSTS RESULTING FROM HAULING 2,000 TONS OF PAYLOAD IN DIFFERENT CLASSES OF VEHICLES AND FLEETS

Added understanding of the interrelationships of axleweight limits, E 18-kip axle applications, and cost of motor vehicle operation can be gained by studying each class of vehicle and vehicle fleet under hypothetical conditions. In the following analyses, the role of each class of vehicle in hauling 2,000 tons of payload freight is observed first in single vehicle classes, then in three fleets composed of different classes of vehicles.

A. Concept and Basic Provisions

A general conception of the relationship of the factors of (1) legal axle-weight limits, (2) E 18-kip axle-weight applications (applications of equivalent 18,000-pound single axles), (3) number of trucks eliminated under higher axle-weight and gross vehicle-weight limits, and (4) motor vehicle operating costs can be gained by considering these four factors in relation to haulage of a specific number of tons of payload, such as 2,000 tons (4,000,000 pounds) by the following classes and combinations of vehicles: (1) each of eight different classes of vehicles (scheme 1); (2) single-unit trucks, 40-foot semitrailers (scheme 2); (3) single-unit trucks, 40-foot semitrailers, and double 27-foot trailers with an overall vehicle combination length limit of 65 feet (scheme 3); and (4) singleunit trucks, 40-foot semitrailers, and double 40-foot trailers with an overall combination length limit of 100 feet (scheme 4).

The eight vehicle classes that were analyzed either separately or in combination are listed below:

	2-axle, 6-tire single-unit truck (2D)
2.	3-axle, single-unit truck (3A)
	3-axle tractor-semitrailer combination (2-S1)
4.	4-axle tractor-semitrailer combination (2-S2)
5.	5-axle tractor-semitrailer combination (3-S2)
6.	5-axle tractor-semitrailer-full-trailer combination (2-S1-2)
7.	7-axle tractor-semitrailer-full-trailer combination (2-S2-3)
8.	9-axle tractor-semitrailer-full-trailer

combination (3-S2-4)

This analysis assumes that the 2,000 tons of payload are moved one highway mile with the appropriate number of empty trips and trips with full and less than full payloads. For purposes of further approach to reality, it may be assumed that these 2,000 tons of freight are hauled in one day. This tonnage approximates that which is now hauled daily over many routes on the rural primary systems.

It was assumed that, for the transportation of the 2,000 tons of highway freight in each part of the study, each vehicle class is loaded identically in relation to payload capacity. The loading distribution used, from the standpoint of weights, was as follows:

33% of the vehicles move empty,
 17% of the vehicles move one-fourth loaded,

3. 30% of the vehicles move three-fourths loaded, and 4. 20% of the vehicles move fully loaded.

Varying empty weights (see table 14-6) -- depending upon the scheme of hauling the freight being considered -- were subtracted from the practical maximum gross weight (table 14-5) to get the maximum payload weight capacity for each vehicle class at each of the five axle-weight levels.

Using these maximum payload weights per vehicle, the pounds of payload at empty weight, one-fourth loaded, threefourths loaded, and fully loaded were determined. These payloads at various degrees of loading were used for two purposes: (1) to calculate an average payload for each class of vehicle at each axle-weight limit and (2) by adding them back to the empty weights, to get the gross weights at the four levels of loading at increased axle-weight limits.

By dividing the number of tons that a particular class of vehicle is to haul by the average payload for that vehicle in table 14-7, the number of vehicles in each class required to transport the 2,000 tons of highway freight was determined. These numbers of vehicles then were distributed according to the assumed degree of loading in order to calculate the total number of E 18-kip axles by vehicle class.

	3-S2-4		44, 500 47,425 50,150 52,725 55,200			length	44,500 47,425 50,150 52,725 55,200	a length	49,440 52,365 57,090 60,140
	2-S2-3		37,600 40,325 45,225 45,225 47,500			65 feet maximum 1	37,600 40,325 42,850 45,225 47,500	100 feet maximum length	42,540 45,265 47,790 50,1165 52,440
eight limits	2-S1-2	length	29,790 33,940 35,940 38,515 40,890	num length		trailers at 6	89,790 33,065 35,940 38,515	trailers at	33,300 36,575 39,450 42,025 44,400
at warlous axle-weight limits	3-S2	feet maximum l	26,370 27,895 29,320 30,670 31,970	55 feet maximum	26,370 27,895 29,320 30,670 31,970	double 27-foot	26,370 27,895 29,320 30,670 31,970	double 40-foot	26,370 27,895 29,320 30,670 31,970
freight	2-S2	classes at 65 f	22,070 23,570 24,970 26,270 27,520	semitrailers at	22,070 23,570 24,970 26,270 27,520	and	22,070 23,570 24,970 26,270 27,520	, and	22,070 23,570 24,970 26,270 21,520
hauling 2,000 tons of	2-S1	vehicle	16,000 17,650 20,400 21,600	40-foot	17,400 19,050 20,500 21,800 23,000	40-foot semitrailers,	17,400 19,050 20,500 21,800 23,000	HO-foot semitrallers	17,400 19,050 20,500 21,800 23,000
hauling	ЗА	- Using each of eight different	13,800 15,230 16,520 17,720 18,870	nit trucks and	15,640 17,070 18,360 19,560 20,710	single-unit trucks, 4	15,640 17,070 18,360 19,560 20,710	single-unit trucks, ⁴	15,640 17,070 18,360 19,560 20,710
	ଶ	ting each of	10,100 12,300 14,100 15,700 17,200	- Using single-unit trucks	9,220 11,420 13,220 14,820 16,320	Using single-u	9,220 11,420 13,220 14,820 16,320	- Using single-u	9,220 11,420 13,220 14,820 16,320
	Axle weight limits, kips	SCHEVE 1 - UE	18/32 22/35 22/41 24/41 26/44	SCHEME 2 - Us	18/32 20/35 22/38 24/41 26/44	SCHEME 3 - Us	18/32 20/35 22/38 24/41 26/44	SCHEME 4 - Us	18/32 20/35 22/38 24/41 26/41

Table 14-6. -- Empty weights of each of eight classes of vehicles and combinations housing 2 MM tone of freshold at reacting avlesses from the second

Table 14-7 Average payloads in pounds carried in eight classes of vehicles	for four different schemes of hauling 2,000 tons of freight	at various axle-weight limits
Avera	for f	at va
Table 14-7		

+			d 01 ± 010 0	
3-S2-4	43,712 48,094 52,570 57,116 61,710		mum length 43,712 48,094 52,570 57,116 57,116 61,710	1mum length 41,402 45,784 50,261 54,808 59,400
2-S2-3	33,519 37,107 40,789 441,541		65 feet maximum 33,520 37,107 40,789 44,789 44,541 48,339	100 feet maximum 31,210 34,799 38,480 42,231 46,030
2-S1-2	length* 23,801 26,103 28,592 31,222 33,945	mum length	t trailers at 23,801 26,103 28,592 31,222 33,945	t trailers at 22,159 24,462 26,951 29,581 32,305
3 - S2	feet maximum 22,126 24,359 26,638 28,952 31,289	55 feet maximum See Scheme	double 27-foot See	double 40-foot See Scheme
2-S2	classes at 65 16,984 18,760 20,584 22,454 22,454 22,347	semitrailers at See Schene See 1	semitrailers, and See A	semitrailers, and See Scheme
2-S1	vehicle 12,903 14,189 15,521 16,876 18,233	and 40-foot se 12,249 13,534 14,867 16,223 17,578 17,578	40-foot semit	40-foot senit See Scheme 2
ЗА	eight different 12,997 14,011 15,091 16,213 17,358	trucks 12,136 13,151 14,231 15,353 15,498 16,498	See Scheme trucks	See Scheme trucks,
ß	Using each of 7,152 7,434 7,900 8,461 9,069	Using single-unit 7,565 7,845 8,313 8,874 10,481	Using single-unit Gee SS SS	Using single-unit See Scheme S
Axle weight limits	S2HEAE 1 - Us 18/32 20/35 22/38 24/41 24/41 26/44	SCHEWE 2 - Ue 18/32 20/35 22/38 24/41 26/44	SCHEME 3 - Ue 18/32 20/35 22/38 24/41 26/44	SCHEME 4 - Us 18/32 20/35 22/38 22/44

B. Scheme 1: Hauling 2,000 Tons of Freight by one Vehicle Class

One way to study the desirable dimensions and weights of motor vehicles is to assume that the 2,000 tons of highway freight move between points A and B in each of eight classes of highway freight vehicles and at five different axle-weight limits. Instead of moving the freight in a fleet of mixed classes of vehicles, the freight movement in one class of vehicle is assumed, to provide a comparison of the relative efficiencies of each of the eight vehicle classes.

It will be noted in table 14-8 that, under 18/32-kip axle-weight limitations (18,000 pounds for single and 32,000 pounds for tandem axles), the fewest vehicles (91.51) required to haul 2,000 tons of highway freight would result from using the 3-S2-4 vehicle. In addition, it should also be noted that, of the six trailer combinations, the 3-S2-4 vehicle would transmit to the pavement the fewest E 18-kip axles (189.67) in carrying 2,000 tons of payload.

It will be noted further that the 3-52 vehicle, with two tandem axles and a steering axle, has 189.42 E 18-kip axles at 18/32-kip limitations, which increases to 482.10 at 26/44-kip limitations, an increase of 154 percent. The 2-S1-2 vehicle, with four single axles in addition to the steering axle, has 232.42 E 18-kip axles at the 18/32-kip limitations, increasing to 758.93 at the 26/44-kip limitations, an increase of

Table 14-8. -- Scheme 1: Average payloads, number of vehicles, number of E 18-kip axles, and dollars of transport cost necessary to move 2,000 tons of freight in each of eight classes of vehicles and at various axle-veight limits

		N0 +	0.000	~ <i>~</i> ~		14-15
3-S2-4	43,712 91.51 189.67 52.07	48,094 83.17 249.06 50.34	52,570 76.09 319.55 48.98	57,116 79.03 399.51 47.93	61,710 64.82 491.83 47.15	
2-S2-3	33,519 119.34 208.93 58.87	37,107 107.80 280.00 55.99	40,789 98.07 363.77 53.64	444,541 89.80 464.33 51.75	48,339 82.75 581.90 50.24	
2 - S1-2	23,801 168.06 232.42 72.28	26,103 153.24 330.33 68.49	28,592 139.90 449.29 65.03	31,222 128.11 590.71 61.97	33,945 117.84 758.93 59.35	
3 - S2	22,126 180.78 189.42 75.28	24,359 164.21 247.88 70.39	26,638 150.16 311.53 66.29	28,952 138.16 391.97 62.85	31,289 <u>327.84</u> 482.10 59.95	
2 - S2	16,984 235.52 208.15 91.66	18,760 213.22 279.11 84.91	20,584 194.33 362.08 79.23	22,454 178.14 460.44 74.39	24,347 164.29 574.79 70.29	
2-SI	12,903 310.01 210.10 113.51	14,189 281.91 294.81 105.06	15,521 257.72 410.81 97.75	16,876 237.02 537.86 91.50	18,233 219.38 694.98 86.19	
3A	12,997 307.76 159.35 111.81	14,011 285.49 213.80 105.20	15,091 265.06 280.76 99.10	16,213 246.72 354.78 93.62	17,358 230.44 445.08 88.77	
ສ	7,152 559.28 193.41 \$191.44	7,434 538.07 285.22 185.98	7,900 506.33 406.95 176.76	8,461 472.76 553.55 166.74	9,069 141.06 726.50	
Item	Average payload, lb. Number of vehicles required Number of E 18-kip axles Dollars of transport cost	Average payload, lb. Number of vehicles required Number of E 18-kip axles Dollars of transport cost	Average payload, lb. Number of vehicles required Number of E 18-kip axles Dollars of transport cost	Average payload, lb. Number of vehicles required Number of E 18-kip'axles Dollars of transport cost	Average payload, lb. Number of vehicles required Number of E 18-kip axles	
Axle weight limit	18/32	20/35	22/38	5th/42	26/44	

227 percent. The 3-S2 vehicle would transmit to the pavement 3.77 E 18-kip axles per vehicle, while the 2-S1-2 combination would transmit to the pavement 6.44 E 18-kip axles per combination at the highest weight limitation studied (26/44-kip axles) and 1.05 and 1.38 E 18-kip axles per vehicle, respectively, at the lowest weight limitations studied (18/32 kips).

Table 14-8 indicates that at all five axle-weight levels the lowest cost of moving 2,000 tons of highway freight one mile is obtained through the use of the 3-S2-4. The most costly trailer combination is the 2-S1. The most costly of the eight classes of vehicle is the 2D single-unit truck.

C. Schemes 2, 3, and 4: Hauling 2,000 Tons of Freight in Fleets made up of Several Classes of Vehicles

Three hypothetical fleets (schemes 2, 3, and 4) composed of several classes of vehicles were envisaged for the purpose of transporting 2,000 tons of freight between two points one mile apart. The efficiency of these fleets is based upon both cube (cargo-volume capacity) and weight requirements and is forecast with respect to loaded and empty vehicle loadings observed at truck weighing stations in 1963.

For this study, each class of vehicle was assumed to travel empty 33 percent of the time; one-fourth loaded, from the standpoint of axle weights, 17 percent of the time; three-fourths loaded 30 percent of the time; and fully loaded only 20 percent of the time.

(1) Distribution of the 2,000 tons among the various vehicle classes

The shipping densities of cargo are the key factors in selecting the economical vehicle when both axle-weight limits and number and length of cargo bodies are considered. The 2-Sl combination under an 18/32-kip axle-weight limit will utilize its 2,262 cubic feet of usable capacity when loaded with commodities of density less than $11\frac{1}{2}$ pounds per cubic foot (pcf). The 2,262 cubic feet is based on an exterior trailer length of 40 feet, height from pavement to exterior of roof of 13.5 feet, an exterior width of 96 inches, and a maximum inside cargo space height of 9.0 feet with an assumed inside loading height of 7.5 feet. Commodities weighing $11\frac{1}{2}$ pcf or more must travel in 2-Sl combinations less than visibly fully loaded because of axle-weight limits.

Similarly, the 2-S2 combination cannot legally (under 18/32-kip axle limitations) travel with a visibly full load of commodities weighing more than about 16 pcf. The 3-S2 combination can legally travel with visibly full loads of commodities weighing up to 21 pcf but above that weight this vehicle must travel less than fully volume-loaded. See tables 14-10 and 14-11 for the maximum product densities for visibly fully loaded vehicles.

By increasing the axle-weight allowances from 18/32 to 26/44 kips, the cutoff points above which full cubage loads could not legally be carried would be raised from $11\frac{1}{2}$ to $16\frac{1}{2}$

Axle weight limits Single/tandem. kips		2-S1	2-52	3-82
00/81	Desettes merimum avece vehicle vehicle 1h	und cil	E8 100	OOF CF
20/07	Empty veight, lb.	26,200	22,070	26,370
	Maximum payload veight, lb.	11,400	36,330	47,330
	Shipping density, lb./cu.ft.	11.58	16.06	20.92
20/35	Stowage capacity, cu.ft.	48,000	63,700	80,000
	Empty weight, lb.	19,050	23,570	27,895
	Maximum payload weight, lb.	28,950	40,130	52,105
	Shipping density, lb./cu.ft.	12.80	17.74	23.03
22/38	Stowage capacity, cu.ft.	52,300	69,000	86,300
	Empty weight, lb.	20,500	24,970	29,320
	Maximum payload weight, lb.	31,800	44,030	56,980
	Shipping density, lb./cu.ft.	14.06	19.46	25.19
Т.Ħ/ĦS	Stowage capacity, cu.ft.	56,500	74,300	92,600
	Empty weight, lb.	21,800	26,270	30,670
	Maximum payload weight, lb.	34,700	48,030	61,930
	Shipping density, lb./cu.ft	15.34	21.23	27.38
26/44	Stowage caracity, cu.ft.	60,600	79,600	98,900
	Empty weight, lb.	23,000	27,520	31,970
	Maximum payload weight, lb.	37,600	52,080	66,930
	Shipping density, lb./cu.ft.	16.62	23.02	29.59
	Stowage capacity, cu.ft.	2,262	2,262	2,262

Table 14-11. -- Shipping density in pounds per cubic foot at which cargo can be stowed visibly fully loaded at various axie-veight limits in highway vehicles with double cargo bodies with dimensions of 27 feet and 40 feet length and 96 inches width

Axle veight		27 feet	Scheme 3 27 feet long and 96 inches wide	ches wide	40 feet	Scheme 4 40 feet long and 96 inches wide	iches vide
tandem, kips		2-S1-2	2-S2-3	3-S2-4	2-S1-2	2-S2-3	3-S2-4
18/32	Practical maximum gross vehicle veight, lb. Empty veight, lb. Maximum payload veight, lb. Shipping density, lb./cu. ft.	80,700 29,790 50,910 16.80	109,300 37,600 71,700 23.66	138,000 ht,500 93,500 30.86	80,700 33,300 47,400 10.48	109,300 42,540 66,760 14.76	
20/35	Stowage capacity, cu. ft.	88,900	119,700	150,300	88,900	119,700	150,300
	Empty weight, lb.	33,065	40,325	47,425	36,575	45,265	52,365
	Maximum payload weight, lb.	55,835	79,375	102,875	52,325	74,435	91,935
	Shipping density, lb./cu. ft.	18.43	26.20	33.95	11.57	16.45	21.65
22/38	Stowage capacity, cu. ft.	97,100	130,100	162,600	97,100	130,100	162,600
	Empty weight, lb.	35,940	42,850	50,150	39,450	47,790	55,090
	Maximum payload weight, lb.	61,160	87,250	112,450	57,650	82,310	107,510
	Shipping density, lb:/cu. ft.	20.18	28.80	37.11	12.74	18.19	23.76
도 박/밖궁	Stowage capacity, cu. ft.	105,300	140,500	174,900	105,300	140,500	174,900
	Empty weight, lb.	38,515	45,225	52,725	42,025	50,165	57,665
	Maximum payload weight, lb.	66,785	95,275	122,175	63,275	90,335	117,235
	Shipping density, lb./cu. ft.	22.04	31.44	40.32	13.99	19.97	25.91
26/भ	Stowage capacity, cu. ft.	113,500	1.50,900	187,200	113,500	150,900	187,200
	Empty weight, lb.	40,890	47,500	55,200	04, ⁴⁴⁴	52,440	60,140
	Maximum payload weight, lb.	72,610	103,400	132,400	69,100	98,460	127,060
	Shipping density, lb./cu. ft.	23.96	34.13	43.56	15.27	21.76	28.09
	Stowage capacity, cu. ft.	3,030	3,030	3,030	4,524	4,524	4,524

14-19

14-20

Table 14-12.	 Distribution of 2,000 tons of payload by 5-pound
	shipping density groups and an estimate of the
	total cubage required to haul the 2,000 tons of payload

Shipping density, pcf	Percentage of total intercity freight in 1960 <u>1</u> /	Cumulative percentage of inter- city freight in 1960 <u>1</u> /	Distribution of 2,000 tons of highway freight (tons)	Cubage required for 2,000 tons of highway freight (cf)
5- 9.9	1.30	1.30	26.0	6,980
10- 14.9	3.15	4.45	53.0	10,120
15- 19.9	0.58	5.03	11.6	1,330
20- 24.9	1.71	6.74	34.2	3,047
25- 29.9	4.34	11.08	86.8	6,324
30- 34.9	3.79	14.87	75.8	4,672
35- 39.9	5.29	20.16	105.8	5,650
40- 44.9	9.25	29.41	185.0	8,716
45- 49.9	10.44	39.85	208.8	8,801
50- 54.9	5.34	45.19	106.8	4,072
55- 59.9	8.65	53.84	173.0	6,023
60- 64.9	0.11	53.95	2.2	70
65- 69.9	1.12	55.07	22.4	664
70- 74.9	0.48	55.55	9.6	265
80- 84.9	0.17	55.72	3.4	82
85-89.9	0.03	55.75	0.6	14
90-94.9	2.98	58.73	59.6	1,289
100-104.9	33.52	92.25	670.4	13,087
105-109.9	0.27	92.52	5.4	101
110-114.9	0.26	92.78	5.2	<i>9</i> 2
115-119.9	0.50	93.28	10.0	170
130-134.9	1.45	94.73	29.0	438
145-149.9	1.96	96.69	39 .2	532
155-159.9	0.02	96.71	0.4	5
160-164.9	0.08	96.79	1.6	20
165-169.9	0.04	96.83	0.8	10
180-184.9	0.10	96.93	2.0	22
185-189.9	2.20	99.13	44.0	469
195-199.9	0.01	99.14	0.2	2
215-219.9	0.04	99.18	0.8	7
220-224.9	0.24	99.42	4.8	43
225-229.9	0.55	99.97	11.0	97
310-314.9	0.03	100.00	0.6	4
TOTAL	100.00		2,000.0	83,218

1/ Source: Based on Table 2 of report, "Intercity Freight Haulage, by Commodity, Shipping Density and Type of Transport, 1960," by Malcolm F. Kent, Highway Research Record 82, Highway Research Board. pcf for the 2-Sl combination, from 16 to 23 pcf for the 2-S2, and from 21 to $29\frac{1}{2}$ pcf for the 3-S2.

Table 14-12 indicates that on the basis of weight only, 1.30 percent of commodities moving by highway transport have shipping densities of less than 10 pcf; 4.45 percent, less than 15 pcf; 5.03 percent, less than 20 pcf; 6.74 percent, less than 25 pcf; and 11.08 percent, less than 30 pcf. Therefore, using the 3-S2 combination with a 40-foot body, slightly more than 5.03 percent of all commodities hauled, or only those of a density of less than 21 pcf, could be hauled as a visibly full load without exceeding an 18/32-kip axle-weight limit. Under an axle-weight limit of 26/44 kips, close to 11.08 percent of all commodities, or those of less than 30 pcf, could be hauled as visibly full loads without exceeding the axle-weight limits.

Scheme 2 is based on the use of vehicles with single cargo bodies. The proportion of the 2,000 tons of freight to be carried by each of the five vehicle classes affected by increases in axle-weight limits is based upon the results of the 1962 truck weight study. Because gross vehicle weight limitations have been raised in 19 States since 1962, the 3-S2 vehicle is now supplanting the 2-S2 vehicle. For this reason, it is assumed in this analysis that the vehicle-miles reported for the 2-S2 vehicle are indicative of the future 3-S2 travel and vice versa.

The vehicle classes and the proportion of the 2,000 tons assigned to each vehicle are as follows:

Vehicle class	Highway freight (Tons)	Percent
2 D 3A 2-S1 2-S2 3-S2	220 80 140 680 <u>880</u> 2,000	11 4 7 34 44 100

In a fleet with mixed single- and double-cargo bodies, the tonnage of cargo to be hauled will be divided between single- and double-cargo vehicles and combinations on the basis of transport requirements and economy. The vehicles with singlecargo bodies will not be entirely supplanted by the double-cargo vehicles, should the double-cargo combination be authorized where it is not now permitted.

The distribution of the 2,000 tons of freight among the vehicle classes, when 27-foot double-cargo-body combinations are included in the fleet, is based partly on vehicle class distribution in States allowing both single- and doublecargo-body vehicles and partly on experience in Michigan where both 7- and 9-axle and more combinations are found. The assumed distribution of the 2,000 tons to a fleet with 27-foot double-cargo combinations is as follows:

SCHEME 2

14-23	ŀ
-------	---

S	CHEM	E	3
- 0			

Vehicle class	Highway freight (Tons)	Percent
2D 3A 2-S1 2-S2 3-S2 2-S1-2 2-S2-3 3-S2-4	220 70 130 280 300 200 400 2,000	11.0 3.5 6.5 14.0 15.0 10.0 20.0 20.0 100.0

In the above distribution, the single-unit trucks (2D and 3A) are assigned 14.5 percent of the total tonnage; the single-trailer combination vehicles (2-S1, 2-S2, and 3-S2), 35.5 percent; and the double-trailer combination vehicles (2-S1-2, 2-S2-3, and 3-S2-4), the remaining 50.0 percent. For the 2-S1 combination, there still is a need of commodities weighing up to 10 pcf, and for the 2-S2, commodities weighing $15\frac{1}{2}$ to $22\frac{1}{2}$ pcf.

The tons of cargo assigned to each vehicle type in this combined 40-foot single- and 40-foot double-cargo-body fleet are as follows:

	SCHEME 4	
Vehicle class	Highway freight (Tons)	Percent
2D 3A 2-S1 2-S2	220 70 100 220	11.0 3.5 5.0 11.0
3-S2 2-S1-2 2-S2-3 3-S2-4	260 230 420 <u>480</u> 2,000	13.0 11.5 21.0 24.0 100.0

14-24

(2) Comparison of number of vehicles and E 18-kip axle applications

The number of vehicles necessary to carry the assigned tons of payload was obtained by dividing the total pounds of freight by the average payload per vehicle considering all degrees of loading from empty of full. For example, in scheme 2 the 12,249-pound average payload of the 2-S1, under single 18and tandem 32-kip limitations, when divided into 140 tons, resulted in 22.86 2-S1 combination vehicles required to carry this assigned tonnage for the single-cargo-body fleet.

Table 14-13 shows that, for each vehicle class in schemes 2, 3 and 4, the number of vehicles needed decreases as the axle-weight limits increase. Also, it is evident that, although the number of vehicles required decreases, the E 18kip factors for the heavier axle weight results in increased E 18-kip applications.

(3) Comparison of vehicle operating costs

For scheme 2, for which single-cargo-body vehicles were used in the transport of 2,000 tons of freight at the 18/32-kip axle-weight limits, total operating costs were found to be about 14 percent higher than for scheme 3, in which double-cargo-body combinations 40-feet in length were used. As shown in table 14-13, at the 18/32-kip axle-weight limits, the cost per mile to move 2,000 tons of highway freight is \$97.36 for the Table 14-13. -- Number of vehicles, dollars of transport cost, and E 18-kip axles necessary to move 2,000 tons of freight at various axle-weight limits for schemes 2, 3, and 4.

Pavload 4		aptro des of he	201	3	20/35 KID BXLEB	Les	24/	zu/ 30 kip axies	68	142	24/41 kip axles	68	26/	26/44 kip axles	e
	Number of vehicles	Transport cost (dollars)	E 18-k1p axles	Rumber of vehicles	Number Transport of cost vehicles (dollars)	E 18-kip axies	Number of vehicles	Number Transport of cost vehicles (dollars)	E 18-kip axles	Number of vehicles	Number Transport of cost vehicles (dollars)	E 18-kip axies	Number of vehicles	Transport cost (dollars)	E 18-kip axles
	58.16	16.91	19.65	56.09	\$19.39 4.48	%.% 91.9	52.93 71.24	\$18.41\$ 00 1	43.38 12.23	82.04 64.01	64.71\$	59.33	41.98	\$14.96	70.76
	88	8.37	15.90	50.65	7.71 26.87	22.12	19.93 6.93	11.7	30.61	19.5	29.9 9.9 9.9	39.95	15.93	- % ? . % ?	51.21
	#5·61	33.12	83.34	72.25	30.97	109.08	6.607	29.17	11.764	62.09	27.65	172.50	56.25	26.38 26.38	212.70
	253.82	91.36	196.68	233.69	91.42	265.81	215.14	c5 .93	346.48	198.62	81.04	443.55	179.72	75.24	548.70
250	58.16	19.91	19.65	60.95	19.39	8.0	52.93	84.9T	43.38	85.64	64.71	59.33	41.98	14.96	70.76
	12	11.1	14.78	19.21	3.yz 7.16	20.53	17.49	5.63 6.63	20.43 28.43	16.03	3. 1 0 6.19	13.45	8.49 14.79	3.27	16.80
	32.97	12.83	29.13	29.85	69. LI	39.08	27.21	ю.н	69.05	24.94	10.41	64.47	23.00	18.6	80.47
	21.12	8;8 1	28.41	24.63	10.56	37.16	22.22	76.6 16.6	12.94	20.72	9.43	28.77	01.01 91.01	8.99	72.35
	23.86	с. ц	51 C3	2.2	с. 11. 20.	22.99	द द द द द	7.0T	72.62	10.21	0.20	5.5 5.5	11 28	5.93 10.05	115.91
	18.30	10.41	37.93	16.63	10.07	92.64	15.22	9.80	63.88	14.01	9.59	79.86	12.96	9.43	46.96
	209.99	85.40	201.04	49.594	81.04	274.07	178.81	76.85	361.37	165.17	73.12	464.80	148.73	68.28	578.68
Γ	58.16	19.91	19.65	56.09	19.39	30.30	52.93	16.48	43.38	49.58	64.71	59.33	41.98	14.96	70.76
	1.7 2,5	4.19 69	6.14	10.65		8.24	9.84 24 51	3.68	10.70	21. 6	3.46	13.45	8. ¹ 9	3.27	16.80
	25.91	10.08	68	23.45	1.6	6.00	ित ह.य	8.72	39.85	19 19	8,18	2 9 9 9	8.8	14.4	8 % 9 %
	23.50	61.6	24.62	21.35	9.15	8.8	19.52	8.62	10.48	17.96	8.17	5.5	16.62	61.1	62.65
	2.6	5. c	2%	24.14	12.01	97. 36 97. 36	21.83	26-) 40 II	8.8 8.8	15.55 10 Ao	27	73.68	14.24	7.17	93.96
	23.18	13.19	46.03	20.97	69.21	64.45	19.10	12.30	82.10	17.52	с. 11.95	101.62	16.16	н. 19	125.06
-	206.29	\$85.35	209.71	190.23	#6.08\$	290.95	175.12	\$76.77	378.51	161.55	\$73.03	1,84.07	145.19	\$68.23	601.03

SCHEME 3 - Using single unit trucks, 40-foot semitrailers, and double 27-foot trailers at 65 feet maximum length. * SCHERG 2 - Using single unit trucks and 40-foot semitraliars at 55 feet maximum length.

*

SCHEDER & - Using single unit trucks, 40-foot semitrailars, and double 40-foot trailers at 65 feet maximum length.

single-cargo-body fleet, \$85.40 for the fleet with 27-foot double trailers, \$85.35 for the fleet with 40-foot double trailers. Similar costs for these three fleets under the 26/44-kip restrictions are \$75.24, \$68.28, and \$60.23, respectively. This reduction in motor vehicle operating cost of approximately 23 percent for the three fleets at the 26/44-kip axle-weight limits results from carrying the same payload in fewer vehicles at the 26/44-kip axle-weight limit than are required at the 18/32-kip axle-weight limit.

3. MARGINAL AXLE-WEIGHT LIMITS BASED ON ECONOMY OF TRANSPORTING 2,000 TONS OF PAYLOAD

The analyses of the economy of axle-weight limits, as presented in Chapter 10, indicate that there is overall transportation economy in axle-weight limits above the 26/44-kip limit used in these analyses. It is desirable, therefore, to extend the analyses to still higher axle-weight limits. In order to gain some indication of the axle-weight limits above which no further economy may be expected, the 2,000 ton payload study was extended to 60/95-kip limits using a hypothetical fleet.

A. Concepts and Procedures

As a first approach to determining the marginal limits of vehicle axle weights above which no further transportation economy could be achieved, the 2,000-ton study described in the preceding section was extended to higher axle-weight limits. The results apply only to the primary rural system in the East North Central census division, which was chosen for analysis.

The analysis is based on hauling 2,000 tons of payload one mile on a newly constructed highway. The axle-weight limits used are as follows:

Single/tandem, pounds Single/tandem, pounds

18,000/32,000 20,000/35,000 22,000/38,000 24,000/41,000 26,000/44,000 28,000/47,000 32,000/53,000 36,000/59,000 40,000/65,000 44,000/71,000 48,000/77,000 52,000/83,000 60,000/95,000

The distribution of payload among the classes of vehicles in the scheme is the same as previously given in table 14-13. The loading distribution between empty and full payload, also is the same as stated on page 14-21. The vehicle empty weights and practical maximum gross weights were taken from tables 14-4 and 14-5. The average payloads per vehicle for each class of vehicle and the three schemes of fleet composition are given in table 14-14.

The E 18-kip axle applications, highway costs, and maintenance costs were calculated according to the procedure developed in Method 1. Table 14-17 gives the motor vehicle operating costs per vehicle-mile for the axle-weight limits of 28/47 kips and above.

above.
and
kips
28/47
÷.
limits
axle-weight
exl
for the au
for
s per vehicle
pe
payloads
Average
-14.
14.
Table

classification	28/47	32/53	36/59	tandem axle	weight limits h4/77 4	1ts - kips 48/77	52/83	60/02
				Scheme	CU B			
20 3A - S1	10,135 17,690 18,980	20,121	13,455 22,646 22,646	15,278 25,170 27,676	17,148 27,741 30,668	19,065 30,406 33,707	20,993 33,118 36,792	24,955 38,541 43,033
3-85 -85 -85	26,269	30,163	34,109	38,101	42,140 53,005	16,226	50,359	58, 727 73, 037
				Schene	ŝ			
ର୍ ଝ	10,135	11,725 20,121	13,455 22,646	15,278	17,148 27,741	19,065 30,406	20,993 33,118	24,955 38,541
2-S1	18,980	21,832	24,731	27,676	30,668	33, 707	36,792	43,033
3-82	33,651	38,419	43,234	148,096	53,005	57,961	62,963	73,037
2-S1-2 2-S2-3	36,762	42,489 59,969	48,309	54,223 76.284	60,230 84,816	66,331 93.442	72,526 102,160	85,055 114,128
3-82-4	66, 350	75,723	85,190	94,751	104,404	114,152	123,993	143,815
				Schene	te tr			
5 J	10,135	11,725	13,455	15,278	17,148	19,065	20,993	24,955
3A 2-81	17,690	20,121	22,646 24,731	25,170	27,741	30,406	33,118	38,541
2-82	26,629	30,163	34,109	38,101	42,140	16,226	50,359	58,727
3-82	33,651	38,419	43,234	48,096	53,005	57,961	62,963	73,037
2-81-2	35,121	40,848	46,668	52,582	58,589	64,690	70,885	83,414
2-52-3	49,875	57,659	65,537	73,975	82,507	91,132	99,851	618,111

Table 14-17.-Loaded gross weight and operating cost per mile for selected vehicle classes

60/95		67.36 93.76 104.16 135.76 135.76	202.32 263.60 317.04		43.715 51.295 54.726 66.697 79.748	99.516 138.850 180.287
52/83	a loaded	58.40 82.24 91.04 118.80 144.64	176 .08 230 .00 277 .68		41.511 47.788 50.439 59.923 70.479	85.346 116.200 149.122
single/tandem 1 48/77	percent of maximum practical gross vehicle weight kips = loaded as weight	53.92 76.48 84.48 110.32 134.56	162.96 213.20 258.00		40.479 46.150 48.446 56.877 66.200	78.863 105.861 134.892
kips, sing 44/71	vehicle w	44.94 70.72 77.92 101.84 44.421	149.84 196.40 238.32	U	39.495 44.590 46.553 53.939 62.157	72.779 96.179 121.564
at limit, 40/65	ical gross	41-96 64-96 93-36 93-36 93-36 93-36	136.72 179.60 218.64	vehicle-mile	38.556 43.106 44.760 51.168 58.351	67.097 87.154 109.137
Axle weight limit, 36/59 40/65	lmm pract:	40.48 59.20 64.80 84.88 104.32	123.60 162.80 198.96	cents per w	37.664 41.701 43.066 48.564 48.564	61.815 78.786 97.612
32/53	ant of max	36.00 53.44 58.24 94.24	110.48 146.00 179.28	rating cost, ce	36.819 40.372 41.474 46.128 51.448	56.934 71.075 86.989
28/\47	A. 80 percent of gross weight	31.52 47.68 51.68 67.92 84.16	97.36 129.20 159.60	B. Operatiz	36.021 39.120 39.981 43.859 48.351	52.454 64.021 77.267
Vehicle class		2D 2-83 3-82 3-82 3-82 3-82 3-82	2-51-2 2-52-3 3=82=4		20 20 3-25 2-25 2-25 3-25 2-25 3-25 2-25 2-25	2-S1-2 2-S2-3 3-S2-4

B. Results of the Analysis

Table 14-18 sets forth for each scheme the number of vehicles by class, the total motor vehicle transport cost, and the number of E 18-kip axle applications for each of eight levels of axle-weight limit. A general observation from the table is that, as the axle-weight limit moves upward from 28/47 kips to 60/95 kips, the number of vehicles is reduced to about half the initial number, and the E 18-kip axles are increased about 10 times.

The benefit-cost ratios and the basic highway and motor vehicle costs are given in table 14-19 for the full range of axle-weight limits from 18/32 kips to 60/95 kips. For all three schemes, the incremental benefit-cost ratios decrease with increasing axle-weight limits. The marginal axle-weight limits are about 56/89, 52/83, and 52/83, respectively, for the three schemes. The ratios are plotted in figure 14-1.

As mentioned at the beginning of this section, the analysis applies to hauling 2,000 tons of payload one mile in hypothetical fleets of vehicles under the highway costs pertaining to the primary rural system in the East North Central census division. Since the overall economy of increased axleweight limits depends upon the number of trucks (ADT) and the fleet composition by vehicle class, this type of analysis would lead to different results with smaller or greater total numbers of tons of payload to transport. The answers, however, are Table 14-18. -- Number of vehicles, transport cost, and E 18-kip axies for hauling 2,000 tons of payload one mile on system 3, primery rural, East North Central census division - rigid payement A

								Sheet 1 of 3	or 3
Vehicle classi-				Single/	'tandem axle 1	Single/tandem axle veight limits, kips	ktpe		
fication and tons carried	ychene z	28/47	32/53	36/59	40/65	TL/111	11/8#	52/83	60/95
_{ସି} ଝି	Rumber of vehicles Transport cost - \$ E 18-kip axies	43.41 15.64 100.06	37.53 13.82 151.50	22.27 24.21 24.512	28.80 11.10 297.64	25.66 10.13 398.46	23.08 9.34 521.97	20.96 8.70 667.66	17.63 7.71 1,047.15
⁸ 8	Humber of vehicles Transport cost - \$ E 18-kip arles	9.0 3.54	7.95 3.21 33.56	7.07 2.95 46.74	6.36 2.74 63.00	5.77 2.57 83.28	5.26 2.43 107.71	4.83 2.31 137.34	4.15 2.13 212.36
2-S1 140	Number of Vehicles Transport.cost - \$ E 18-kip arles	14.75 5.90 64.22	12.83 5.32 97.63	11.32 4.88 139.48	10.12 4.53 194.45	9.13 4.25 266.68	8.31 4.03 350.68	7.61 3.84 \$53.91	6.51 3.56 727.50
2-32 680	Eumber of Yehicles Transport cost = \$ E 18-kip axles	51.77 22.70 242.03	45.09 20.80 353.82	39.87 19.36 29.23	35.69 18.26 688.29	32.27 17.41 923.34	29.42 16.73 1,206.11	27.01 16.20 1,551.12	23.16 15.45 2,459.01
3-32 880	Number of vehicles Transport cost - \$ E 18-kip exies	52.03 25.29 258.15	45.81 23.57 362.20	40.71 22.30 510.00	36.59 21.35 689.27	33.20 20.64 913.72	30.36 20.10 1,190.27	27.95 19.70 1,508.81	24.10 19.22 2,365.88
Total 2,000	Humber of vehicles Trensport cost - \$ E 18-kip arles	171.27 73.07 687.86	149.21 66.72 998.71	131.67 61.81 1,408.51	117.56 57.98 1,932.65	106.03 55.00 2,585.48	96.43 52.63 3,376.74	88.36 50.75 4,318.84	, 75.55 , 48.07 6,811.90

14-32

Sheet 2 of 3

Vahiole elessi-				Single/	Single/tandem axle veight limits, kipe	sight limits,	ktpe		
fication and tone carried	Scheme 3	28/47	32/53	36/59	40/65	12/44	11/84	52/83	60/95
ສ ^{ິສ}	Number of vehicles Treasport cost - \$	43.41 15.64 100.06	37.53 13.82 151.50	32.70 22.21 213.41	28.80 11.10 297.64	25.66 10.13 398.46	23.08 9.34 521.97	20.96 8.70 667.66	17.63 7.71 1,047.15
3A 70	Runber of vehicles Transport cost - \$ E 18-Eip arles	7.91 3.09 20.45	6.96 2.81 29.36	6.18 2.58 40.81	5.56 2.40 55.08	5.05 2.25 72.97	4.60 2.12 94.27	4.23 2.02 119.43	3.63 1.86 185.06
2-š1 130	Mumber of vehicles Transport cost - \$ E 18-kip axles	13.70 5.48 59.67	16.1 46.4 94.06	10.51 4.53 129.48	9.39 4.20 180.74	8.48 3.95 247.56	7.71 3.74 324.90	7.07 3.57 423.32	6.04 3.31 676.50
280 280	Number of vehicles Transport cost - \$ E 18-kip axles	र्थ. १.२ १.२	18.57 8.57 145.58	16.42 7.97 205.57	14.70 7.52 283.42	13.29 7.17 380.71	12.11 6.89 196.21	11.12 6.67 638.34	9.54 6.36 1,013.55
3-82	Number of vehicles Transport cost - \$ E 18-kip exise	17.83 8.62 88.07	123.62 123.46	13.88 7.60 173.98	12 48 7.28 235.19	1.1 1.1 1.1 1.1	10.35 6.85 405.62	9.53 6.72 461.16	8.22 806.06
2-51-2 200	Mumber of vehicles Transport cost - \$ E 18-kip arles	10.88 5.71 94.68	9.41 5.36 141.89	8.28 5.12 205.66	7.38 4.95 286.43	6.64 4.83 388.33	6.03 4.76 519.13	5.52 17.4 860.96	4.70 4.68 1,056.76
2-52-3 400	Mumber of vehicles Transport cost - \$ E 18-kip axies	15.33 9.81 142.27	13.34 9.48 206.54	ц.79 9.29 295.20	10.49 9.14 400.42	9.43 9.07 529.85	8.56 9.06 690.19	7.83 9.10 885.87	7.01 9.73 1,266.99
3-s2-4 400	Mumber of Vehicles Transport cost - \$ E 18-kip axles	90 टा 87.6 टा	10.56 9.19 170.80	9.39 9.17 238.81	8.44 9.21 325.27	7.66 9.31 #27.53	7.01 9.46 560.22	9.62 710.57	1,118.42
Total 2,000	Rumber of vehicles Trensport cost - \$ E 18-kip axles	142.44 67.02 725.21	123.90 62.21 1,059.59	109.15 58.58 1,502.92	97.24 55.80 2,064.19	87.53 53.75 2,756.72	(9.4) 52.22 3,612.51	51.11 51.11 4,567.31	50.23 50.23 7,170.49

Sheet 3 of 3

Table 14-18. ... Number of vehicles, transport cost, and E 18-kip axies for heuling 2,000 tons of payload one mile on system 3, primery rural, East North Centrel census division - rigid pavement

7,238.06 2.80 5.51 5.48 1,247.19 7.51 10.43 1,365.08 60.32 1.740,1 4.65 2.54 521.01 7.12 5.68 89.06 2.2 60/95 17.63 3.63 1.86 85.06 6.78 1,378.09 8.86 5.82 445.56 6.49 5.54 787.25 51.60 685.04 20.96 8.70 867.66 1.89 11.11 878.62 70.42 52/83 4.23 2.02 119.43 5.4° 325.12 8.7k 5.2k 8.41 9.07 9.04 10.17 58.52 670.77 9.22 9.76 152.17 8.59 11.57 693.76 9.52 390.06 8.9 32.22 7.11 5.61 616.65 23.08 4.60 2.12 5.93 249.45 11/84 Single/tandem axle veight limits, kips 9.81 6.10 269.73 84.91 54.08 2,799.74 9.40 11.43 530.62 6.52 3.04 3.92 10.44 5.63 298.95 7.85 **BL.OL** 9.79 12/11 25.66 398.45 5.05 2.25 72.97 94.44 56.06 2,105.75 28.80 10.81 6.31 203.40 8.93 8.93 8.93 8.93 8.93 8.93 8.75 5.87 343.44 11.55 5.91 222.79 40/65 5.56 55.09 7.23 3.24 138.69 8.37 8.37 8.37 10.10 28.08 8.18 8.98 27.82.11 12.90 6.26 161.73 9.86 6.09 30.79 28.21 <u>8</u>.ц 106.16 56.59 12.03 8.88 8.89 8.50 36/59 6.18 6.58 81.81 13.08 11.38 215.15 62.27 14.57 10.36 231.01 2.LL 14.59 6.73 114.54 13.53 6.96 107.05 11.26 14.47 14.471 37.53 13.82 51.50 6.96 2.91 9.16 9.80 9.60 32/53 16.84 10.78 138.76 66.89 748.90 13.10 6.87 116.48 4.12 8.8.8 8.8.8 15.45 7.47 76.29 43.41 15.64 7.91 3.09 3.09 20.45 45.92 16.52 7.25 71.17 74/82 4.21 12.4 Fransport cost - \$ Number of Vehicles Transport cost - \$ Rumber of vehicles fransport cost - \$ Sumber of vehicles Transport cost - \$ Number of vehicles fransport cost - \$ Number of vehicles Transport cost - \$ hubber of vehicles Transport cost - \$ Number of vehicles Transport cost - \$ Number of vehicles Transport cost - \$ huber of vehicles Scheme 4 E 18-kip arles E 18-htp artes E 18-kip axies t 13-kdp arles g 18-kip arles g 18-kip arles E 18-kip arles g 18-htp arles g 18-ktp axles Vehicle classification and tons carried 2-31-2 230 2-32-3 3-85-F Total 2,000 200 2-51 8 M22 25-20 ଶ

	Yer	
	pt o	loa
	Ĩ	ITATI
	bus of freight over	sus (
	16 2,000 tobus o	Cen
	8	5
	() 8	Cen
	allu	it, primary rural highway system: East North Central census divisi
	nd no	st N
	10	8
	A Second	ten
	Lad to	y ayr
	bt L	Shva
	ve1g	Ta I
	xle-	- Here
	Ę	Alle
	atra	
	nel maximum axle-veight limits based on hauling 2,000	at,
	Ingle	A CEDA
	pe, B	1d 19
	er t	ř
	818	lane
	Table 14-19 Analysis of the marginal maxi	of 4-lane rigid pavement
	¥	0
er.	19.	
	14-	
	PIQE	
	e-	

	18/32	20/35	22/38	24/41	Single/tandem 26/44 28/47		arle veight limits 32/53 36/59	~ <u> </u>	htipe 40/65	12/411	177/84	52/83	60/95
SCHEME 2: Single unit trucks and WO-foot semitra	semitrations	at	55-foot maximum length	um length							ţ		
 Construction cost/mile Favement and shoulder Earidge structures Grading and drainage Total construction cost 	183,300 28,526 101,056 312,882	187,600 28,898 101,136 317,364	191,300 29,231 101,211 321,742	195,000 29,536 101,283 325,819	198,400 29,821 101,353 329,574	201,800 30,069 101,425 333,294	207,800 30,478 101,551 339,829	213,850 30,859 101,680 346,389	219,500 31,221 101,804 352,525	225,300 31,564 101,928 358,792	230,800 31,897 102,039 364,736	236,000 32,231 102,145 370,376	247,400 32,897 102,360
 Equivalent uniform annual cost Construction cost Highay maintenance Bridge maintenance 	27,279 506		28,051 554	28,407 575		29,058 619					31,800 805	32,291 837	33,362 750
d. Total equivalent uniform annual cost	21,796	28,214	28,624	29,004	29,356	29,704	30,316	30,923	31,508	32,096	32,651	33,178	34,169
 Incremental annual highway cost Annual wotor vehicle operating cost Derremental annual vehicle cost Benefit-cost ratio 	35,536	418 33,368 2,168 5.19	410 2,004 400,4 4,07 4 2,004	330 29,580 1,784 4.69	352 -28,053 1,527 4.34	348 26.671 1,382 3.97	24,353 2,318 2,318 3.79	607 22,561 1,792 2.95	21,163 21,163 1,398 2.33	20,075 20,075 1,088 1.85	19,210 865 1.56	519 18,524 686 1.32	17,546 978 0.98
SCHEME 3: Single unit trucks, 40-foot semitrailers	_	and double	e 27-foot	trailers	at 65-foot	ot modeum	a length			1			
 Construction cost Pavement and shoulder Bridge structures Grading and drainage Total equivalent uniform annual cost 	183,800 28,526 101,056 313,382	187,900 28,898 101,142 117,940	192,000 29,231 101,214 327 145	195,700 29,536 101,292	199,200 29,821 101,362	202,700 30,069 101,437	208,800 30,478 30,478	214,800 30,859 101,700	220,800 31,221 101,824 353,844	226,800 31,564 101,948	232,200 31,897 102,062	237,100 32,231 102,162	247,700 32,897 102,380
 Equivalent uniform annual cost a. Construction cost * b. Highway maintenance c. Bridge maintenance 	27,322 506 11		28,112 554		28,804 598	29,138 621 37	29,719 2662				31,924 810	32,389 840	33,390 905
d. Total equivalent uniform annual cost 3. Incremental annual highway cost	21,	8	28,685	29,067 382	29,427	29,786 359	30,413	<u>31,021</u> 608	31,628	32,233	32,780	33,279	34,352 1.073
 4. Annual motor vehicle operating cost 5. Decremental annual vehicle cost 6. Benefit-cost ratio 	31,171	29,580 1,591 3.71	28,050 1,530 3.66	26,689 1,361 3.56	25,521 1,168 3.24	24,462 1,059 2.95	22,707 1,755 2.80	21,382 1,325 2.18	20,367 1,015 1.67	19,619 748 1.24	19,060 559 1.02	18,655 405 0.81	321 321 321 0.30
SCHEWE 4: Single unit trucks, 40-foot semitrailers	dtrailers,	and 40-foot	ot trailers	rs at 100-foot		mextarum length	4						
 Construction cost Favement and shoulder B. Bridge structures Crading and drainage d. Total equivalent uniform snauel cost 	184,600 28,526 101,056 714,182	188,700 28,898 101,150	192,800 29,231 101,222	196,300 29,536 101,297 327 133	199,900 29,821 101,364 331 045	203,300 30.069 101.439	209,400 30,478 101,573	215,300 30,859 101.697	221,200 31,221 101,824	227,100 31,564 101,946	232,500 31,897 102,060	237,600 32,231 102,166	248,000 32,897 102,378
 Equivalent uniform annual cost a. Construction cost ^a B. Highway maintenance 	21,392	27,790	28,1B3 556	28,521 579		23,190 622					31,950 808	32,433	33,416 33,416 903
c. Bridge usintenance d. Total equivalent uniform sumual cost 3. Incremental sumual highway cost 4. Annual motor vehicle highway cost		28,339 430 29,543	28,758 419 28,021	29,122 29,122 382 382	25 29,490 368 25,475	29,839 24,839 24,415	82 83 83 83 83 83 83 83 83 83 83 83 83 83	21, 600 21, 600 21, 433	8, 28 8, 28 8, 28 8, 39 8, 30 8, 30	22,257 595 19.739	32,804 742 19,206	33,322 812 812 428	34,376 1,054 18.586
5. Decremental annual vehicle cost 6. Benefit-cost ratio	•	1,610	3.63	1,365 3.57	1,181 3.21	3.04	2.71	1,296	1.62	1.83	533	372 0.72	248 0.236

^{*} Based on 6% per annum and 20 years (arf = 0.087185)

helpful in gaining some insight into the ultimate limits of axle weight beyond which no further economy could be expected.

Attention is called to table 14-5 giving the practical maximum gross vehicle weights for each class of vehicle for axle-weight limits up to 60/95 kips. The highest gross vehicle weight in this table for axle-weight limits of 52/83 kips is 347.1 kips for the 3-S2-4 combination, or well above the gross vehicle weight of 225 kips, the point at which the trucking costs in cents per payload ton-mile cease to decrease. However, because all trucks do not move fully loaded as to weight and because, in a total fleet of several classes of vehicles, many vehicles would have far lower practical maximum gross weights than would the 3-S2-4, gross weights above the maximum for the limit of transport economy could prove economical in the total fleet of vehicles.

4. MARGINAL GROSS WEIGHT LIMITS BASED ON ECONOMY OF TRANSPORTING 2,000 TONS OF PAYLOAD

The preceding Section 3 attempts to determine the upper axle-weight limits beyond which no further transportation economy is to be expected. Economy is based upon the highway costs combined with motor vehicle operating costs. It is logical to determine as well the ultimate, or marginal, limits of gross vehicle weight, or that point where no further transport economy would result from further increases in gross vehicle weight.

A. Concepts and Procedure

Higher gross vehicle weights may be obtained by adding axles to the vehicle combination without increasing the maximum limits of axle weight. The adding of axles can be achieved by adding trailers to a chosen basic power tractor. Thus, the 2-Sl class of tractor-semitrailer could be successively increased in total gross combination weight by adding a second, third, fourth, and sixth trailer. This is the process followed, using the 2-Sl, 2-S2, and 3-S2 semitrailer combinations as basic vehicles.

Unlike the analysis for the marginal axle-weight limit, the marginal gross vehicle-weight limit cannot be achieved considering the highway cost. This statement is true because when the axle-weight limits are held constant and the gross vehicle weight increased by adding trailers, there is no appreciable increase in the highway cost. In fact, in most of the cases tried, the highway cost actually decreased as the gross combination weight of the vehicle increased. Consequently, the marginal gross vehicle weight has been determined without reference to highway cost.

Essentially, the marginal gross vehicle weight is simply that gross vehicle weight, or that loaded gross vehicle weight, at which the cost of transporting goods reaches a minimum in cents per ton-mile of payload. This marginal loaded gross weight is given by Hoy Stevens \underline{J} as approximately 180,000 pounds, which would correspond to a practical maximun gross vehicle weight of 225,000 pounds, based upon an 80-percent ratio of loaded gross weight to practical maximum gross vehicle weight.

B. Results of the Analysis for Marginal Gross Vehicle Weight

Figure 14-2 gives the transport cost in cents per payload ton-mile for the 2-S1, 2-S2, and 3-S2 vehicle classes with successive numbers of trailers up to gross vehicle combination weights of about 400,000 pounds expressed in terms of the practical maximum gross weight based upon the 18/32kip single/tandem axle-weight limits. Curves based upon the Stevens 33-67 percent payload distribution are also given. It should be noticed that the difference between the Stevens payload distribution and the 33-17-30-20 percent distribution gives a decidely lower cost in cents per payload ton-mile for the 33-67 percent distribution. This would be expected, because the number of trips to haul 2,000 pounds would be fewer with the 33-67 distribution than with the 33-17-30-20 distribution.

The analysis for the marginal axle-weight limits indicated that they were about 52/83 kips single/tandem axle-

Hoy Stevens, Line-Haul Trucking Cost Upgraded, 1964, Highway Research Record No. 127, Highway Research Board, National Research Council, 1966, p. 19.

	25	8																							
- 40	A	2.574												A.< </td <td>VEN</td> <td>206</td> <td>100</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	VEN	206	100								
3.7		¢													φ	-C		77		RU	cru		ر م رو	, j.	
															17				4			د مرما بورکن	l ry	20 20	142 1) C
															zΔ		"			ſ	7	7/12	171)	201	w
3.6															33							E.	IPT.	120	AD
		ĄĹ												VENIL	LE SIFE	AT.	av.		NU Enc	H.B.	1. R 0 D),	or rias	1.X.A.K 191	es e	44) 2.4.8
														2	51						2				
														2	-SJ						4				
- - - 			$\mathbf{\Lambda}$												252	200	rs.	ي م	540	755			BEL	e_0	z-
FOZZA Z9	23		XΧ											7	жл/ Е.Л	1750	14	7 C 4	20	w.	527X 	7/2-	5 77	7	
R 28			11																						
2				$\left(\right)$	(2)																				
N CCS			N																						
-g					$\langle \rangle$																				
3 5. 24	1.352					N	1	Σ Γ										R.S	./ W	176	7	7274	115	er.	
TERAN T			$\backslash \mid$			\mathbf{X}		\mathbf{X}		(4)-								7)							
4-22			$\langle \rangle$		C			27					57		6) 		•	2	52	Will	н.	5 7A	XIL.	R 3
21			χ		(2)		\mathbb{N}		/=		3				(4)			10	-) 	52 -		4	7.X.A	20	45
2-20-				20					1	>6					T3				2						
19							(J)			(4)			前		10			A (7/	251	w?	74 7	72	A/4.	. P S	
						13	71-	2	101						Jan H	منب منب		12	2	52 4(9	w)r 1	45	A/44 7.KA 4. 17	110	45
							\setminus	4			(7) (7)			T	(7)	գեղի հեն	1		Z	352	2 141	774	4 / <i>F</i>	114	'AS
							111		1.1																
<i>,</i> ,,,,,,-	0 00	- در	-			1 231			1. Hite	-1 I I I I I		情情	0		20	280			220			pr.	7.0		500
			1	7777	TEA	Ø.	*7.57	an	77	GR	25	s v	ΞŅ	102 TCLE	w	194		-240	rra	207					
					112 79																				
				nou.	8.E. 13 1911 E			OTO		VSI	40	10	ar	ERAL	ZAG	ria. Pas	27	EX.R.	112	20	10				
										CT 10				irrer.				ΠŰ							

weight limits. If the marginal axle weight found in that study is plotted in terms of gross vehicle weight, there is indication that the marginal practical maximum gross vehicle weight would be about 314,000 pounds, somewhat higher than was found in the marginal gross weight study. In any case, both the marginal axle weight and the marginal gross vehicle weight are

appreciably higher than are apt to become legal in the foreseeable future.

C. Concluding Analysis with Respect to Marginal Gross Vehicle Weight

It is to be expected that intercity highway freight carriers will continue to find that the use of several classes of vehicles is desirable as a means of getting the most efficient operation in hauling different commodities different distances. Therefore, a specific marginal gross vehicle weight for the heaviest probable single class of vehicle to be used in a fleet would not indicate that such marginal gross vehicle weight would be attained by each separate class of vehicles within the fleet, or that it would not be an advantage to load higher than the marginal limit. It probably would be true that, because of the dropping off and picking up of trailers en route and other characteristics of transport operation, the trucking industry would find it advantageous on certain trips to start with an initial gross vehicle weight that is higher than the marginal gross vehicle weight, since there would be no significant increase in cost per payload ton-mile.

5. MARGINAL ADT FOR ECONOMY OF INCREASED AXLE-WEIGHT LIMITS

Because the pavement design depth is a function of the number of E 18-kip axle applications and the number of axle applications is a direction function of ADT, it is reasonable to expect that the economy (benefit-cost ratio) of increased axle-weight limits would vary with the change in ADT. The following study of the marginal ADT for economy of increased axle-weight limits shows that there is a minimum ADT below which the benefit-cost ratio is less than 1.0, and that there appears to be no upper limit to economy as ADT increases.

A. Scope of Study

An examination of the benefit-cost ratios resulting from Methods 1, 1-M, 2, and 3 discloses that, in general, lower ratios will be obtained with lower ADT. A positive conclusion is not readily apparent, because traffic composition, pavement design criteria, construction prices, and other factors besides ADT vary among highway systems and census divisions. Therefore, a study of marginal economical ADT was made for each of the 10 census divisions and each of the six highway systems. The results are summarized and reported in table 14-20 as a National average for each highway system and for each of four intervals of increased axle-weight limits. The study was based entirely on increases in axle-weight limits and did not consider increases in motor vehicle width, length, and gross weight. B. Concept and Approach to Solution

For any given increase in axle-weight limits, a reduction in ADT (when the same total tons of payload are hauled) will result in the same percentage reduction in truck transport costs and in E 18-kip axle applications to the highway. The E 18-kip highway construction-cost relationship is not a straight line function, and the net result of reducing ADT for a given increase in axle-weight limits is a percentage reduction in annual highway costs that is less than the percentage reduction in ADT and transport costs. Therefore, for any given increase in axle-weight limits, trial and error reductions of the ADT can be made to determine that marginal ADT which results in a benefit-cost ratio of 1.0.

An advantage in using the design concept of minimum pavement thickness (Method 1-M) for the marginal ADT analysis is that the increment of annual highway costs for a given increase in axle-weight limits will remain constant for any decrease in ADT volumes. Therefore, for a given increase in axle-weight limits, the percentage by which the incremental annual benefit has to be reduced to equal the incremental annual highway cost is equal to the reciprocal of the benefit-cost ratio. The ADT volume at the lower axle-weight level multiplied by this percentage gives the minimum economical ADT for the increase in axle-weight limits.

14-43

C. Results

Table 14-20 lists the marginal ADT's for the four intervals of change in axle-weight limit for the six highway systems and for the composite of the 10 census divisions (National average). The figures under the column headed Method 1-M are the marginal ADT's based on the minimum pavement design concept.

Table 14-21 shows the effect on the marginal ADT of variations in the minimum pavement design depth. For a given increase in axle-weight limits, the marginal ADT decreases as the minimum pavement depth increases. The marginal ADT's for the primary rural highway system were calculated on the basis of the minimum pavement design concept (Method 1-M), construction costs for the East North Central census division, and average ADT for the study period 1965 to 1985.

Table 14-20.	-	Marginal ADT's based on Method 1-M,
		rigid pavements, and the concept of
		minimum pavement design depth - National
		average, or composite of 10 census divisions

Increase in single/tandem	Highwa	ay system	Method	Method
axle-weight limits, kips	No.	Name	1-M	1
18/32 to 20/35	1	IR	914	1,082
	2	IU	1,390	1,631
	3	PR	147	397
	4	PU	299	443
	5	SR	31	142
	6	SU	874	1,090
20/35 to 22/38	1	IR	1,070	1,237
	2	IU	1,675	1,928
	3	PR	177	432
	4	PU	343	544
	5	SR	39	170
	6	SU	1,026	1,269
22/38 to 24/41	1	IR	1,307	1,478
	2	IU	2,058	2,322
	3	PR	217	488
	4	PU	468	708
	5	SR	53	209
	6	SU	1,255	1,528
24/41 to 26/44	1	IR	1,932	2,151
	2	IU	3,140	3,453
	3	PR	356	742
	4	PU	953	1,363
	5	SR	102	353
	6	SU	1,981	2,365

(Table 14-21.	Marginal ADT's for various minimum
	pavement design depth based on Method 1-M,
	for the East North Central census division,
	rigid pavements, and the primary rural
	highway system, using the average ADT for
	the study period 1965 - 1985

Increase in single/tandem	Minimum j	pavement d	lesign der	oth, inches
axle-weight limits, kips	7"	8"	9"	10"
18/32 to 20/35	413	245	156	107
20/35 to 22/38	434	256	183	129
22/38 to 24/41	449	290	224	162
24/41 to 26/44	696	459	357	256

CHAPTER 15

DISCUSSION, SUMMARY, AND CONCLUSIONS WITH RESPECT TO DIMENSION AND WEIGHT LIMITS

Chapters 10 through 14 report on the investigation of the economy of vehicle dimensions and weight with particular reference to axle-weight limits and overall combination length. It is desirable now to review these chapters in their overall concept, meaning, and significance of results.

1. LACK OF UNIFORMITY OF STATE LAWS

Difficulties for the trucking industry in interstate cartage are inherent in the State-to-State range of variation in the limiting legal vehicle dimensions of width, height, and length; in axle-weight limits from the low of 18,000 to 23,520 pounds for a single axle and from 32,000 to 44,000 pounds for a tandem axle; and in gross vehicle-weight limits. Furthermore, there is no sound engineering, economic, or industrial basis for the wide variation in legal limits of dimensions and weights. Economy of highway freight transportation could be significantly increased if uniformity of legal dimensions and weights could be achieved. This report on the desirable dimensions and weights of motor vehicles supplies a substantial

2. TOLERANCES AND ENFORCEMENT

In several States, three factors exist having the same effects that would result from increasing axle-weight limits above the nominal, or basic, limits usually referred to. These factors are (a) the higher axle-weight or gross weight limits for local products of agriculture, forestry, or mining; (b) the enforcement tolerances (as high as 13 percent); and (c) overloading practice combined with weak enforcement efforts.

Relatively, certain States would not experience many additional E 18-kip axle applications to its pavements if the special limits for local products were made universal, and if the maximum axle-weight limits with tolerance were made the universal legal limits. These two changes combined with effective enforcement would provide for higher axle-weight limits to the benefit of transport without adding a significant increase in loading on the highways, certainly up to the 20,000/35,000pound axle-weight limit.

3. BASIC FACTORS SUPPORTING THE RESEARCH

The economy of highway transportation as calculated includes in all cases the highway construction costs, maintenance costs of the highway, and the cost of operating trucks over the highways. In all calculations, the additional cost of highway construction for an increase in axle-weight limits was charged 100 percent against the benefit of decreased trucking cost within the 20-year analysis period, even though the additional cost of earth work, of the pavement base and surface, and of structures was for a type of work that could be expected to last for 50 to 75 years.

The analyses reported in Chapters 10 through 14 are believed to indicate the minimum economy to be expected. All factors on which the economy depended were conservatively determined.

4. THE GROSS VEHICLE-WEIGHT LIMITS

Specific attention is called to the inconsistency of the State and Federal limits on gross vehicle weight and the limits on axle weight, length of vehicles, and the number of axles. The purpose of the gross vehicle-weight law is particularly to protect bridges, and this purpose is not achieved in a State having a gross weight limit of 73,280 pounds and 18/32-kip axleweight limits and permitting a combination vehicle with double cargo units. With the 65-foot combination with double cargo units, economy depends upon hauling gross weights higher than 73,280 pounds or even 76,000 pounds, the limit common in the western States. Even if single axles were used exclusively, a reasonable gross limit for the 65-foot tractor with double trailers would be 82,000 pounds.

5. IMPLICATION OF HIGHER AXLE-WEIGHT LIMITS, GROSS WEIGHT LIMITS, AND VEHICLE LENGTHS

The highway systems existing today are composites of a wide range of structural capacities, considered from the viewpoint of their adaptation to truck axle-weight applications. It is not feasible to determine just what would happen to existing highway systems under legal provision for higher weight limits. It is logically concluded, however, that the economy indicated by the axle-weight limit study on one mile of new construction would apply equally well to existing highways.

As the pavements on existing highways reach a state of structural deterioration calling for reconstruction, it is presumed that the proper authorities would provide the desirable improvement. This action is in conformity with the practice over the last 40 years, which have experienced a continuous building and rebuilding of the roadways, including the replacement of structures. Over the last several years, the State laws have been modified from year to year to provide for higher limits of vehicle dimensions and weights. Therefore, if the States now having the lower dimension and weight limits desire to increase these limits to the levels existing in adjacent States, they would simply be repeating history and would continue to replace their highways as they have done in the past.

The economy of vehicle length is great and can be achieved without increasing highway costs, particularly with the use of the double 27-foot trailers drawn by a tractor under a limit of 65 feet.

6. HIGHER LIMITS FOR ACCESS-CONTROLLED HIGHWAYS

Although the 65-foot, or possibly the 70-foot, limit on vehicle length for combinations is desirable for use on all highway systems, it is reasonable to allow a greater length limit, and consequently a higher gross weight, on the Interstate highway sytem and on other routes with comparable standards of design. The experience on toll highways in Kansas, Indiana, Ohio, New York, and Massachusetts, where double 40-foot trailers are permitted to operate at an approximate length of 100 feet and gross vehicle weight of 125,000 pounds, has proved this operation to be successful. Toll authority reports indicate, on the whole, no interference with traffic, safe operation from the point of view of accidents, and high transport economy.

On these toll highways, no provision is made on the property of the toll authorities for making up and breaking down the double trailers at toll gates. If the 100-foot long double trailer were permitted on the entire Interstate system, public authorities or the private trucking industry would need to provide for a marshaling yard close to the Interstate interchange to avoid using the long combination on highways that are not divided or not fully access-controlled.

7. ECONOMY OF AXLE WEIGHT

The calculated economy of increasing axle-weight limits is high, particularly for the Interstate and primary highway systems under Method 1-M, in which minimum depths of pavement structure were used. It is established that overall highway transportation economy will prevail with increased axle-weight limits up to as high as 26/44 kips. The rate of return in proportion to the highway cost necessary to achieve these benefits is expressed in benefit-cost ratios on the order of 3 to 20.

8. SENSITIVITY OF FACTORS

In the analysis of the economy of axle-weight limits, the sensitivity of certain factors in controlling highway construction cost, the benefit-cost ratio, and E 18-kip axle applications was remarkably great. In the beginning no attempt was made to be precise or to develop smooth trends in the number of vehicles of each class at the different levels of axle-weight limit. Furthermore, the calculation of the E 18-kip axle applications was not controlled precisely. The earlier calculations using Method 1 indicated the sensitivity of these factors, but the cost was redone in some instances to provide for carrying the number of vehicles and E 18 factors to tenths. Also, preliminary checks were made to provide for a smooth transition of these factors from one level of axle-weight limit to the higher ones.

The pavement construction cost was found to be sensitive to the one-hundredth of an inch of pavement depth. That is, the final pavement construction cost would show an appreciable change in dollar value with the sensitivity of 0.01 inch of pavement and shoulder depth. For a mile of highway, this insignificant degree of depth is blown up considerably. Likewise, the number of vehicles was sensitive to both the E 18-kip application and the motor vehicle operating cost.

9. MARGINAL LIMITS OF WEIGHT AND ADT

Although some difficulties were experienced in developing procedures for determining the marginal limits of weight and ADT, results were obtained indicating that the single/ tandem axle-weight limits beyond which no further increases in the economy of highway transportation can be expected were about 44/70 kips. The marginal gross weight limit is approximately 200,000 pounds per combination. In both cases, these marginal limits are so far beyond today's practical limits that there is little possibility that they would be seriously considered for new legislation. These marginal limits have value, however, because they show that any axle-weight limit in the neighborhood of 26/44 kips and any gross weight limit in the area of 125,000 pounds (the present limit on toll highways where the double 40-foot cargo units are permitted) should achieve the economy that this study indicates is attainable. The study to determine the average daily traffic volume below which the increase in axle-weight limit would not produce a gain in economy indicated that ADT's as low as 500 will result in economy at higher axle-weight limits. On 2-lane, bidirectional secondary highways, an increase to 26/44-kip limits would give a benefit-cost ratio of 1.0 at an ADT of about 500 vehicles of all classes. For the primary rural highway system, a 4-lane divided highway with an ADT of 2,000 would produce a benefit-cost ratio of 1.0 for the 26/44-kip limits.

10. MINIMUM PAVEMENT DEPTH AND MARGINAL LIMITS

Method 1-M for determining axle-weight economy was developed to correct for the fact that the AASHO interim pavement design guides used in this study often resulted in a depth of pavement structure less than that currently considered adequate by the highway departments. Because the AASHO design formula produced design depths at the higher axle-weight limits that were still materially below today's State minimum depths, in applying Method 1-M an increment of pavement depth was added to the minimum depth for each increase in axle-weight limit.

The marginal ADT--that ADT at which the benefit-cost ratio would be 1.0--could not be calculated on a normal basis, because the marginal ADT is so low that the pavement design depth resulting from the design formula is far below the minimum design depth considered to be practical. The scheme used in Chapter 14, however, results in a reasonable approximation of the marginal ADT.

In theory, as the ADT decreases, the pavement design depth, pavement costs, and the total dollar volume of transport benefits decrease, all in some ratio to each other that is not a constant. Therefore, it can be expected that the marginal ADT is a low traffic volume. In the opposite direction, the marginal axle-weight limits are high (46/70 kips), because the pavement design depth increases more slowly as the ADT (E 18-kip axle applications) increases, while at the same time the pavement cost decrease in dollars per cubic yard in place.

11. RAMP WIDTH FOR 102-INCH VEHICLE WIDTH LIMIT

The estimated highway construction cost to match increased axle-weight limits would not require any increase in the cost of interchange ramps and other comparatively narrow facilities. For a change in vehicle length, however, the off-tracking may necessitate wider paved lanes on some interchange ramps or on sharp corners in some urban areas. The analyses using Method 4 make no allowance for this possible increase in highway cost, but it is recognized that such increases might come about. The cost increase, however, would be relatively small.

Because of the difficulty of getting a reliable measurement, the economy of vehicle width has not been developed in detail. Chapter 13, in which the study by the A. T. Kearney Company is discussed, gives some indication that there is modest economy in the change to 102 inches of vehicle width. This economy is not priced out on the basis of increased highway cost for increased vehicle width, because the general geometrics of design are now adequate to provide the necessary safety for the 102-inch width.

Where existing traffic lanes are less than 12 feet, reconstruction will normally be to widen enough lanes to accomodate the 102-inch width, even though the 96-inch width may likely continue to be the legal maximum. It should be recognized that ramp design and construction for the 102-inch wide vehicle may require wider pavement than would the 96-inch limit. Again, no estimate of this cost has been made because it would be relatively small.

12. TRUCK ADT

In all of the analyses for the economy of increased vehicle weight and length, there is an indicated reduction in the average daily traffic of trucks from the 2D (2-axle, 6-tired, single unit) upward. In actual practice, it is probable that this decrease in daily truck traffic will not actually materialize. Two factors may prevent it from taking place. The normal growth in truck use to serve the needs of growing industry and increasing population would normally prevent any decrease in truck ADT. Second, if trucking becomes more profitable with increased limits of vehicle dimensions and weight, such increased profitability is apt to induce greater use of the highway by heavy trucking.

13. PROBABLE ACTUAL USE OF HIGHER LIMITS

In the analyses of axle-weight economy and of the economy of combination length, it is assumed that the same number of tons of payload would be hauled at the increased levels of axleweight limit and length as would be hauled at the existing limits. This assumption is one not likely to be realized for a reason already discussed: any liberalizing of vehicle limits on dimensions and weights probably will result in increased use of the highways by heavier trucks. However, in order to determine the relative effects of increases in limit, it was essential to hold constant all factors except the change in the limit of weight or dimension.

As the States approach uniformity in limits, a change made by any single State will affect trucking practice in adjacent States. If a State has low legal limits, trucks operating between that State and surrounding States having higher limits will not be able to take full advantage of those higher limits. The maximum weight or maximum dimensions used by truckers in interstate travel is controlled by the State having the minimum limit. The analyses for economy of vehicle weight and of vehicle length do not take into consideration these probable changes in trucking practice.

15-12

14. FEASIBILITY OF DOUBLE- AND TRIPLE-CARGO COMBINATIONS

A combination made up of a tractor, a semitrailer, and a full trailer with the conventional type of axle arrangements could have a total of nine axles: the front (or steering) axle and four sets of tandem axles. This type of axle arrangement is common on the toll highways permitting the 100-foot long combination with 40-foot double trailers. A question arises whether, considering the mechanical and operational features of the vehicle, the 9-axle combination using 27-foot trailers for a total length of 65 feet is practical. The trucking industry may know the answer, but this report merely raises the question.

The combination of tractor and three 27-foot long trailers in an overall length of 100 feet is a practical one that has proved satisfactory in test runs in Idaho and Nevada. The tripletrailer combination should, however, be restricted to divided highways with full control of access.

15. EFFECT ON PASSENGER CARS

Increased vehicle weights and lengths may affect passenger car traffic as much favorably as unfavorably. On the favorable side, the passenger car will be required to pass fewer and slower-moving trucks, because of the fewer trips required to transport a given tonnage of cargo. This is particularly true for an increase in axle-weight limits, but it is equally true for double-cargo combinations that could theoretically reduce by half the number of combination vehicles. The net result of using the double-trailer as opposed to the single-trailer combination is, therefore, a reduced total length of all trucks to be passed by passenger cars, although individual truck length to be passed might be 65 feet instead of 50 feet.

A greater number of trucks having heavy gross weights might have to be passed on plus grades, provided that the weight-horsepower ratio does not increase. The present trend is toward lower weight-horsepower ratios in vehicles operating on the highway and those being manufactured.

16. THE BENEFICIARIES OF HIGHER LIMITS ON VEHICLE DIMENSION AND WEIGHT

It is easy to conclude that increased vehicle dimension and axle-weight limits would result in benefits to the owners and operators of the vehicles taking advantage of the more liberal limits. In the end, however, it may be assumed that at least a fair share of these benefits would be passed on to the public at large. About 25 percent of the haulage of freight on the public highway is done by common carriers whose tariff schedules are regulated by State regulatory commissions and the Interstate Commerce Commission. If higher dimension and weight limits permitted these carriers to earn substantially more profit, the regulatory commission would reduce the tariff schedules. Again, in private industry, where haulage is done by private operators carrying their own goods, general competition would control wholesale and retail prices to some extent. There is no reason to expect the competitive economic laws to operate differently in the transportation industry than they do in the manufacturing and distribution industries.

Consistent with general public policy, cost responsibility of the users of the highway should be assigned on some equitable basis related to cost incurred and benefits received. There is ao great a margin of benefits over costs that any properly allocated additional tax burden on the heavier trucks that would utilize higher axle-weight limits would still leave then with substantial net benefits.

17. SHORTENING OF SERVICE LIFE OF PAVEMENTS, RESULTING FROM INCREASED AXLE-WEIGHT LIMITS

The shortening of the years of service life resulting from increased axle-weight limits was not used in any of the analysis methods adopted for this study. Instead, the effect of any increase in E 18-kip axle application was taken care of by increasing the pavement depth. Of interest, however, is table 15-2, giving the reductions in service life for Method 1-M from the design life of 20 years. The reduced service life calculated is the elapsed time in years that it would take for the pavements to have received the total number of E 18-kip applications that would be received in 20 years under a lower axle-weight limit.

	Stor	le/tandem	axle-weigh	t]1mi+e	kine	Ster	le/tandem	avlandet	* 14=4+-	hd no.
Highway system and pavement type	18/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	1
	JU 100		North Cen		20,44	20/52		South Cen		22/44
. Interstate rural								South Set		1
Rigid	20.0	17.4	15.3	13.6	12.2	20.0	16.4	13.8	ш.9	10.5
Flexible	20.0	15.7	12.8	10.7	9.2	20.0	16.2	12.6	11.6	10.2
. Interstate urban										
Rigid	20.0	18.4	17.1	15.8	14.8	20.0	18.1	16.4	15.1	13.9
Flexible	20.0	18.3	16.9	15.6	14.5	20.0	18.9	17.9	16.9	16.0
. Primary rural										
Rigid	20.0	19.5	19.0	18.5	18.1	20.0	19.2	18.4	17.7	17.1
Flexible	20.0	17.4	15.3	13.5	12.1	20.0	17.6	15.7	14.0	12.7
. Primary urban									ļ	
Rigid	20.0	19.4	18.9	18.4	18.0	20.0	19.0	18.2	17.4	16.6
Flexible	20.0	17.1	15.0	13.2	ш.9	20.0	17.4	15.4	13.8	12.6
5. Secondary rural										
Rigid	20.0	19.8	19.6	19.3	19.1	20.0	19.8	19.6	19.3	19.1
Flexible	20.0	19.4	18.8	18.2	17.6	20.0	19.4	18.8	18.2	17.6
. Secondary urban									1	
Rigid	20.0	19.6	19.3	18.9	18.5	20.0	19.6	19.3	18.9	18.5
Flexible	20.0	19.1	18.1	17.0	16.0	20.0	19.0	18.0	17.1	16.2
			Mountain		1		l	Pacific		4
. Interstate rural										
Rigid	20.0	18.4	16.9	15.6	14.4	20.0	16.8	14.4	12.5	11.0
Flexible	20.0	19.6	19.2	18.8	18.3	20.0	16.7	14.3	12.5	11.1
. Interstate urban										
Rigid	20.0	17.5	15.5	13.9	12.6	20.0	17.9	16.1	14.5	13.3
Flexible	20.0	19.2	18.5	17.8	17.1	20.0	18.6	17.4	16.3	15.4
. Primary rural						2 [#				
Rigid	20.0	19.5	19.0	18.5	18.0	20.0	19.1	18.2	17.4	16.8
Flexible	20.0	19.8	19.7	19.5	19.2	20.0	18.2	16.6	15.3	14.2
Primary urban						97 9 1			1	1
Rigia	20.0	17.7	15.8	14.3	13.1	20.0	18.2	16.7	15.4	14.3
Flexible	20.0	19.2	18.4	17.7	17.1	20.0	17.7	15.9	14.5	13.4
. Secondary rural										
Rigia	20.0	19.8	19.7	19.5	19.4	20.0	19.0	19.6	19.5	19.3
Flexible	20.0	19.9	19.8	19.6	19.5	20.0	19.6	19.2	1ð.8	18.4
. Secondary urban										
Rigid	20.0	19.3	18.6	18.0	17.4	20.0	19.0	18.1	17.2	16.5
Flexible	20.0	19.4	18.9	18.3	17.9	20.0	17.5	15.6	14.1	12.9

Table 15-2.	 Shortened	years	oſ	average	service	a life	with	increase	in
	axle-weigh	it limi	Lts	for Meth	nod 1-M	with	transi	tion	

ı

4.

É

15-16

18. NATIONAL SUMMARY OF METHOD 1-M

On the bottom lines of table 15-3 are the benefit-cost ratios for Method 1-M for each of the six highway systems. The National average ratios in this table offer a better indication of the overall economy of the increased axle-weight limits than is obtainable separately for each of the 10 census divisions. As may be expected, the secondary urban system has the lowest benefit-cost ratios ranging from 2.1 to 5.6. The high ratios-up to 55.7 on the primary urban system--again indicate that the trucking cost reductions are many times the highway cost increase for the full range of axle-weight increases up to 26/44 kips.

19. ANNUAL REDUCTIONS IN TRUCK OPERATING COSTS BY HIGHWAY SYSTEMS

The analyses for economy of axle-weight limit by Methods 1, 2, 3, 4, and 6 were made on the basis of one highway mile of new construction. It is of considerable importance to explore the truck operating costs on an annual basis for the entire highway system mileage. In tables 15-4 and 15-5 for Method 1-M and tables 15-6 and 15-7 for Method 4 are found the system mileages, truck-miles, and truck operating costs for the ADT's of 1965 and 1984. Tables 15-4 and 15-6 give daily values for the basic information. Tables 15-5 and 15-7 give the base totals for each of the two years for length step 0 and the yearly differences from this base to the higher axle-weight limits on the right of the base entries. U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads Table(15-3.- Comparison of Mighway cost and motor vehicle operating cost for five levels of axle-veight maximum limits, for the 20-year pariod 1965 through 1984-- National average

Effermer System 1. IR

Method of Analysis 1-M with transition Cens

Census DIVISION All

		R	rid Pavener	ţ			Plea	Ible Paver	ent.	
Chart them	Single/tu	undem aule	weight mas	dmm Matte	is, kips	Single/te	ndem axle	mactimum we	light limit	e, ktps
	18/32	20/35	22/38	24/42		18/32	20/35	22/38	24/41	26/144

									!	
		COST OF	COST OF PROVIDING HIGHMAY FACILITIES	DIGENAY FAC	SILFIC					
 Construction cost per mile: a. Parvenent and shoulders 	222.01	222.016 223.394 225,251 227,574 229,608 186,899 188.717 190,972 193,590 195,893	225,251	227,574	229,608	186, 899	188.717	190.972	193.590	195,893
b. Bridge structures	. 200,63	200,634202,212204,347207,648210,948200,634202,2122204,347207,648210,948	204,347	207,648	210,948	200,634	202,212	204,347	207,648	210,948
c. Burthwork and drainage	•	190,465 190,505 190,561 190,641 190,709 190,465 190,591 190,757 190,977 191,173	190,561	190,641	190,709	190,465	190,591	190,757	190,977	191,173
d. Total construction cost	•	613,115 616,111 620,159 625,863 631,265 577,998 581,520 586,076 592,215 598,014	620,159	625,863	631,265	577,998	581,520	586.076	592,215	598,014
2. Equivalent uniform annual capital cost *	•	4 53,716	54,069	54,566	54,069 54,566 55,037	50,393	50,700	50,700 51,096	51.632	52,138
3. Incremental simual cost ~	1	262	353	497	471	1	307	396	536	506
b. Meintenance cost of pavement and aboulders		7	6	11	10	1	و	~	6	80
c. Maintenance cost of structures .	-	12	18	25	25	1	12	18	25	25
d. Total equivalent uniform annual highway cost	-	281	380	533	506	1	325	422	570	539
		MOT	MOTOR TRUCK OPERATING COST	PERATIBIC CC	SGT					
4. Amual operating cost of vehicles										

	215,181	3.476		
	218,657	5,346		
	232,044 228,713 224,003 218,657 215,181 232,044 228,713 224,003 218,657 215,181	3,331 4,710 5,346 3,476		-
	228,713	3, 331	WAY COST	
	232,044	r	OF ADDITUML DECREASE IN MOTOR TRUCK OPERATING COST TO ADDITUML EDGEWAY COST	
	215,181	3,331 4,710 5,346 3,476	COST TO /	
	218,657	5,346	K OPIERATIN	
	224,003	4,710	IOTOR TRUCI	
	228,713	3,331	REASE IN P	
	232,044	ł	ANDITAL DBC	
4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT	b. Total courvelent uniform annual operating cost *	5. Incremental equivalent uniform decre- ments in annual vehicle operating cost.	RATIO OF	6. Ratio of incremental reduction in

15-17

6.4

9.4

11.2

10.2

1

6.9

10.0

12.4

10

COMMERCE	Roads
5	10
(ENT	Publ
E	JO
60	E Ser
5	La la
Þ	

Table 15-3. - Comparison of highway cost and motor vehicle operating cost for five levels of axle-veight maximum limits, for the 20-year period 1965 through 1984 -- National average

B Richmy System 2.

Method of Analysis 1-M with transition

Census Division All

		R1 0	Ri of d Parament	ŧ			1	Therefore Benerich		
1	Single/te	Single/tendam axle veight maximum limits, kips	weight max	dmm 11m1	ts, kips	Single/te	ndem axle	Single/tandem axle maximum veight limits,	sight limit	te, kipe
	18/32	20/35	22/38	24/43	26/1414 1	18/32	20/35	22/38	24/4J	26/144
		COST OF P	PROVIDING EIGEMAY PACILITIES	DGEWAY PAC	SILTIN					
 Construction cost per mile: Parement and shoulders 	222,792	223,852 225,279	225,279	227,088	228,761	196,957	196,957 197,728	198,779	198,779 200,113	201,361
. b. Bridge structures	294.314	294 314 296.265 1,299,2291,303,2461,307,264 1,294,314 1,296,2651,299,2291,303,2461,307,264	1,299,229	1,303,246	1,307,264	1,294,314	1,296,265	1,299,229	1,303,246	1,307,264
c. Barthwork and drainage	492,872	492,902	492,944	493,006	493,063	492.871	492,928	493,008	493,122	493,229
d. Total construction cost	2,009,978	2,009,9782,013,0192,017,4522,023,3402,029,088	2,017452	2,023,340	2,029,088		1,986.921	1991,016	1,996,481	1984,142 1,986.921 1,991,016 1,996,481 2,001,854
2. Equivalent uniform summal capital cost *	175,240	175.505 175,892	175,892		176,405 176,906	172,987	173,230	173,587	174,063	174,063 174,532
• • •		265	387	513	501	1	243	357	476	469
b. Maintenance cost of pavament and aboulders	I	6	11	/3	12	١	#	Ŋ	7	e
c. Maintenance cost of structures)	111	139	193	193	1	111	139	193	193
d. Total equivalent uniform annual highmay cost	1	385	537	719	706	1	358	501	676	668
		MOTO	MOTOR TRUCK OPERATING COST	ERATING CO	DET					
4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Total equivalent uniform annual operating cost *	368,086	368,086 357,380 346,460 332,350 323,250	346,460	332,350	323,250	368,086	357.380	368,086 357.380 346,460 332,350	332,350	323.250
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost	١	10,706	10,920	14,110	9,100	1	10.706	10,920	14,110	9,100

* Calculated at 6 percent interest rate per amum and 20 years.

13.6

20.9

21.8

29.9

1

12.9

19.6

20.3

27.8

ł

RATIO OF ANNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL EIGENAY COST

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads

of axle-weight maximum limits, for the 20-year period 1965 through 1984 -- National average Table 15-3.-Comparison of highway cost and motor vehicle operating cost for five levels

> H ŝ Righwy System

Method of Analysis 1-M with transition

TIN Census DIVISION

It	ht limits, kips	112/92 Ity/172	
ble Pavemen	exterm velg	22/38	
Pled	ndem axle m	20/35	
	Single/ta	18/32	
	s, hips	36/44	
t	dmum limit	24/41	
id Pavenen	velght max	22/38	
R1e	nden axle	20/35	
	Single/te	18/32	
	Part them		

PACILITYLIES	
HIGHNAY 1	
DALIGITACHA TO	
5	l
Land	

							A REAL PROPERTY AND A REAL				
	A. Pavement and aboulders	180,568	180,808	181,212	181,775	182,301	. 180,568 180,808 181,212 181,775 182,301 143,781 144,424 145,456 146,656 147,757	144,424	145,456	146,656	147.757
2	b. Bridge structures	31,194	31,439	31,816	31,816 32,308 32,801	32,801	31,194	31,438	31,438 31,816 32,308 32,801	32,308	32,801
0	c. Burthwork and drainage	86.710	86.710 86.717	86,730 86,751 86,769	86,751	86,769	86,710	86,755 86,831	86,831	86,929	87,020
0	d. Total construction cost	298,472	298,964	299.758	300,834	301,871	298,472 298,964299,758 300,834 301.871 261,685 262,617 264,103 265,893 267,578	262,617	264,103	265,893	267,578
2.1	2. Equivalent uniform annual capital cost *	26,022	26,065	26,134	26,228	26,319	26,022 26,065 26,134 26,228 26,319 22.815 22,896 23,026 23,182	22,896	23,026	23,182	23,329
÷.	3. Incremental annual cost	1	43	69	44	16	1	18	130	156	147
2	b. Maintenance cost of pavement and aboulders	I	1	1	7	2	I	2	m	M	m
0	c. Maintenance cost of structures	1	2	3	4	4	1	2	M	4	4
	d. Total equivalent uniform annual highway cost	1	46	73	100	97	1	85	136	163	154
			MOTOM	MOTOR TRUCK OPERALING COST	ERATING CC	ST					
4.4	4. Amual operating cost of vehicles										

006 50,992 51,892 1,533 53,425 1,435 54,860 1,158 ELIGENAY COST 56,018 ANNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL t, 900 50,992 51,892 1,533 53,425 1,435 1,158 54,860 56,018 t a. For 1965 ADT 5. Incremental equivalent uniform decre-ments in annual vehicle operating cost....... RATIO OF b. Total equivalent uniform annual operating cost * affected by azle weight limits: 6. Ratio of incremental reduction in

* Calculated at 6 percent interest rate per annum and 20 years truck operating cost to incremental increase in equivalent annual highway cost.

15-19

5.0

9.4

10.6

13.6

t

9.3

15.3

19.7

25.2

ł

COMMERCE	Roade
U.S. DEPARTMENT OF	Bureau of Public

of arle-weight maximum limits, for the 20-year period 1965 through 1964 --National average Table15-3.- Comparison of highway cost and motor vehicle operating cost for five levels

Highwy System 4. PU

Mothed of Analysis 1-M with transition

Census DIVISION All

		Rie	Rigid Pavement	ţ			1 Te	Flexible Pavement	bent	
ti ti ti	Single/te	nden arle	Single/tendem arle weight maximum limits, kips	dmm limit	18, Mps	Single/te	undem axle	mercimum w	Single/tendem axle maximum weight limits, kips	.e, kipe
	18/32	20/35	22/38	24/42	26/144	18/32	20/35	22/38	24/42	\$\$\##
		COST OF I	FROVIDING HIGHMAY PACILITIES	DGEWAY PAC	SILTER					
1. Construction cost per mile: a. Pavement and shoulders	180.567	181,015	181,015 181.634 182.420 183,153	182.420	183,153	145,413		147,335	146,239 147,335 148,553	149.645
b. Bridge structures	119.813	120,547	120,547 121,597 122,970 124,344	122,970	124,344	119,813	120,547 121,597	121,597	122,970	124,344
c. Burthwork and drainage	. 173,963	173,978	173,999	174,027	174,027 174,054		173,963 174,025 174,106	174,106	174,204	174,297
d. Total construction cost	474,343	475,540	474,343 475,540 477,230 479,417 481,551	479,417		439,189	440,811	440,811 443,038	445.727	448,286
2. Equivalent uniform annual capital cost *	41,356	41,460	41,607	41,798	41,984	38, 291	38,432	38,626	38,861	39,083
3. Incremental annual cost a. Capital cost	1	104	641	191	186	1	141	194	235	222
b. Maintenance cost of pavement and shoulders	1	3	4	S	4	1	ς,	s,	5	S
c. Maintenance cost of structures	1	7	6	12	12	1	2	6	12	12
d. Total equivalent uniform annual highmay cost	1	114	160	208	202	1	153	208	252	239
		MOTOR		TRUCK OPERATING COST	Ser.					
4. Amuel operating cost of wehicles affected by axle weight limits: a. Por 1965 ADT										
b. Total equivalent uniform emnual operating cost *	134,610	128,190	128,190 121,647 115,221 112,063	115,221	112,063	134,610	128,190	121,647	134,610 128,190 121,647 115,221 112,063	112,063
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost.	1	6,420	6,543	6,426	3,158	١	6,420	6,543	6,426	3,158

* Calculated at 6 percent interest rate per amum and 20 years 6. Ratio of incremental reduction in truck operating cost to incremental increase in equivalent annual highway cost.............

13.2

25.5

31.5

42.0

1

15.6

30.9

40.9

56.3

۱

RATIO OF

AIDINAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL EDGEWAY COST

U.S. DEPARTMENT OF COMMERCE Bureau of Public Roads

Table 15-3. - Comparison of Mighway cost and motor vehicle operating cost for five levels of alle-weight maximum limits, for the 20-year period 1965 through 1984 -- National average

Highwy System 5. SR

Mothod of Analysis 1-M with transition

Census Division All

		Rie	Rigid Pavement	t.			Plex	Flexible Pavement	ent	
Cost item	Sincle/te	nden axle	Single/tandem axle weight maximum limits, kips	dmm 11n1	ts, kips	Single/tendem		mescimum ve	axle maximum veight limits,	s, kips
	28/32	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/43	26/44
		COST OF I	COST OF PROVIDING RIGHMAY PACILIFIES	DIGENAY PAC	SILILIES					
 Construction cost per mile: a. Parvement and aboulders 	104,044	104,095	104, 044104,095 104,157 104,241 104,324	104,241	104,324	82,197	82,290		82,416.82,571	82.730
b. Bridge structures	9,244	9.329	9,439	9.568	9,698	9,244	9,328		9,568	9,698
c. Barthwork and drainage	34,249	34,251	34,253	34,255	34,258	34,250	34,255	34,266	34,278	34,290
d. Total construction cost	147.537	147,675	147,849	148,064	147.537147,675 1,47,849 1,48,064 1,48,280	125,691 125,873 126,121 126,417	125,873	126,121	126,417	126,718
2. Bquivalent uniform annual capital cost *	12,863	12,875	12,890	12,909	12,928	10.958	426,01	10,996	11,022	11,048
3. Incremental annual cost , a	1	12	15	61	61	1	16	22	26	26
b. Maintenance cost of pavement and aboulders	1	0	0	0	0	1	0	0	0	0
c. Maintenance cost of structures	۱	/	1	1	-	1		-		-
d. Total equivalent uniform annual highway cost	1	13	16	20	20	1	17	23	27	27
		MOILO	MOTOR TRUCK OPERATING COST	PERATING CC	Ser					
¹⁴ . Annual operating cost of vehicles affected by axle veight limits: a. For 1965 ADT										
b. Total equivalent uniform annual operating cost *	10.068	9,777	9,451	9,048	8,816	10,068	9,777	9,451	9,048	8,816
5. Incremental equivalent uniform decre- ments in annual vehicle operating cost.	1	291	326	403	232	ľ	291	326	403	232
RATIO OF		REASE IN N	DTOR TRUCK	OPERATIDK	COST TO P	AUNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL HIGHMAY COST	WAY COST			1;
6. Ratio of incremental reduction in)-;

15-21

8.6

14.9

14.2

17.1

١

11.6

20.2

22.4 20.4

COMMERCI	Roads
ARTIMENT OF	of Public
U.S. DEP	Bureau

62

of axle-weight maximum limits, for the 20-year period 1965 through 1984 -- National average Table[5-3. - Comparison of highway cost and motor vehicle operating cost for five levels

Highwy System 6. SU

Method of Analysis 1-M with transition

Census Drynston All

		R1	Rigid Pavement	4	9	_	A A	Flerible Parament	sent.	
	Single/tendem		arle weight maximum limits, kips	dama 11a1	te, kips	Single/ta	ndem axle	nextmum ve	Single/tandem axle maximum veight limits, kips	s, ktps
COST 1800	18/32	20/35	22/38	24/41	26/144	18/32	20/35	22/38	L#/42	26/44
		COST OF 1	FROVIDING F	RICEMAN PACILITIES	SILLITI					
 Construction cost per mile: Pavement and aboulders 	104.044	104,164	104.044 104,164 104,338	104,548 104,752	104,752	82,197	82,427	82,784	. 83;185	83,571
b. Bridge structures	40,814	42,826	45,352	48,346	51,341	40,814	42,826	45,352	48,346	51,341
c. Barthwork and drainage	49,078	49,082	49,087	49,095	49,102	49,078	49,096	49,125	49,159	49,191
d. Total construction cost	193,936	196,072	193,936 196,072 198,777 201,989 205,195	201,989	205,195	172,089 174,349 177,261 180,690 184,103	174,349	177.261	180,690	184,103
2. Equivalent uniform annual capital cost *	16,908	17,095	17,330	17,610	17,890	15,004	15,004 15,201	15,454	15.753	16,050
•	, L.	187	235	280	280	1	197	253	299	297
b. Maintenance cost of pavement and aboulders	1	0	-	1	/	1	-	-	-	-
c. Maintenance cost of structures	1	17	21	25	25	1	17	21	25	2.5
d. Total equivalent uniform annual hishway cost	١	204	257	306	306	1	215	275	325	323
		NOW	MOTOR TRUCK OPERATING COST	PERATING C	Ser					
4. Amual operating cost of vehicles affected by axle weight limits: a. For 1965 ADT										
b. Potal equivalent uniform ennual operating cost *	29.091		28,301 27,344 26,202 25,521	26,202	25,521	29.091	28,301	27,344	27,344 26,202 25,521	25,521

681

1,142

957

790

۱

681

1,142

. 957

790

١

RATIO OF

5. Incremental equivalent uniform decrements in annual vehicle operating cost....... ANNUAL DECREASE IN MOTOR TRUCK OPERATING COST TO ANNUAL HIGHAY COST

2.1

3.S

ы S

3.7

1

2.2

3.7

* Calculated at 6 percent interest rate per amum and 20 years.

An examination of tables 15-5 (axle weight, Method 1-M) and 15-7 (length steps, Method 4) discloses phenomenal annual reductions in truck operating costs. A change from the 18/32kip limits to 20/35 kips would have resulted in reductions for 1965 from \$25.2 million on the Interstate urban system to \$249.7 million on the primary rural system. For all six systems, the combined reductions are \$623.9 million. For 1965 and the 26/44kip limits, the combined six-system reductions are \$2,703.9 million. For 1984 the truck operating-cost reductions range up to four times those of 1965. The differences between 1965 and 1984 result from the forecast of truck ADT and traffic composition.

Comparing tables 15-5 and 15-7 shows that from length step 0 to step 1 the change to the 65-foot maximum length of vehicle combination reduces the truck operating cost two to three times as much as does the change in axle-weight limit from 18/32 to 20/35 kips. This length change from step 0 to step 1 for 1965 results in cost reductions of \$43.4 million (secondary urban system) to \$741.7 million (primary rural system) and \$1,227.8 million (all systems). These cost reductions are for the single years 1965 and 1984. For the entire period from 1965 to 1984, they would be approximately 20 times the average for the two years.

	al
by	l tota
costs,	National
Centerline miles, truck ADT, daily truck-miles, and daily operating costs, by	axle-weight limits and highway system: 1965 and 1984Method 1-M, National
id daily (1984Met)
s, ar	and l
ck-mile	1965
y tru	stem:
de 11	ау зу
ADT,	highw
truck	s and
lles,	limits
Ine m	1dut
Centerl	axle-we
	.0
1-51	
Table 15-4.	

Highway	Ttem	18/32-kip axle- weight limita	p axle- limits	20/35-kip axle- veight limite	.p axle- limite	22/38-kip axle- veight limits	p axle- limits	24/41-) ve1ght	24/41-kip axle- veight limits	26/44-k veight	26/44-kip axle- veight limits
system		1965	1984	1965	1984	1965	1984	1965	1984	1965	1984
н. Щ	Centerline miles Truck ADT (National vid. average) Truck-miles, daily (1,000)	15,64d 1,091 1 <i>1</i> ,065	34,800 2.047 71.303	15,648 1,049 16,415	34,880 1,974 68,862	15,648 1,002 15,673	34,880 1,888 65,862	15,648 953 14,905	34,880 1,796 62,653	15,648 908 14,206	34,880 1,713 59,744
	Truck (venicie) operating costs, daily (\$1,000)	6,592	27,947	6,458	27,476	6,302	26,891	6,142	26,266	6,001	25,731
2. I U	Centerline miles Truck ANT (National wid. averuge) Truck-miles, duily (1,000) Truck (vahiela) prosentius once	3,213 1,882 6,047	6,002 4,172 25,042	3,213 1,800 5,762	6,002 4,004 24,031	3,213 1,712 5,501	6,002 3,821 22,932	3,213 1,598 5,133	6,002 3,570 21,429	3,213 1,499 4,817	6,002 3,355 20,137
	da11y (\$1,000)	2,223	9,297	2,154	9,046	2,081	8,774	1,981	8,379	1,898	8,051
3. B	Centerline miles Truck ADT (National vtd. everage) Truck-miles, daily (1,000) Truck (vahiola) onconte	184,861 333 61,559	197, d74 388 75, 736	184,861 319 52,952	197,874 372 73,549	184,86 1 303 55,998	197,874 353 69,873	184,861 286 52,826	197,874 333 65,970	184,861 271 50,020	197,874 316 62,528
	delly (\$1,000)	23,290	144,63	22,606	28,620	21,845	27,708	21,050	26,774	20,373	25,992
4. FU	Centerline miles Truck ADT (National vtd. averase) Truck-miles, daily (1,000)	19,100 831 15,376	29,455 1,096 32,287	19,106 784 14,982	29,455 1,034 30,449	19,108 736 14,060	29,455 966 28,444	19,108 676 12,909	29,455 887 26,131	19,108 628 11,999	29,455 825 24,309
	daily (\$1,000)	5,824	11,957	5,546	11,306	5,262	10,772	4,914	10,078	4,650	9,557
5. SR	Centerline miles Truck ADF (National wtd. average) Truck-miles, daily (1,000)	602,499 61 36,904	665,332 82 54,404	602,899 58 35 ,0 79	665,332 78 51,631	602,899 55 32,947	665, 332 73 48, 405	602,899 51 30,787	665,332 68 45,279	602,899 48 28,922	665, 332 64 42, 561
	iruck (venture) operating costs, daily (\$1,000)	13,467	20,127	12,955	19,394	12,365	18,512	11,773	17,686	11,267	16,991
6. SU	Centerlive miles Truck ADT (National vtd. averade) Truck-miles, daily (1,000) Truck vaheral oracter	18,639 194 3,619	28,104 223 6,277	18,639 188 3,497	28,104 215 6,050	18,639 179 3,336	28,104 204 5,742	18,639 166 3,102	28,104 190 5,349	18,639 155 2,897	28,104 178 5,007
	delly (\$1,000)	1,316	2,299	1,284	2,239	1,239	2,154	1,173	2,046	1,115	1,952
All systems (1-6)	Centerline miles Truck ADT (National vt.). averaçe) Truck-miles, dairy (j.000)	844, 368 167 141,070	961.647 277 266,179	844, 368 160 134, 707	961,647 265 254,572	844, 368 151 127, 515	961,647 251 241,258	844, 368 142 119, 662	961,647 236 226,811	844,368 134 112,861	961,647 223 214,286
	daily (\$1.000)	52,712	101,068	51,003	98,161	teo, et	94,811	47,033	91,229	45,304	88,274

Table 15-5.--Annual average truck traffic, annual truck-miles, and annual truck operating coats at base axle-veight limits and differences between the base and higher axle-weight limits: 1965 and 1984 -- Method 1-M, National total

121,910 4,248.2 98,915 2,912.0 16,425 463.6 19,710 18,941.0 808.8 298,205 1,790.3 454.8 26,280 5,204.2 876.0 6,570 4,322.7 126.7 1,258.9 1,144.6 4.669.4 26/44-kip axle-1984 weight limits 66,795 1,043.5 139,795 449.0 428.5 803.0 14,235 263.5 **3.8LL** 22,630 4,211.7 74,095 1,415.1 4,745 2,913.4 73.4 ^N 2.703.9 215.7 1,064.7 12,045 1965 91,615 3,186.5 20,075 3,947.8 613.6 219,730 1,318.7 335.1 973.5 76,285 2,246.9 685.8 5,110 3,330.6 891.0 12,045 338.7 92.3 ¢, 3,591.3 14,965 14,369.: 1984 24/41-kip axleweight limits 50,370 788.4 164.3 103,660 333.6 88.3 17,155 3,187.5 56,575 1,083.0 3,650 2,232.7 817.6 332.2 618.3 ,220 188.7 52.2 9,125 7,813.9 2.072.9 1965 ġ 58,035 2,015.2 128,115 770.2 12,775 2,523.2 385.4 632.5 47,450 1,402.7 432.5 3,285 2,189.6 598.5 ,935 195.3 52.9 9,490 9,096.2 190.9 .283.7 1984 22/38-kip axle-veight limits . 0 a, 62,050 199.3 51.8 10,950 2,029.8 34,675 662.8 32,485 508.1 105.9 527.4 2,190 1,444.3 5,475 103.3 5,840 4,947.6 205.1 402.2 28.1 1,320.5 1965 26,645 920.2 4,380 4,236.6 171.9 0.03 369.0 5,840 1,181.5 299.7 ,630 670.9 208.4 1,012.1 267.5 ,920 82.9 21.9 9 0 1984 <u>ц</u> ,061. 20/35-kip axleveight limits ۍ. وي 22, a Ĥ 17,155 . 326.3 15,330 237.3 48.9 5,110 951.6 2,190 44.5 29,9**30** 96.7 25.2 101.5 1,095 666.1 186.9 623.9 249.7 11.7 ŝ 2,555 1965 747,155 26,054.8 1,522,780 9,140.3 141,620 28.026.9 11,784.8 29,930 19,857.5 101,105 97,155.4 81,395 2,291.1 4 10,746.0 4,364.3 839.1 36,889.9 7,346.4 1984 base 10,200.7 3,393 18/32-kip axleveight limits 398,215 6,228.7 686,930 2,207.2 121,545 22,469.0 303, 315 5, 794. 7 22,265 13,470.0 70,810 1,320.9 480.3 60,955 51,490.5 2,406.1 811.4 8,500.9 4,915.5 19,240.0 1965 base 2,125.8 Truck average annual traffic Truck-miles, annual (millions) Truck (vehicle) operating cost, Truck-miles, annual (millions) Truck (vehicle) operating cust, Truck (vehicle) operating cost, Truck (vehicle) operating cost, Truck (vehicle) operating cost, Truck-miles, annual (millions) Truck (vehicle) operating cost, Truck (vehicle) operating cost, Truck average annual traffic Truck-miles, annual (millions) Truck-miles, annual (millions) Truck-miles, annual (millions) Truck-miles, annual (mill fors) Truck average annual traffic annual (million dollars) Item ñ 2 Æ B SR SU Highway ayatem systems (1-6) All ц, è. ÷ ц. 6.

β	u
osts,	total
ating c	vehicle length steps and bighway system: 1965 and 1984Method & National totals
oper	7
truck	ethod
daily	984M
and	and l
miles	1965
truck-	stem:
Ly	V 8 V
, da	zb va v
ADT	b16
ruck	s snd
в, tj	step
m11e	wth
10e	len
terl	icle
Cer	ve
Tsble 15-6 Centerlive miles, truck ADT, daily truck-miles, and daily truck operating costs, by	
Tsble	

Highway system 1. IR C			~ Ann ~			Anne im Smar	Btep 2	rengua step	step 3	Length step	step 4
Ĕ	Item	1962 axle-ve	axle-veight limit	35/50/55	35/50/55/65 feet	35/55/60	35/55/60/65 feet	40/55/65	40/55/65/65 fect	PHO/22/10	40/55/70/70 feet
HI .		1965	1984	1965	1984	1965	1984	1965	1984	1965	1984
-	Centerline miles, December 31,1965 Truck ADT (National wtd. average) Truck-miles, daily (1,000)	15,648 1,091 17,065	34,880 2,047 71,383	15,648 931 14,567	34,880 1,761 61,411	15,648 889 13,910	34,880 1,677 58,507	15,648 834 13,057	34,880 1,580 55,105	15,648 809 12,660	34,880 1,529 53,348
	Truck (vehicle) operating costs, daily (\$1,000)	6,592	27,947	6,007	25,867	5,742	24,707	5,437	23,494	5,277	22,794
N. II	Centerline miles, December 31,1965 Truck ADT (National vtd. average) Truck-miles, daily (1,000)	3,213 1,882 6,047	6,002 4,172 25,042	3,213 1,677 5,388	6,002 3,727 22,372	3,213 1,639 5,265	6,002 3,634 21,814	3,213 1,479 4,753	6,002 3,291 19.750	3,213 1,458 4,685	6,002 3,239 19,441
	Truck (vehicle) operating costs, daily (\$1,000)	2,223	9,297	2,027	8,550	1,978	3,326	1,794	1,004	1,772	7,484
	Centerline miles, December 31, 1565 Truck ADT (National wid. average) Truck-miles, daily (1,000)	1 ³⁴ , 861 333 61, 559	197,874 388 76,786	184, 861 291 53,881	197,874 345 68,200	184,861 280 51,843	197,874 330 65,293	184,861 260 48,097	197,874 307 60,305	184,861 255 47,144	197,874 301 59,563
	<pre>iruck (Venicle) operating costs, daily (\$1,000)</pre>	23,290	29,441	21,258	514'12	20,448	26,267	19,129	24 712	18,748	24,203
	Centerline miles, December 31,1965 Truck ADT (National wid. average) Truck-piles, daily (1,000)	19,108 831 15,876	29,455 1,096 32,287	19,108 708 13,535	29,455 933 27,472	19,108 694 13,268	29,455 912 26,867	19,108 10,928 11,928	29,455 823 24,230	19, 108 617 11, 785	29,455 812 23,906
	daily (\$1,000)	5,824	11,957	5,053	10,399	9#6,4	10,157	174,4	9,236	4,420	6,109
5. SR	Centerline miles, December 31,1965 Truck ADT (Mational wid. average) Truck-miles, daily (1,000)	602,899 61 36,904	665, 332 82 54,404	602,899 62 37,294	665,332 86 56,982	602,899 60 36,415	665, 332 83 55, 350	602,899 55 33,173	665,332 76 50,643	602,899 54 32.855	665,332 75 50,039
	Truck (venicle) operating costs, daily (\$1,000)	13,467	20,127	13,806	21,404	13,454	20,769	12,342	19,140	112,211	18,903
6. su	Centerline miles, December 31,1965 Truck ANT (National vid. average Truck-miles, daily (1,000)	18,639 194 3,619	28,104 223 6,277	18,639 174 3,239	28,104 202 5,672	18,639 171 3,179	28,104 198 5,557	18,639 153 2,856	28 ,104 178 5,305	18,639 152 2,828	28,104 176 4,950
	Truck (vehicle) operating costs, daily (\$1,000)	1,316	2,299	1,197	2,118	1,174	2.012	1,064	1,679	1,049	1,858
All (systems 7 (1-6) 7	Centerline miles, December 31,1965 Truck ADT (National wid. average) Truck-miles, daily (1,000)	844,369 167 141,070	961,647 277 266,179	844, 368 151 127,904	961,647 252 242,109	844,368 147 123,880	961,647 243 233,388	o445,358 135 113,864	961,647 2215,59d	844,368 133 111,957	961,647 220 211,247
	Iruck (venicle) operating costs, daily (\$1,000)	52,712	101,068	49,348	95,753	47,752	92,298	44,245	86,065	43,477	84,351

Table 15-7.-- Annual average truck traffic, annual truck-miles, and annual truck operating costs at length step 0 and differences between the base step 0 and steps 1, 2, 3, and 4: Method 4, Mational totals

Note: All differences are decreases from the base except as noted by plus (+) sign.

		Step 0	0	Leagth	step 1	Leagth step	step 2	Length step	step 3	Length step	step 4
Highway	Item	1962 axle-	1962 axle-weight limit	35/50/55	35/50/55/65 feet	35/55/60	35/55/60/65 feet	HO/55/65	40/55/65/65 feet	HO/55/70	40/55/70/70 feet
a vere		1965 base	1984 base	1965	1984	1965	1984	1965	1'yù	1965	1984
1. IR	Truck annuel average traffic Truck-miles, annuel (millions)	398,215 6.228.7	747,155 26,054.8	58,400 911.8	104, 390 3,639.8	73,730 1,151.6	135,050 4,699.7	93,805 1,462.a	+ 11 + 1 2 4 h - 5	102, 3.16 1, 617.8	189, V70 6, 582 8
	Truck (venicle) operating cost, anguel (million dollars)	2,406.1	10,200.7	213.5	759.2	310.3	1,182.6	124	1,625. 5	0.01-14	1.380.6
2. IU	Truck annual average traffic Truck-miles, annual (millions)	686,930 2,207.2	1,522,780 9,140.3	74, 825 240.5	162,425 974.6	88,695 285.4	196,370 1,178.2	147,095 472.3	221, 500 1,851, 6	144, 760 197.1	340,545 2,044
	iruck (venicie) operating cost, annual (million dollars)	4.118	3, 393.4	71.5	272.7	4.68	354.4	्र - <u>1</u> - न	6.1.	124 0	étur 1
Ж	Truck annual average traffic Truck-miles, annual (millions)	121, 545 22,469.0	141,620 26,026.9	15,330 2,802.5	15,695 3,133.9	19, 345 3, 546.3	21,170 4,194.9	~,645 4,91.	1. '05 311.2	28,470 5,261.5	31,755 6,266.4
	ITUCK (VENICLE) OPERALING COST, BUNUAL (million dollars)	8,500.9	10,746.0	741.7	739.5	1,037.3	1,150.5	1.51F.C		1,657.3	1,911.9
4. PU	Truck average annual traffic Truck-miles sinual (millions)	303,315 5,794.7	400,040 11,784.8	44,895 854.5	59.495 1,757.5	50.0 05 951.9	67.250 1,275.3	75,55 1,441.0	9, 645 2, 440.8	78, 110 1 493 2	103 .660 3,059.1
	annal (Edilion dollars)	2,125.8	4,364.3	281.4	568.7	320.5	0-720	1.164	2.8.E.	4.93.4	1,039.5
5. SR	Truck annual average traffic Truck-miles, annual (millions)	22,265 13,470.0	29,930 19,857.5	+365 +142.4	+1,460 +941.0	365 178.5	+365 +345.3	2,190 1,361.8	2,±40 1,372 3	2,522	2,555 1,593.2
	annual (million dollars)	4,915.5	7,346.4	+123.7	+466.1	1.1	+234.3	i410 6	360.3	1 851	4.94H
6. su	Truck annual average traffic Truck-miles, annual (millions) Truck (usidal) averation	70,810 1,320.9	81,395 2,291.1	7,300 138.7	7,665 220.8	8, 395 160.6	9,125 262.3	14,965 278.5	16,425 464.3	15,330 298.7	17,155 484.4
	annal (million dollars)	480.3	839.1	43.4	66.1	51.8	82.9	93.1	153.3	97 5	161.0
All systems	Truck annuel average traffic Truck-Eiles, annuel (millions) Truck (milions)	60,955 51,490.5	101,105 97,155.4	5,840 4,805.6	9,125 8,785.6	7,300 6,274.3	12,410 11,968.6	11,680 9,930.1	19,345 18,462.2	12,410 10,626.2	20,805 20,050.3
10-11	annual (million dollars)	19,240.0	36,849.9	1,227.8	1,940.1	1,810.4	3,201.1	3,090.6	5,476.1	3,370.8	6,101.7

CHAPTER 16

HIGHWAY FINANCING REQUIREMENTS UNDER INCREASED AXLE-WEIGHT LIMITS

Any increase in the legal limits of axle weight would no doubt be accompanied by some additional highway construction cost for the structure of pavements and bridges on existing systems in order to provide the necessary strength to carry the heavier axles that would follow such an increase in axle-weight limits. Therefore, some estimate is called for of the additional financial requirements for highway construction that would result from increased legal limits on axle weight.

1. BASIC CONCEPT AND APPROACH

An estimate of the additional financing required for highway construction under laws permitting higher axle weights can be made by using the material in Chapter 10 as the basis for estimating the additional construction cost per mile of highway. There remains, however, the necessity of estimating the number of miles of existing highway that would be constructed, reconstructed, or resurfaced, in a given time period. It has been assumed that any increase in the allowable weights of axles would result in thicker pavements and stronger bridges,

and, therefore, in a greater cost in dollars per mile of highway construction. The analysis of the economy of axleweight limits indicates the additional costs per mile to be expected.

It is logical to assume that the heavier axle weights, when applied to pavements not specifically designed for such axle weights would cause the pavement to reach a stage warranting reconstruction or resurfacing sooner in calendar time than it would were it not subjected to the higher axle weights.

Since the original pavement design in Chapter 10 was based upon the specific number of E 18-kip axle applications in the 20-year period, the shortening of the service life of the pavement over the years to reach a PSI of 2.0 in 20 years can be calculated by determining the date at which the number of E 18-kip axle applications accumulated would be the same under the higher axle-weight limits as under the lower limits. This time interval, beginning January 1, 1965, was calculated for each of the 5 axle-weight limits at the same time that the computer calculated the pavement design and pavement cost. In calculating the finances required under different levels of axle-weight limits, analysis Method 1-M was used for determining the adjusted average service life and the added cost of construction or reconstruction at the higher limits.

The second major factor that had to be determined was the total miles of highways to be reconstructed each year for the 20 years beginning January 1, 1965. The approach to this estimate was to determine the amount of existing construction on each of the highway systems in terms of the ages, or vintage years, of construction of its several segments and the miles remaining. By applying to the miles of original construction by vintage years a retirement distribution or survivor curve of the appropriate average service life, a theoretical retirement from existing pavements and the miles remaining by ages could be forecasted year by year. Assuming, then, that the retired mileage of pavements would be replaced by reconstruction or resurfacing and that the highway system would be extended by adding lanes and increasing centerline mileage year by year, it is possible to develop a new-construction, reconstruction, and resurfacing program for the 20-year period from 1965 through 1984 for each highway system considered.

In order to apply the basic method, it was necessary to determine by pavement type the lane-miles constructed during each year and the lane-miles existing at the beginning of each year for each highway system and for each of the ten census divisions. Further, it was necessary to determine the shape of the survivor curves and the average service life to be applied to each vintage year of construction by pavement surface type, by highway system, and by census division.

2. ASSEMBLY OF HISTORICAL DATA ON PAVEMENT CONSTRUCTION TO 1964

The forecast of the requirements for pavement replacement from 1965 through 1984 depends upon the age and surface type of pavements existing on January 1, 1965. An estimate of these ages and mileages as of 1965 depends upon the year-by-year constructed mileage in prior years. Therefore, a first step in a projection of construction activity from 1965 through 1984 was to assemble the historical data on construction before 1965.

Data on annual lane-miles of construction by surface types and by census divisions were obtained from construction tabulations furnished by the Program Analysis Division, "Highway Statistics," and other sources. The lane-miles constructed are given for the East North Central census division in table 16-1 together with the type survivor curve and average service life, as an illustration of how the data for each census division were handled.

3. SELECTION OF SURVIVOR CURVES AND SERVICE LIVES

Through the Statewide highway planning surveys, starting in 1935 and continuing to the present, several of the State highway departments made studies to determine the service lives YEAR LANE-MILES BUILT 1 of 5

CENSUS OLVISION, 5 EAST NORTH CENTRAL

TYPE SURVIVOR CURVES FOR EACH SINGLE/TANDEM AXLE-WEIGHT LIMIT

		18/32	20/35	22/38	24/41	26/44
		TEM 1 INTERS			SURFACE-TYPE	GROUP, GO
1947	25	\$1 12.0	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7	51 7.7	51 6.4	\$1 5.5
1949		51 12.0	51 9.4	51 7.7	51 6.4	51 5.5
1950	103	\$1 15.0	S1 11.7	S1 9-6	51 8.0	51 6.9
1951 1952	31 113	51 15.0	51 11.7	51 9.6	51 8.0 51 8.0	51 6.9 51 6.9
1,72	,	51 1900				5. 0.,
1953	180	S1 15.0	51 11.7 51 11.7	\$1 9.6	S1 8.0	\$1 6.9
1954	26 26	\$1 15.0	S1 11.7 S1 11.7	51 9.6 51 9.6		51 6.9
1955	31	S1 15.0 S1 20.0	51 15.7	51 12.8	51 1047	51 6.9 51 9.2
1957	33	51 20.0	\$1 15.7	51 12.8		51 9.2
1960	42 35	S2 20.0 S2 20.0	SZ 15.7 SZ 15.7	S2 12.8 S2 12.8 S2 12.8 S2 12.8 S2 12.8 S2 12.8	S2 10.7 S2 10.7	52 9.2 52 9.2
1961	186	52 20.0	52 15.7	52 12.8	52 10.7	52 9.2
1963	198	52 20.0	52 15.7	52 12.8	SZ 10.7	52 9.2
1964	168	\$2 20.0	SZ 15.7	52 12.8	52 10.7	52 9.2
		EM 1 INTERS	TATE BUDAL		SURFACE-TYPE	60010.3
	2121	En 1 INTERS	TATE NURAL		SURFACE-FIFE	GRUUP; M
1947	13	\$4 17.0	54 14.8	S4 13.0	S4 11+5	54 10.4
1948	32	54 17.0		24 13.0	24 11-2	54 10.4
1949	26 132	54 17.0 54 18.0	S4 14.8 S4 15.7	54 13.0 54 13.8	54 11.5 54 12.2	54 10.4 54 11.0
1951	121	54 18.0	S4 15.7	\$4 13.8	54 12.2	54 11.0
		54 17.0 54 19.0 54 18.0				
1952	98	54 18.0 54 18.0 54 18.0	S4 15.7	S4 13.8	54 12.2 54 12.2 54 12.2	54 11.0 54 11.0
1953 1954	126 215	54 18.0	54 15.7	54 13.8	54 12.2	S4 11.0
1955	197	54 20.0	54 15.7 54 15.7 54 15.7 54 17.4 54 17.4	\$4 15.3	\$4 13.6	54 12.2
1956	425	54 20.0	54 17+4	S4 15.3	\$4 13+6	54 12.2
1957	259	56 20.0	\$6.17.6	\$6 15.3	\$6 13.6	56 12.2
1958	411	S4 20.0	56 17.4 54 17.4 54 17.4	S4 15.3	54 13.6	
1959	456	54 20.0		S4 15+3 S4 15+3	54 13.6 54 13.6	54 12.2
1960 1961	1161	54 20.0 54 20.0	54 17-4	54 15.3	54 13.6	54 12.2 54 12.2
1401	1142	34 20.0	54 17.4	\$4 15+3	\$4 13.6	34 12.2
	5451	EM 2 INTERS	TAYE URBAN		SURFACE-TYPE	GRUUP, 00
1947	3	E 1 1 2 0				51 0.7
		31 12.00	21 11.0	SI 10.1	S1 9.4	
1948	11	Sì 12+0 SI 12+0	\$1 11.0 \$1 11.0	S1 10.1 S1 10.1	51 9+4 51 9+4	51 0.7
1948	11 63	S1 12.0 S1 12.0	SI 11.0 SI 11.0	51 10.1	S1 9.4 S1 9.4	51 0.7 51 0.7
1948 1949 1950	11 63 34	S1 12.0 S1 12.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7	S1 10+1 S1 12+6	51 9.4 51 9.4 51 11.7	51 8.7 51 8.7 51 10.9
1948 1949 1950 1951	11 63 34 13	S1 12.0 S1 12.0 S1 15.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6	51 9.4 51 9.4 51 11.7 51 11.7	51 8.7 51 8.7 51 10.9 51 10.9
1948 1949 1950 1951	11 63 34 13 26	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6	51 9.4 51 9.4 51 11.7 51 11.7	51 8.7 51 8.7 51 10.9 51 10.9 51 10.9
1948 1949 1950 1951 1952 1953	11 63 34 13 26 34	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6	51 9.4 51 9.4 51 11.7 51 11.7 51 11.7 51 11.7	S1 0.7 S1 0.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9
1948 1949 1950 1951	11 63 34 13 26	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6	51 9.4 51 9.4 51 11.7 51 11.7 51 11.7 51 11.7 51 11.7	51 8.7 51 8.7 51 10.9 51 10.9 51 10.9
1948 1949 1950 1951 1952 1953 1954	11 63 34 13 26 34 2 60	S1 12.0 S1 12.0 S1 15.0	S1 11.0 S1 11.0 S1 13.7 S1 13.7 S1 13.7 S1 13.7 S1 13.7	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6	51 9.4 51 9.4 51 11.7 51 11.7 51 11.7 51 11.7 51 11.7	S1 8.7 S1 8.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9
1948 1949 1950 1951 1952 1953 1954 1955 1956	11 63 34 13 26 34 2 60 29	S1 12.0 S1 12.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6	S1 8.7 S1 8.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9
1940 1949 1950 1951 1952 1953 1954 1955	11 63 34 13 26 34 2 60 29	S1 12.0 S1 12.0 S1 15.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6	S1 8.7 S1 8.7 S1 10.9 S1 10.5 S1 14.5
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	11 63 34 13 26 34 2 60 29	S1 12.0 S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6	S1 6.7 S1 6.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1959	11 63 34 13 26 34 2 60 29 3 51 13 27	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S1 15.6 S2 15.6	S1 6.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5
1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959	11 63 34 13 26 34 2 60 29 3 51 13 27 6	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6 Si 15.6 Si 2.15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1952 1953 1954 1955 1956 1956 1959 1960 1961	11 63 34 13 26 34 2 60 29 3 51 13 27 6	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6 Si 15.6 Si 2.15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1951 1953 1955 1956 1956 1956 1959 1959 1961 1961	11 63 34 13 26 34 2 60 29 3 51 13 27 6	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6 Si 15.6 Si 2.15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1952 1953 1954 1955 1956 1956 1959 1960 1961	11 63 34 13 26 34 2 60 29 3 51 13 27 6	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S1 15.6 S2 15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1951 1953 1955 1956 1956 1956 1959 1959 1961 1961	11 63 34 13 26 34 2 60 29 3 51 13 27 6	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3 SI 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6 Si 15.6 Si 2.15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.5 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1951 1953 1955 1956 1956 1956 1959 1959 1961 1961	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27	S1 12.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0	S1 11.0 S1 13.7 S1 16.3 S1 16.3 S1 16.3 S2 16.3 S2 16.3 S2 16.3 S2 16.3 S2 16.3	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 Si 15.6 Si 15.6 Si 15.6	S1 0.7 S1 10.9 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1951 1953 1955 1955 1956 1959 1960 1960 1961 1962 1963	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 5 55 51 55 51 55 55 55 55 55 55 55 55	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9	SI 9.4 SI 9.4 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 15.6 SI 15.6	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1952 1953 1955 1955 1955 1956 1957 1959 1960 1961 1962 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 7 5 7 5 7 5 7 5 7 5 7 7	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9	SI 9.4 SI 9.4 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 15.6 SI 15.6SI 15.6 SI 15.6	S1 6.7 S1 6.7 S1 10.9 S1 10.5 S1 14.5 S2 14.5 S4 12.6
1948 1949 1950 1951 1951 1953 1955 1955 1955 1955 1959 1960 1961 1962 1963 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 5 55 51 55 51 55 55 55 55 55 55 55 55	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S2 15	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14.5
1948 1949 1950 1951 1953 1953 1955 1955 1955 1956 1957 1960 1961 1962 1964 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 5 15 13 27 6 27 27 27 26 25	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.5 SI 16.5 SI 16.5	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S3 16.9 S4 14.5 S4 15.4	SI 9.4 SI 9.4 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SZ 15.6	S1 6.7 S1 6.7 S1 10.9 S1 14.5 S2 14
1948 1949 1950 1951 1951 1953 1955 1955 1955 1955 1959 1960 1961 1962 1963 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 27 27 26	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S1 16.9 S2 16.9	S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S2 15	S1 0.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14
1948 1949 1950 1951 1953 1953 1955 1955 1955 1955 1956 1957 1959 1960 1961 1962 1963 1964 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 5 15 13 27 6 27 27 27 26 25	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.0 S2 50.	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.5 SI 16.5 SI 16.5	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S3 16.9 S4 14.5 S4 15.4	SI 9.4 SI 9.4 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SI 15.6 SZ 15.6	S1 6.7 S1 6.7 S1 10.9 S1 14.5 S2 14
1948 1949 1950 1951 1953 1953 1955 1955 1955 1956 1960 1960 1961 1962 1963 1964 1964 1964 1964 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 0 27 5 5 13 27 6 2 27 26 25 77 91 15	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 17.0 S4 18.0 S4 18.0 S5 18.	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.6 SI 16.6	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S4 14.5 S4 15.4 S4 15.4 S4 15.4	SI 9.4 SI 9.4 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 11.7 SI 15.6 SI 15.6	S1 6.7 S1 6.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14
1948 1949 1950 1951 1952 1953 1955 1955 1955 1955 1955 1959 1960 1961 1962 1963 1964 1964 1964 1964 1965 1955	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 7 51 13 27 6 27 27 27 27 27 27 27 27 27 27 27 27 27	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S5 20.0 S5 20.	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.6 SI 16.6 SI 16.6 SI 16.6	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S4 14.5 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4	Si 9.4 Si 9.4 Si 0.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 S	S1 6.7 S1 6.7 S1 10.9 S1 14.5 S2 14.5 S4 13.3 S4 13.3 S4 13.3 S4 13.3 S4 14.88 S4 13.3 S4 14.88 S4 13.5 S4 14.88 S4 13.5 S4 14.88 S4 13.5 S4 13.5 S
1948 1949 1950 1951 1953 1953 1955 1955 1955 1955 1956 1960 1961 1962 1963 1964 1964 1964 1964 1964 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 7 51 13 27 6 27 27 27 26 27 27 26 27 77 91 15 74 41	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S2 20.0 S4 17.0 S4 17.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.4	$\begin{array}{c} S1 & 10.1 \\ S1 & 12.6 \\ S1 & 16.9 \\ S1 & 16.9 \\ S1 & 16.9 \\ S2 & 16.9 \\ S4 & 15.4 \\ S4 & 15.1 \\ S4 & 17.1 \\ S4 & 17.1 \\ \end{array}$	Si 9.4 Si 9.4 Si 11.7 Si 15.6 Si 15.8 Si 15.8Si 15.8 Si 15.8	S1 6.7 S1 6.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S2 14.5 S4 13.3 S4 13.3 S4 13.3 S4 13.3 S4 14.8 S4 14.8
1948 1949 1950 1951 1953 1953 1955 1955 1956 1959 1960 1961 1963 1964 1964 1964 1964 1964 1964 1951 1955 1955 1955 1955 1955 1955	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 27 26 25 77 26 25 77 91 15 74 41 134	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4 20.0 S4 20.0 S5 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.6 SI 16.6 SI 16.6 SI 16.6	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S4 14.5 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4	Si 9.4 Si 9.4 Si 0.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.6 S	S1 6.7 S1 6.7 S1 10.9 S1 14.5 S2 14
1948 1949 1950 1951 1953 1955 1955 1955 1955 1955 1960 1961 1962 1963 1964 1963 1964 1965 1955 1955 1955 1955 1955 1955 1955	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 31 13 27 27 26 31 13 27 27 27 26 31 13 27 41 2 41 2 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 7 51 13 27 7 51 13 27 7 51 13 27 7 51 13 27 7 7 51 27 7 7 51 13 27 7 7 51 13 27 7 7 51 13 27 7 7 26 27 7 7 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 17.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.6 SI 16.	S1 10.1 S1 12.6 S1 16.9 S2 16.9 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 17.1 S4 17.1	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.8 Si 13.5 Si 14.3 Si 14.3 Si 14.3 Si 14.3 Si 14.3 Si 14.5 Si 15.8 Si 15.8	S1 6.7 S1 6.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S2 14.5 S4 12.6 S4 13.3 S4 13.3 S4 13.3 S4 13.3 S4 13.3 S4 13.8 S4 14.8 S4 14.8 S4 14.8 S4 14.8
1948 1950 1951 1952 1953 1953 1955 1956 1957 1956 1950 1960 1960 1960 1960 1964 1964 1964 1964 1955 1955 1955 1955 1955 1956 1955 1956	11 63 34 13 26 34 2 60 29 3 51 13 27 6 29 27 27 27 27 27 27 27 27 27 27 27 27 27	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.4	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S1 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S2 16.9 S4 14.5 S4 14.5 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 17.1 S4 17.1	S1 9.4 S1 9.4 S1 1.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S2 15.6 S2 15.6 S2 15.6 S2 15.6 S2 15.6 SURFACE-TYPE S4 13.5 S4 13.5 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 15.8 S4 15.8 S	S1 8.7 S1 8.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14.5 S4 12.6 S4 13.3 S4 13.3 S4 13.4 S4 14.8 S4 14.8 S4 14.8 S4 14.8
1948 1949 1950 1951 1953 1955 1955 1955 1955 1955 1960 1961 1962 1963 1964 1963 1964 1965 1955 1955 1955 1955 1955 1955 1955	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 31 13 27 27 26 31 13 27 27 27 26 31 13 27 41 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 51 13 27 7 51 13 27 7 51 13 27 7 51 13 27 7 51 13 27 7 7 51 13 27 7 7 51 13 27 7 7 8 13 27 7 7 8 13 27 7 7 26 27 7 7 8 13 27 7 7 26 27 27 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 17.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0 S4 20.0	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 18.3 SI 18.4 SI 18.	S1 10.1 S1 12.6 S1 16.9 S2 16.9 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 17.1 S4 17.1	Si 9.4 Si 9.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.8 Si 13.5 Si 14.3 Si 14.3 Si 14.3 Si 14.3 Si 14.5 Si 15.8 Si 15.8	S1 6.7 S1 6.7 S1 0.9 S1 10.9 S1 14.5 S2 14.5 S4 13.3 S4 13.3 S4 13.3 S4 13.3 S4 14.8 S4 14.
1948 1949 1950 1951 1953 1953 1955 1956 1959 1960 1962 1964 1964 1964 1964 1964 1964 1964 1964	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 26 27 27 26 25 77 26 25 77 91 15 74 41 134 88	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.6 SI 16.	S1 10.1 S1 12.6 S1 16.9 S2 16.9 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 15.4 S4 17.1 S4 17.1 S4 17.1 S4 17.1	Si 9.4 Si 9.4 Si 0.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.8 Si 15.8	S1 8.7 S1 8.7 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S1 14.5 S2 14.5 S4 12.6 S4 13.3 S4 13.3 S4 13.4 S4 14.8 S4 14.8 S4 14.8 S4 14.8
1948 1949 1950 1951 1953 1955 1955 1955 1955 1956 1960 1961 1964 1964 1964 1964 1964 1964 1955 1956 1955 1956 1955 1956 1955 1956 1957	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 27 26 27 27 26 27 77 26 27 77 26 27 77 26 87 77 91 15 74 41 134 31 87 88 148 108	S1 12.0 S1 12.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 15.0 S1 20.0 S1 20.0 S1 20.0 S2 20.0 S4 17.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 16.3 SI 16.4 SI 16.6 SI 16.	S1 10.1 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 12.6 S1 16.9 S1 16.9 S2 16.9 S4 17.4 S4 17.4 S4 17.1 S4 17.1 S4 17.1 S4 17.1 S4 17.1	Si 9.4 Si 9.4 Si 0.4 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 11.7 Si 15.6 Si 15.8 Si 15.8 S	S1 6.7 S1 0.9 S1 10.9 S1 14.5 S2 14.5 S4 12.6 S4 12.8 S4 12
1948 1949 1950 1951 1952 1953 1955 1955 1955 1955 1956 1957 1960 1961 1962 1963 1964 1963 1964 1965 1956 1957 1958 1959 1956 1956 1956 1957	11 63 34 13 26 34 2 60 29 3 51 13 27 6 2 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 26 27 27 27 27 26 27 27 26 27 27 26 27 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27	S1 12.0 S1 12.0 S1 15.0 S1 20.0 S2 20.0 S4 17.0 S4 18.0 S4 18.0 S4 18.0 S4 20.0 S4 20	SI 11.0 SI 11.0 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 13.7 SI 18.3 SI 18.4 SI 18.	$\begin{array}{c} S1 & 10.1 \\ S1 & 12.6 \\ S1 & 16.9 \\ S1 & 16.9 \\ S1 & 16.9 \\ S2 & 16.9 \\ S4 & 17.1 \\$	S1 9.4 S1 9.4 S1 9.4 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 11.7 S1 15.6 S1 15.6 S2 15.6 S4 13.5 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 14.3 S4 15.8 S4 15.	S1 6.7 S1 0.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 10.9 S1 14.5 S1 14.5 S2 14.5 S4 12.6 S4 13.3 S4 13.3 S4 13.3 S4 13.4 S4 14.8 S4 14

1. THE DESIGNATION SUCH AS L3-20 INDICATES AN L3 SHAPE DF THE CURVE AND A 20 YEARS AVERAGE SERVICE LIFE.

TABLE 16-1. -- ESTIMATED LANE-MILES OF HIGHWAY CONSTRUCTION AND RELATED TYPE SURVIVOR CURVES 1. FOR FIVE AXLE-WEIGHT LIMITS

TYPE SURVIVOR CURVES FOR EACH SINGLE/TANDEM AXLE-WEIGHT LIMIT YEAR LANE-MILES BUILT 18/32 20/35 22/38 24/41 26/44 SYSTEM 3 FEDERAL-AIO PRIMARY RURAL SURFACE-TYPE GROUP, F 6.1 7.0 7.0 5.2 4.3 S3 7.0 S2 8.0 S4 8.0 L3 6.0 L3 5.0 1923 1924 1925 1926 S3 5.3 S2 6.1 S4 6.1 L3 4.6 S 3 S 2 S 4 L 3 L 3 4.2 4.8 4.8 3.6 3.0 547 53 52 54 L3 \$3 4.7 S 2 S 4 5.4 5.4 4.0 3.4 6 68 118 1.3 4.6 13 1927 214 ĩ3 ũ3 53 53 53 53 53 53 7.8 53 4.3 53 4.3 53 53 53 53 53 6.9 3.8 3.8 6.1 3.4 3.4 3.4 5.4 3.0 3.0 1928 58 S 3 9.0 \$3 82 58 54 1929 \$3 \$3 53 53 5.0 1931 \$3 5.0 53 4.3 3.8 \$3 3.0 1932 38 ιí 5.0 3.4 3.0 ι. L1 τ1 11 4.3 4.3 4.3 1933 12 L1 3.0 L1 5.0 ι1 L1 3.8 L1 3.4 3.8 3.8 3.8 6.9 3.4 3.4 3.4 6.1 1934 1935 1936 1937 5.0 3.0 3.0 3.0 268 342 ιi L1 ŭi Li LI LI LI LI 5.0 4.3 ιi ιi 320 ū L1 εī 5.4 376 L1 τ1 L1 L4 7.8 L5 7.8 L2 5.2 L1 7.0 5.4 5.4 3.6 4.8 4.2 L4 L5 L2 L4 L5 L2 L4 L5 L2 6.9 6.9 4.6 1938 1044 9.0 L4 6.1 9.0 6.0 8.0 7.0 6.1 4.0 5.4 4.7 1939 768 15 6.1 1941 372 ιî L1 LI LI ίΪ LI 11 ii Ll 6.1 8.0 7.0 7.0 6.1 5.3 5.3 5.3 5.3 5.4 L1 L1 L2 4 • 8 4 • 2 4 • 2 4 • 2 4 • 2 1943 452 L1 τ1 7.0 L1 ιı 1945 1946 1946 1947 590 436 468 570 11 12 6.1 6.1 6.1 L1 L2 L1 L2 L1 53 7.0 L1 53 L1 53 L1 53 4.7 11 53 S3 10.0 S2 10.0 S3 10.0 \$ 3 \$ 2 \$ 3 1948 530 S3 8.7 S2 8.7 S3 8.7 S3 7.6 S2 7.6 S3 7.6 53 52 53 6.7 6.0 1949 6.7 6.7 8.1 9.4 6.0 6.0 7.3 556 546 1951 L1 12.0 L1 14.0 L1 10.4 L1 12.2 L1 9.2 L1 10.7 ί1 L1 490 11 399 8.5 **L**1 1953 1954 1955 1956 1957 L1 12.2 L1 12.2 L2 8.7 L2 8.7 L2 8.7 428 L1 14.0 L1 10.7 LL 9.4 ιı. 8.5 L1 14.0 L2 10.0 L2 10.0 L2 10.0 L1 10.7 L2 7.6 L2 7.6 L2 7.6 476 544 414 410 L1 L2 9.4 6.7 6.7 11 8.5 12 6.0 L2 L2 S3 S3 S3 6.0 6.0 6.0 6.0 8.7 8.7 8.7 8.7 8.7 7.6 L 2 L 2 S 3 1958 236 L2 10.0 L Z L 2 6.7 1959 1960 1961 6.7 6.7 6.7 6.7 L2 10.0 S3 10.0 S3 10.0 L 2 S 3 S 3 S 3 L 2 53 53 53 400 318 7.6 \$3 \$3 290 1962 \$3 10.0 8.7 166 1963 1964 127 S3 10.0 S3 10.0 S3 8.7 S3 8.7 S3 7.6 S3 7.6 53 53 53 53 6.0 6.7 61

1. THE DESIGNATION SUCH AS L3-20 INDICATES AN L3 SHAPE OF THE CURVE AND A 20 YEARS AVERAGE SERVICE LIFE.

16-6

2 of 5

CENSUS DIVISION, 5 EAST NORTH CENTRAL

TABLE 16-1. -- ESTIMATED LANE-MILES OF HIGHWAY CONSTRUCTION AND RELATED TYPE SURVIVOR FURVES INFORMATED LANE-MILES OF SIVE AXLE WEIGHT LIMITS CENSUS DIVISION, 5 EAST NORTH CENTRAL 30

3 of 5

		CENS	US DIVISION. 5	EAST NORT	H CENTRAL	
YEAR	LANE-MILES BUILT	TYPE	SURVIVOR CURV AXLE-W	ES FOR EAC EIGHT L1MI		м
		18/32	20/35	22/30	24/41	26/44
	SYSTE	EM 3 FEOER	AL-AIO PRIMARY	RURAL	SURFACE-TYPE	GROUP, GO
1923	4671	\$3 14.0	\$3 12.2	\$3 10.7	\$3 9.4	\$3 8.5
1924	7549	\$3 21.0		\$3 16.0		\$3 12.7
1925	7768	R3 16+0	R3 13.9	R3 12.2	R3 10.8	R3 9.7
1926	4491	R3 17.0	R3 14.8	R3 13.0		R3 10.3
1927	9224	\$3 14.0	\$3 12.2	\$3 10.7	\$3 9.4	\$3 8.5
1928	6030	\$3 14.0	\$3 12.2	\$3 10.7	\$3 9.4	\$3 8.5
1929	886	\$3 11.0	\$3 9.6	\$3 8.4	53 7.4	\$3 6.6
1930	931	R4 13.0	R4 11.3	R4 9.9	R4 8+8	R4 7.9
1931	938	\$3 10.0	\$3 8.7	\$3 7.6		\$3 6.0
1932	1012	\$3 13.0	\$3 11.3	\$3 9.9	\$3 8.8	\$3 7.9
1933	987	L3 11.0	L3 9.6	L3 8.4		L3 6.6
1934	1146	L3 10.0	L3 8.7	L3 7.6		L3 6.0
1935	1032	\$3 12.0	\$3 10.4	\$3 9.2		\$3 7.3
1936 1937	1319	S3 16.0 S3 14.0	S3 13.9 S3 12.2	S3 12.2 S3 10.7	S3 10.8 S3 9.4	S3 9.7 S3 0.5
1,31	1320	33 14+0	33 12+6	33 10.1	33 7.4	33 0.3
1938		\$3 12.0	\$3 10.4	\$3 9.2	S3 0+1	\$3 7.3
1939	1294	\$3 10.0	\$3 8.7	\$3 7.6	\$3 6.7	\$3 6.0
1940	1413	\$2 13.0	S2 11.3	\$2 9.9		\$2 7.9
1941	1555	\$2 12.0	S2 10.4	\$2 9.2		S2 7.3
1942	1416	\$3 10.0	\$3 8.7	\$3 7.6	\$3 6.7	\$3 6.0
1943	1671	\$3 14.0	\$3 12.2	\$3 10.7		\$3 8.5
1944		\$3 15.0		\$3 11.4		\$3 9.1
1945 1946	1527	\$3 12.0	\$3 10.4	S3 9.2 S3 10.7	S3 8.1 S3 9.4	\$3 7.3
1940	1734 3124	S3 14.0 S2 15.0	S3 12.2 S2 13.0	S2 11.4	S3 9.4 S2 10.1	\$3 8.5 \$2 9.1
1948	2777	\$3 13.0	\$3 11.3	\$3 9.9		\$3 7.9
1949	2982	\$2 13.0		\$2 9.9		\$2 7.9
1950	2201 2189	\$1 14.0	\$1 12.2	\$1 10.7		\$1 8.5
1952	2391	S2 13.0 S2 13.0	S2 11.3 S2 11.3	SZ 9.9 SZ 9.9		S2 7.9 S2 7.9
1772	6371	32 13+0	32 11.3	32 7.7	32 0.0	36 1.9
1953	1889	\$1 12.0	\$1 10.4	\$1 9.2	51 8.1	\$1 7.3
1954	2296	S1 12.0		\$1 9.2		\$1 7.3
1955	2256	S1 11.0	\$1 9.6	S1 8+4		SI 6.6
1956	2541	\$2 16.0	\$2 13.9	52 12.2	S2 10.0	\$2 9.7
1957	3192	\$2 16.0	\$2 13.9	\$2 12.2	S2 10.0	\$2 9.7
1958	4462	\$2 16.0	\$2,13.9	\$2 12.2	S2 10.0	\$2 9.7
1959	3189	\$2 16.0		52 12.2		\$2 9.7
1960	4250	\$2 16.0	S2 13.9	\$2 12.2	S2 10.8	\$2 9.7
1961	3252	\$2 16.0	S2 13.9	52 12-2	S2 10-8	\$2 9.7
1962	2949	52 16.0	\$2 13.9	\$2 12.2	S2 10.0	\$2 9.7
1963	2702	\$2 16.0	\$2 13.9	52 12.2	S2 10.0	SZ 9.7
1964	1345	\$2 16.0	\$2 13.9	52 12.2	S2 10.0	52 9.7

1. THE DESIGNATION SUCH AS L3-20 INDICATES AN L3 SHAPE OF THE CURVE AND A 20 YEARS AVERAGE SERVICE LIFE.

TABLE 16-1. -- ESTIMATED LANE-MILES OF HIGHWAY CONSTRUCTION AND RELATED TYPE SURVIVOR CURVES IN FOR FIVE AXLE-WEIGHT LIMITS

4 of 5

			OIVISION, 5			
YEAR	LANE-MILES BUILT	TYPE S		ES FOR EAC	H SINGLE/TANO T	EN
		10/32	20/35	22/38	24/41	26/44
	5421	EM 3 FEOERAL	-A10 PRIMARY	RURAL	SURFACE-TYPE	GROUP, J
1923	3033	\$3 29.0	53 28.3	\$3 27.5	53 26.9	53 26.3
1924	2286	54 28.0 53 28.0	54 27.3 53 27.3	\$4 26.6	54 25.9	54 25.4
1925	1368	53 27.0	53 26.3	53 26.6 53 25.6	S3 25.9 S3 25.0	S3 25+4 S3 24+4
1927	1232	L3 28.0	L3 27.3	L3 26.6	L3 25.9	L3 25.4
1928	2088	L4 28.0	L4 27.3	L4 26.6	L4 25.9	L4 25.4
1929 1930	1788	53 26.0 53 26.0	53 25.3 53 25.3	53 24.7 53 24.7	S3 24.1 S3 24.1	S3 23.5 S3 23.5
1931	2106	R3 28+0	R3 27.3	R3 26.6	R3 25.9	R3 25.4
1932	2128	53 26.0	53 25.3	53 24.7	53 24+1	53 23.5
1933	1350	R3 27.0	R3 26.3	R3 25.6	R3 25.0 R3 25.0	R3 24.4
1934 1935	656 306	#3 27+0 R3 25+0	R3 26.3 R3 24.4	R3 25+6 R3 23+7	R3 23.2	R3 24.4 R3 22.6
1936	258	R3 23.0	R3 22.4	R3 21.8	R3 21+3	R3 20.8
1937	640	R3 25.0	R3 24+4	R3 23+7	R3 23.2	R3 22.6
1938 1939	258 380	53 20.0 53 28.0	S3 19.5 S3 27.3	53 19.0 53 26.6	53 18.5 53 25.9	S3 18-1 S3 25-4
1940	118	53 28.0	\$3 27.3	\$3 26.6	\$3 25.9	\$3 25.4
1941	260	\$3 18.0	53 17.5	53 17-1	53 16.7	\$3 16.3
1942	160	53 18-0	53 17.5	\$3 17-1	53 16.7	53 16.3
1943	36 126	53 16.0 53 15.0	S3 15.6 S3 14.6	S3 15+2 S3 14+2	53 14.8 53 13.9	53 14.5 53 13.6
1945	1 3 6	\$3 26.0	\$3 25.3	53 24.7	53 24+1	\$3 23.5
1946	120 735	53 20.0 53 20.0	53 19.5 53 19.5	53 19.0 53 19.0	S3 10.5 S3 10.5	53 10-1 53 10-1
1948	1187 1289	53 18.0 51 19.0	53 17.5 51 18.5	S3 17.1 S1 18.0	53 16.7 51 17.6	53 16.3 51 17.2
1950	1496	S3 20.0	\$3 19.5	\$3 19.0	\$3 18+5	53 10.1
1951 1952	1531 1763	S3 20.0 S3 20.0	53 19.5 53 19.5	53 19.0 53 19.0	53 10.5 53 18.5	53 10.1 53 10.1
1953	1137	\$3 20.0	\$3 19.5	53 19.0	53 10.5	53 10.1
1954	1347	\$3 20.0	53 19.5	53 19.0	53 18.5	53 18.1
1955	1227	\$3 20.0 \$3 20.0	53 19.5 53 19.5	53 19.0 53 19.0	53 18.5 53 18.5	S3 18.1 S3 10.1
1956	1130	53 20.0	53 19.5	53 19.0	53 18.5	53 10.1
1958	382	\$3 20.0	\$3 19.5	53 19.0	\$3 10.5	53 10-1
1959	617	53 20.0	S3 19.5 S3 19.5	S3 19.0 S3 19.0	53 18.5	53 10.1
1960 1961	695 364	S3 20.0 S3 20.0	53 19.5	53 19.0	S3 10.5 S3 10.5	53 10.1 53 10.1
1962	562	\$3 20.0	\$3 19.5	\$3 19.0	\$3 10.5	53 10-1
1963	1021	\$3 20.0	\$3 19.5	\$3 19.0	\$3 10.5	\$3 18.1
1964	213	53 20.0	\$3 19.5	\$3 19.0	53 18+5	53 18.1
	SYST	EM & FEOERAL	-ATO PRIMARY	URBAN	SURFACE-TYPE	GROUP. F
1934	10	L1 5.0	L1 4.3	L1 3.7	L1 3.3	L1 3.0
1937	45	L1 9.0	L1 7.7	L1 6.7	L1 6.0	L1 5.4 14 5.4
1938 1939	34	L4 9.0 L5 9.0	L4 7.7 L5 7.7	L4 6.7 L5 6.7	L4 6.0 L5 6.0	15 5.4
1940	3	L2 6.0	L2 5.1	L2 4.5	L2 4.0	L2 3.6
1941	2	L1 8.0	L1 6.9	L1 6.0	L1 5.3	L1 4.8
1942	1 3	L1 7.0 L1 8.0	L1 6.0 L1 6.9	L1 5.2 L1 6.0	L1 4.6 L1 5.3	L1 4.2 L1 4.8
1944	د 6	L1 8.0 L1 6.0	L1 6.9 L1 5.1	L1 6.0 L1 4.5	LI 5.5	Ll 3.6
1945	10	L4 7.0	L4- 6.0	L4 5+2	L4 4.6	L4 4+2
1946	10	L1 7.0	L1 6.0	L1 5.2	L1 4.6	L1 4.2
1948	10	53 7.0 52 8.0	53 6.0 52 6.9	\$3 5.2 \$2 6.0	53 4.6 52 5.3	\$3 4.2 \$2 4.8
1951	14	\$3 10.0	53 8.6	\$3 7.5	53 6.6	\$3 6.0
1952	5	L1 14.0	Ll 12.0	L1 10.5	L1 9.3	L1- 8.3
1957	16	L1 14.0	L1 12.0	L1 10.5	L1 9.3	L1 8.3
1958 1959	6 4	L1 14.0 L2 8.0	L1 12.0 L2 6.9	L1 10.5 L2 6.0	L1 9.3 L2 5.3	L1 8.3 L2 4.8
1960	6	53 10.0	\$3 8.6	\$3 7.5	\$3 6.6	\$3 6.0
1963	0	\$3 10.0	53 8.6	\$3 7.5	53 6.6	53 6.0

1. THE DESIGNATION SUCH AS L3-20 INDICATES AN L3 SHAPE OF THE CURVE AND A 20 YEARS AVERAGE SERVICE LIFE.

\$3 7.5

\$3 6.6

\$3 6.0

53 8.6

1959 1960 1964

3

53 10.0

CENSUS OIVISION, 5 EAST NORTH CENTRAL

5 of 5

YEAR	LANE-MILES	TYPE S	URVIVOR CURV AXLE W	ES FOR EAC	H SINGLE/TAND	EM
			50/35	11/10		
			20/35		24/41	
	SYSTE	M 4 FEOERAL	-AID PRIMARY	URBAN	SURFACE-TYPE	GROUP, CO
1934	2724	L3 10.0	L3 8.6	L3 7.5	L3 6.6	L3 6.0
1935	89	\$3 12.0	\$3 10.3	\$3 9.0	\$3 7.9	\$3 7.2
1936	111	\$3 12.0	\$3 10.3	\$3 9.0	53 7.9	53 7.2
1937	103	\$3 14-0	\$3 12.0	\$3 10.5	\$3 9.3	S3 8+3
1938	99	\$3 12.0	\$3 10.3	\$3 9.0	53 7.9	53 7.2
1939	253	\$3 10.0	53 8.6	\$3 7.5	\$3 6.6	\$3 6.0
1940	277	\$2 13.0	\$2 11.1	52 9.7	S2 8.6	52 7.7
1941	253	\$2 10.0	52 8.6*	S2 7.5	S2 6.6	SZ 6+0
1942	2 3 1	\$3 10.0	53 R.6	\$3 7.5	\$3 6.6	\$3 6.0
1943	297	\$3 14.0	\$3 12.0	\$3 10.5	\$3 9.3	\$3 8.3
1944	457	\$3 15.0	\$3 12.9	\$3 11.2	\$3 9.9	\$3 8.9
1945	419	\$3 9.0	53 7.7	\$3 6.7	\$3 6.0	\$3 5.4
1946	755	54 14.0	54 12.0	S4 10.5	\$4 9.3	54 8.3
1947	374	52 15.0	\$2 12.9	52 11.2	52 9.9	S2 R.9
1948	350	53 11.0	\$3 9.4	\$3 8.2	5.3 7.3	\$3 6.6
1949	398	\$2 11.0	52 9.4	\$2 8.2	\$2 7.3	52 6.6
1950	440	51 14.0	\$1 12.0	\$1 10.5	\$1 9.3	\$1 8.3
1951	299	\$2 13.0	52 11.1	52 9.7	\$2 8.6	52 7.7
1952	338	\$2 13.0	52 11.1	S2 9.7	\$2 8.6	S2 7.7
1953	2 3 2	51 10.0	51 8.6	\$1 7.5	51 6.6	\$1 6.0
1954	366	\$1 10.0	51 8.6	\$1 7.5	51 6.6	\$1 6.0
1955	424	\$2 15.0	\$2 12.9	52 11.2	52 9.9	52 8.9
1956	457	\$2 15.0	52 12.9	52 11.2	\$2 9.9	52 8.9
1957	685	\$2 15.0	52 12.9	52 11.2	\$2 9.9	\$2 8.9
1958	614	\$2 15.0	52 12.9	\$2 11.2	\$2 9.9	52 8.9
1959	745	52 15.0	\$2 12.9	\$2 11.2	52 9.9	52 8.9
1960	228	\$2 15.0	52 12.9	52 11.2	52 9.9	S2 0.9
1961	1112	52 15.0	52 12.9	52 11.2	\$2 9.9	52 8.9
1962	490	\$2 15.0	\$2 12.9	52 11.2	52 9.9	52 8.9
1963	476	\$2 15.0	52 12.9	\$2 11.2	\$2 9.9	52 8.9
2011		52 15.0	62 12 0	52 11.2	52 9.9	52 8.9
1964	458	32 13.0	32 12.9	52 11.02	32 9.9	52 0.4
						60000 I
	21216	H & FLUERAL	TATU PRIMARI	URBAN	SURFACE-TYPE	GROUP, J
1934	420	R3 27.0	R3 26.3	R3 25.5	R3 24.8	R3 24.2
1935	214	R3 25.0	R 3 24.3 R 3 22.4	R3 23.6	R3 23.0	R3 22.4
1936	262	R3 23+0	R3 22.4	R3 21.0	R3 21.2 R3 23.0	R3 20.6
1937	260	R3 25.0	R3 24.3	R3 23.6		
1936	198	\$4-16-0	\$4 15.6	54 15.1	54 14.7	54, 14+4
1939	266	\$4 31.0	54 30-1	54 29.3	\$4 28.5	54 27.8
1940	180	\$3 31.0	\$3 30.1	\$3 29.3	\$3 28.5	\$3 27.8
1941	214	\$3 17.0	\$3 16.5	\$3 16.1	\$3.15.6	\$3 15.3
1942	172	\$3 17.0	\$3 16.5 .	\$3 16.1	S3 15.6 S3 14.7	\$3 15.3
1943	74	\$3 16.0	\$3 15.6	\$3 15.1	\$3 14.7	53 14.4
1944	106	\$3 16.0	\$3 15.6	\$3 15+1	53 14.7	\$3 14.4
1945	148	54 26.0		54 24.6		54 23.3
1946	134	56 14.0	54 25.3 56 13.6	\$6 13.2	56 12.9	\$6 12.6
1947	24	\$4 17.0	54 16.5	54 16.1	\$4 15.6	\$4 15.3
1948	74	\$4 17.0	\$4 16.5	54 16+1	\$4 15.6	\$4 15.3
1949	144	\$4 17.0	54 14 8	\$4 16.1		54 15 3
1950	130	S4 17.0 S1 19.0	54 16.5 51 18.5	St 10.1	54 15.6 51 17.5	54 15.3 51 17.1
1951	117	\$3 20.0	53 19.4	\$3 18.9	\$3 18.4	\$3 18.0
1952	106	\$3 20.0	\$3 19.4	\$3 10.9	\$3 18.4	\$3 18.0
1953	126	\$3 20.0	\$3 19.4	\$3 10.9	\$3 18.4	S3 18.0
1954	154	53 30 A	\$3 19.4		63 10 4	13.10.0
1955		53 20.0 54 20.0	54 19.4	53 18.9 54 18.9	53 18+4 54 18+4	53 18.0 54 18.0
1956	239	\$4 20.0	54 19.4	54 18.9	54 18.4	54 18.0
1957	154	\$4 20.0	54 19.4	54 18.9	54 18.4	54 18.0
1958	230	\$4 20.0	\$4 19.4	\$4 18.9	54 18.4	54 18.0
1959	311	\$4 20.0	54 19.4	54 18.9	54 10 A	54 18.0
1960	300	54 20.0	S4 19.4	S4 18.9	54 18.4 54 18.4	54 18.0
1961	298	54 20.0	54 19.4	54 10.9	54 18.4	54 18.0
1962	366	\$4 20.0	54 19.4	54 18.9	54 10.4	54 18.0
1963	256	\$4 20.0	\$4 19.4	54 18.9	\$4 10.4	54 18.0
1964	350	54 20.0	64.10.4	5 4 1 A G		
1 104	259	34 20.0	54 19+4	54 18.9	54 18.4	54 18.0

2. THE DESIGNATION SUCH AS L3-20 INDICATES AN L3 SHAPE OF THE CURVE AND A 20 YEARS AVERAGE SERVICE LIFE.

16-10

in years of their pavements by surface type. By reference to these reports in the files of the Bureau of Public Roads and to published papers, a selection of typical survivor curves and service lives was made for each vintage of construction from 1920 to 1964 for each of the four highway systems and ten census divisions. Table 16-1 indicates the final selections for the East North Central census division. The word final is used because in some cases it was necessary to run some preliminary calculations to test the validity of the survivor-curve selection, as explained in a later section of this report. Adjustments were made to accomplish approximate agreement of the calculated lane-miles of pavement surviving with the lane-miles surviving as of January 1, 1965 as reported in "Highway Statistics."

The so-called "road life" studies, which have been carried on by several State highway departments, used as their basic references a technique published in 1935 by the Iowa State College Engineering Experiment Station under the title, "Statistical Analyses of Industrial Property Retirements." In this publication, 18 typical survivor curves were developed for a variety of physical properties. These curves are shown in figures 16-1, 16-2, and 16-3.

4. PROJECTION TO 1984 OF THE YEARLY LANE-MILES CONSTRUCTED AND SURVIVING UNDER THE BASE AXLE-WEIGHT LIMITS

By applying the survivor-curve selections to the historical year-by-year construction by surface types, a forecast of the lane-miles of construction prior to 1965 that would survive in service yearly from 1965 through 1984 was obtained. To estimate the total yearly construction from 1965 through 1984 requires an estimate of theyearly extensions of the system in lane-miles existing in addition to the retirements (to be replaced) as obtained from the calculations of the surviving lane-miles.

A. Lane-miles in Service Yearly 1965 through 1984

In conformity with past experience, the mileage of a given highway system may be expected to increase more or less yearly, 1965 to 1984. This increase in centerline mileage (and lane mileage) would require, in addition to reconstruction and resurfacing, yearly construction replacing retirements. In order to provide for such extensions of the highway systems, a "control lane mileage" was established for each surface type. The overall system mileage for the Federal-aid primary system from 1965 to 1984 was established in approximate conformity with the forecasted increase in vehicle-miles of travel that was used in Chapter 10. The control lane-miles by surface type, given in table 16-2, were set on the basis that the low and intermediate types would be replaced with high-type pavement and that the mileage of high-type pavement would increase. Some adjustments of the first estimates of future control lane-miles, selected survivor curves, and past annual construction were necessary in order to produce a reasonable number of existing lane-miles year by year from 1965 to 1984.

B. Control Lane-miles by Surface Types

Surface-type classifications for 1965 to 1985 are based on the overall average for the period 1960 through 1984. In the event that control mileage for a particular surface type tended to decrease, the input control was held constant at the 1964 level. This action was required because of the manner in which the computer program was written. The projected decrease in surface-type mileage was provided for by scheduling the retirements for replacement by surfaces of a higher type without changing the classification used by the computer. Such decreases in control mileage occur in the lower surface-type group (F) and represent changes to higher surface types. Therefore, these retirements during the 1965 to 1984 projected period are priced at the construction cost of the high type of surface.

									Sheet	1 of 4
			SYSTE	₩ 1, 1N	TERSTAT	E RURAL				
YEAR				CENSUS	011151	DN	-			
	1. NE	2. Mø	3. San	4 - 5 A 5	5. ENC	6. WNC ./	7. ESC	0. 14 SC	9. M	10. P
			5	URFACE -	TYPE GR	OUP F3	`			
1964	0	0	0	309	0	0	0	288	873	0
1965	0	0	0	309	0	c	0	288	873	0
1966 1967	0 C	0	0	3C9 3C9	0	0	0 C	288 288	873	0
1968	č	ŏ	0	369	0	0	ŏ	288	873	ō
1969	0	0	0	309	0	0	0	268	873	0
1970 1971	0 Ċ	0	0 0	3C9 309	0	0	0 0	288 288	873 873	0
1972	с	ŏ	ŏ	309	0	0	ő	288	873	ŏ
1973	0	0	0	309	0	C	0	288	873	0
1974 1975	0	0	0	3C9 3C9	0 C	C O	0	288 288	873	0
1976	o	0	o	309	õ	ŏ	ő	288	873	0
1977	0	0	0	309	0	0	0	288	873	0
1978 1979	c c	0	0 0	3C9 309	0 *	,0 O	0	288 288	873 873	0
1980	o	0	o	309	ő	0	0	288	873	0
1981	0	Ō	0	309	0	с	0	288	873	ō
1982	c	0	0	309	0 C	0	0	288	873	0
1983	C O	0	0	309		0	0	288 288	873 873	0
		•		SURFACE -				200		Ŭ
1964	1333	516	931	2948	1014	1623	2379	3626	9888	2942
1965	1555	629 742	1287 1644	3659	1144	2000 2360	3250 3850	418C 4553	11009	3637 4228
1967	1999	854	2001	5081	1404	2720	4450	5727	14329	4819
1968	2220	966	235 A	5792	1535	3100	5025	6501	15989	5410
1969 1970	2441 2662	1078 1190	2715 3072	6504 7216	1666	3450 3810	5575 6125	7275 8C49	17649 19309	6001 6592
1971	2683	1302	3429	7928	1928	4180	6675	8787	20969	7183
1972		1414	3786	8640	2059	4558	7222	9525	22629	7773
1973	3318 3533	1509 1605	4122 4458 -	9421 10201	2202	4949 5340	7884 8546	10343	24683 26737	8461 9148
1975	3749	1701	4791	10979	2489	5733	9212	11984	28790	9837
1976	3839	1749	4850	11236	2527	5853	9400	12322	29777	10154
1977 1978	3928 4018	1796	4909 4968	11497	2564	5974 6094	9589 9778	1266C 12999	30762 31748	10470
1979	4108	1891	5027	12017	2640	6214	9967	13337	32733	11105
1980	4197	1938	5086	12276	2677	6335	10155	13675	33719	11421
1981 1982	4287 4377	1985 2033	5145 5204	12535	2715	6455 6576	10344 10533	14C13 14351	34704 35691	11738 12055
1983	4466	2080	5263	13054	2790	6696	10722	14690	36676	12371
1984	4555	2127	5322	13313	2828	6816	10910	15028	37662	12688
				SURFACE	-TYPE G	ROUP J				
1964	458	2087	576	1628	7758	6293	1801	2725	1333	1755
1965	564	2532	781	1952	8950	7191	2268	3013	1521	2217
1966 1967	660 756	2976 3420	986 1191	2276 2600	10050	8089 8987	2640	3416 3819	1670 1819	2610 3003
1968	852	3864	1396	2924	12075	9885	3280	4223	1967	3396
1969	\$48	4308	1601	324 R	13025	10783	3575	4627	2115	3789
1970	1044	4752 5196	1806 2011	3573 3858	13975	11681	3850 4125	5C31 5416	2263	4182 4575
1972	1235	5640	2217	4223	15861	13480	4392	5801	2559	4968
1973	1320	6021	2413	4604	16965	14635	4794	6299	2791	5407
1974	1405	64C2 6786	2610 2805	4986 5366	18068 19173	15791 16955	5197 5602	6798 7298	3023 3256	5847 6288
1976	1527	6974	2840	5493	19463	17311	5717	7504	3367	6490
1977	1563	7164	2875	5620	19754	17667	5832	7711	3479	6694
1978 1979	1599 1634	7353 7541	2909 2944	5746 5873	20044	18023	5948 6061	7516 8122	3590 3702	6895 7097
1980	1670	7730	2979	6000	20625	18735	6176	8328	3813	7300
1981	1706	7920	3013	6127	20915	19091	6291	8535	3925	1502
1982	1721	81C8 8257	3048 3082	6254 6380	21205 21496	19447	6405 6520	E741 E946	4036 4148	7704 7907
1984	1813	8486	3117	6507	21786	20159	6635	9153	4259	8109
			•							

table 16-2. -- projected lang-wiles of highways in service december 31, 1964 terough 1984 by census division and surface type $\!$

1/ The projections from 1964 to 1972 are based on sstimated 1972 system lane-miles obtained from the Interstate Reports Branch. Projections to years after 1972 have been based on estimated vehicls-miles of travel on the system from the Planning Bervices Branch.

2/ Type F was phased out as retired and replaced by higher type f'exible pavement. The original 1964 lane-miles were carried forward to svoid adjusting the computer program.

				# 2, INT					Sheet a	2 of 4
YEAR			31310					-		
TEAR	1.	2.	3.	4.	01V1S10 5.	6.	7. ESC	8.	9.	10.
	NE	MA	SAN	SAS	ENC	WNC	ESC	th SC	۳	P
1044	0			SURFACE- O						
1964	0	0	0	ő	0	0	0	0	0	0
1966	0	0	0	0	0	0	0	0 C	0	0
1968	ő	0	0	ő	0	0	0	0	0	0
1969 1970	0	0	0	0	c	0	0	0	0	0
1970	0	0	0	0	0	0	0 0	0 0	0	0
1972	0	0	0	0	0	0	0	0	0	0
1973	0	0	0	0	0	0	0	o c	0	0
1975	0	0	0	0	0	0	0	с	0	0
1976 1977	o c	0	0	0	0	0	0 0	0	0	0
1978	0	0	0	0	-0	0	0	0	0	0
1979 1980	0	0	0	0	0 0.	0	0 0	0 0	0	σ
1981	0	0	0	0	0	0	0	0	0	0
1982	0	0	0	0	0	0	0	0 C	0	0
1984	ő	o	o	ő	ő	ő	ŏ	ŏ	ő	ŏ
				SURFACE	TYPE G	ROUP OO				
1964	414	257	109	481	288	152	226	786	357	398
1965	524 634	316 375	165 221	551 621	350 435	208 249	261 312	929 1112	461 565	493 588
1967	744	435	277	691	540	290	377	1296	669	683
1968	854 964	4 95 5 5 5	333 390	762 833	665 795	331 372	449 530	1480 1664	773	778 873
1970	1074	615	447	904	940	413	617	1846	981	968
1971	1183	675 735	504	975 1046	1090	453	709 801	2025	1085 1192	1063
1972	1292	735	561 613	1139	1355	535	874	2387	1301	1248
1974	1495	827	664	1231	1457	576	948	2571	1410	1335
1975 1976	1596	873 900	717 739	1325	1558 1612	618 635	1021	2755	1523	1421 1452
1977	1672	928	761	1460	1666	652	1108	2911	1640	1483
1978 1979	1711 1749	955 983	783 805	1527	1719	669 686	1151 1194	2989 3068	1699 1757	1514 1545
1980	1787	1010	827	1663	1827	703	1237	3146	1816	1576
1981 1982	1825	1037 1065	849 872	1731	188C 1934	720	1260 1323	3224 3302	1874	1606 1637
1983	1902	1092	894	1966	1987	754	1367	338C	1992	1688
1984	1940	1120	916	1933	2041	771	1409	3458	2050	1699
				SURFACE	TYPE GR	UUP J				
1964	174	934	306	463	1356	1065	380	1019	193	1823
1965	231 288	1155 1376	450 594	495 527	1586	1226	419	1154	234	2116 2409
1967	345	1597	738	560	2230	1466	547	1502	316	2702
1968	402 459	1818 2040	882 1027	593 626	2600 3000	1577 1694	627 713	1676 1850	357 398	2995 3288
1970	516	2262	1172	659	3400	1814	809	2025	439	3581
1971 1972	572 628	2484 2706	1317 1462	692 725	3830 4269	1928	908 1009	2193 2361	480 522	3874 4172
1973	678	2875	1596	789	4615	2217	1102	2558	570	4483
1974 1975	126 116	3043 3212	1732	854 918	4959 5306	2391 2566	1195 1287	2755 2952	618	4793
1976	794	3314	1925	965	5488	2636	1341	2952 3C36	667 693	5103 5214
1977	813	3415	1983	1012	5670	2706	1395	3120	718	5325
1978	831 850	3516 3617	2041 2099	1059 11C6	5854 6036	2777 2847	1450 1504	3204 3287	744	5435 5546
1980	869	3718	2157	1152	6218	2917	1559	3371	795	5657
1981 1982	887 906	3820 3921	2214 2271	1199	6401 6583	2987 3068	1613 1667	3455 3539	821	5768 5879
1983	924	4022	2329	1293	6766	3128	1721	3623	872	5989
1984	943	4123	2387	1340	6948	3198	1778	3707	898	6100

TABLE 16-2. -- PROJECTED LAND-WILES OF HIGHWAYS IN SERVICE DECEMBER 31, 1964 TEROIDE 1984 BY CENEUS DIVISION AND SUMPACE TIPE-/

1/ The projections from 1964 to 1972 are based on estimated 1972 system lane-miles obtained from the Interstate Reports Branch. Projections to years after 1972 have been based on estimated vehicle-miles of travel on the system from the Flamming Services Branch.

2/ Type F was phased out as retired and replaced by higher type flaxible pavement. The original 1964 lane-miles were carried forward to avoid adjusting the computer program.

									She	et 3 of 4
		SYS	STEM 3,	FEOERAL	-A10 PR	IMARY R	URAL			
YEAR				CENSU	S DIVIS	101				
	1. NE	2 + M#	3. SAN	4. SAS	5. ENC	A.	7. ESC	8. NSC	9.	10.
			3-14	SURFACE		ROUP F2				
1964	2786									
1965	2786	4 3 0 2 4 3 0 2	1573	7560 7560	3266 3266	25371	7409	11368	7622 7822	6405 6405
1966	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1967	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1968 1969	2786	43C2 4302	1573 1573	7560	3266	25371	7409	11368	7622	64 05
1970	2786	4302	1573	7560 7560	3266 3266	25371 25371	7409 7409	11368 11368	7622 7622	6405 6405
1971	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1972	2786	4362	1573	7560	3266	25371	7409	11368	7622	6405
1973 1974	2786 2786	4302	1573	7560 7560	3266	25371	7409	11368	7622	6405
1975	2786	4302	1573	7560	3266	25371 25371	7409	11368	7622	6405 6405
1976	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1977	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1978	2786	4302	1573	7560 7560	3266	25371	7409 7409	11368	7622	640 <u>5</u> 6405
1980	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1981	2786	4 30 2	1573	7560	3266	-25371	7409	11368	7622	6405
1982	2786	4302	1573	7560	3266	25371	7409	11368	7622	6405
1983	2786	4302	1573	7560	3266	25371	7409	11368	7822	6405
1984	2786	4 302	1573	7560	3266	25371	7409	11368	7622	6405
				SURFACE	-TYPE G	ROUP GO	,			
1964	7682	16065	12216	25258	37096	37466	23067	32919	32589	18025
1965	7930	16325	12360	25765	37241	38033	23338	33246	33000	18889
1966	8152	16580	12660	26500	37800	38840	23525	33700	33600	19900
1967	8340	16830	12975	27700	38625	39740	23690	34240	34300	20875
1968	8500 8628	17049	13385	29225 30650	39650 40800	40590 41350	23830 23950	3484C 35475	35350 36850	21800 22710
1970	8733	17520	14160	31975	42070	41949	24061	36120	36500	23609
1971	8796	17700	14500	33125	42800	42450	24171	36725	40100	24409
1972	8860	17900	14835	34175	43300	42820	24281	37200	41600	25207
1973	8927 8996	18090	15110	35075 35875	43700 43990	43188	24391 24501	37650 38C75	43050 44400	25998
1975	9063	18450	15565	36550	44250	43783	24611	38470	45650	2 74 50
1976	9130	18620	15715	37100	44475	44058	24721	36860	46750	28135
1977	9194	18780	15860	37625	44650	44323	24831	39235	47750	28790
1978	9258 9319	18940 19080	16000	38125	44825 44980	44568 44808	24941 25051	39605 39975	48418	29410 30000
1980	9379	19222	16278	39102	45108	45008	25162	40344	49514	30578
1981	9442	19320	16375	39475	45225	45208	25280	40550	50000	31100
1982	9505	19440	16450	39825	45390	45383	25398	40700	50410	31590
1983	9568 9631	19520 19600	16520 16580	40169 40504	45600 45850	45558	25516 25634	40831 40952	50820 51200	32068 32500
1,04	,0,,,	1,000	10,00	-	E-TYPE (2,0,1	10772	21200	52,000
				SURFACE		ROOP J				
1964	2141	12899	3301	5572	19932	24168	5074	7920	418	2043
1965	2170	12980	3385	5897	20087	24368	5124	8133	442	2078
1966	2198	13160	3450	6137	20525	24763	5149 5173	8390	463	2135
1967	2218	13370	3503 3552	6327 6497	2114C 21850	25175 256CC	5197	8710 9097	484	2192 2255
1969	2258	13780	3598	6647	22650	25999	5221	9490	521	2310
1970	2275	1 3 9 5 7	3640	6772	23522	26349	5245	9823	535	2381
1971	2289	14070	3682	6897	23850	26525	5269	9978	546	244.4
1972	2302	14240	3723	7022	24100 24290	26665	5293 5317	10098 10198	557 567	2507 2568
1974	2327	14490	3803	7230	24450	26925	5341	10285	576	2628
1975	2339	14600	3843	7330	24590	27040	5365	10362	584	2686
1976	2350 2361	14700	3881	7430 7515	24715	27150 27260	5389 5413	10437	592 599	2740
1977	2372	14880	3949	7600	24920	27260	5437	10510	606	2792 2841
1979	2382	14950	3979	7675	25010	27456	5461	10637	612	2890
1980	2392	15047	4004	7748	25098	27546	5488	10697	618	2934
1981	2402 2412	15100	4022	7820 7880	25180 25300	27626 27706	5511 5536	10732	623 628	2978 3018
1983	2423	15225	4034	7940	25425	27781	5,62	10795	632	3055
1984	2446	15275	4068	8000	25550	27856	5588	10820	636	3090

TABLE 16-2. -- PROJECTED LAND-MILES OF FIGHWAYS IN SERVICE DECEMBER 31, 1964 TEROUGH 1984 BY CENSUS DIVISION AND SURFACE TYPE/

.

 $\frac{1}{2}$ Instituated on the basis of projections reported in Table II-19 of staff report, Study . Number 1.

2/ Type F was phased out as retired and replaced by higher type flexible pavament. The original 1964 lane-miles were carried forward to avoid adjusting the computer program.

			-					P	age & of	h
		SYST	ЕМ 4, Е	OERAL-	ALC PRIM	ARY UR	3 A N			
YEAR				CENSUS	0171510	INC				
	1.	2. Ma	3.	4.	5.	6. WNC	7. ESC	8. WSC	9.	10. P
	NE	m a	SAN	SAS	ENC TYPE GR			#30	-	*
						-				
1964	125	175	83	336	35	247	194	222	52 52	83 83
1965	125	175	83 83	336 336	35	247 247	194	222	52	83
1967	125	175	83	336	35	247	194	222	52	83
1968	125	175	83	336	35	247	194	222	52	83
1969	125	175	83	336	35	247	194	222	52 52	83 83
1970	125	175	83 83	336 336	35 35	247	194	222 222	52	83
1972	125	175	83	336	35	247	194	222	52	83
1973	125	175	83	336	35	247	194	222	52	83
1974	125	175	83	336	35	247	194	222	52	83
1975	125	175	83 83	336	35 35	247	194	222	52 52	83 83
1976	125	175	83	336	35	247	194	222	52	83
1978	125	175	83	336	35	247	194	222	52	83
1979	125	175	83	336	35	247	194	222	52	83
1980	125	175	83 83	336	35	247 247	194	222	52 52	83 83
1981	125	175	83	336 336	35,	247	194	222	52	83
1983	125	175	83	336	35	247	194	222	52	83
1984	125	175	83	336	35	247	194	222	52	83
			5	URFACE-	TYPE GR	OUP GO				
1964	3407 3440	4440 4528	1568	2699	6518 6760	1971 2039	2781 2865	3630	1945	2211
1966	3480	4580	1660	2724	6910	2053	2930	3850	2160	2348
1967	3520	4650	1706	2774	7010	2088	2975	3940	2230	2418
1968	3561	4710	1752	2809	7075	- 2113	3020	4000	2295	2520
1969 1970	3617 3676	4790 4860	1798	2849 2891	7110	2138	3032 3042	4C5C 410C	2350	2620
1971	3728	4940	1885	2956	7165	2201	3065	4140	2420	2815
1972	3783	5015	1927	3026	7240	2239	3100	4180	2445	2912
1973	3844	5090	1969	3102	7340	2277	3140	4220	2460	3013
1974	3910 3979	5168 5268	2011	3178 3264	7460 7590	2315 2353	3190 3245	4270	2475 2495	3118 3218
1976	4048	5360	2095	3355	7750	2391	3300	4418	2525	3320
1977	4117	54 6 6	2138	3456	7915	2429	3360	4502	2565	3425
1978 1979	4187 4257	5568 5676	2181	3557 3657	8080	2468 2507	3425	4590 4692	2610	3530 3638
1980	4327	5786	2267	3757	8265	2546	3558	4790	2727	3740
1981	4410	5880	2313	3857	8615	2597	3618	4870	2788	3850
1982	4500	5992	2359	3957	8780	2649	3676	4960	2852	3950
1983	4590	6100 6218	2405	4057	8960	2701	3736	5C44 5138	2918	4060
1904	4000	0210				2753	31190	2130	2960	4103
			1	OKFACE.	TYPE GF	UUP J				
1964	622	5606	944	746	4230	3175	686	2060	143	1558
1965	640	5678	946	768	4381	3278	710	2120	153	1708
1966	652	5751	953	791	4475	3365	725	2160	160	1800
1967 1968	660 667	5838 5925	964 977	814 837	4540 4565	3451 3516	738 749	2180	165	1860
1969	672	6028	990	860	4585	3556	753	2230	173	1935
1970	678	6138	1004	683	4595	3596	758	2250	176	1950
1971	684	6239	1018	906	4650	3646	763	2280	178	1960
1972	692 700	6350 6471	1038	929 953	4715	3696	771 782	2300	180 182	1970 1990
1974	709	6580	1078	977	4855	3796	794	2340	183	2025
1975	718	6701	1100	1001	4940	3846	807	2360	184	2060
1976	728	6832	1123	1025	5030	3898	821	2380	185	2100
1977	738 748	6952 7080	1148	1049 1073	5125 5225	3950 4015	835 849	2430 2480	187 189	2150 2200
1979	758	7210	1198	1097	5330	4090	863	2533	191	2250
1980	770	7339	1225	1121	5438	4167	877	2582	193	2311
1981 1982	784 798	7480 7621	1252	1147	5530 5640	4244	891 905	2638 268C	196	2360
1982	813	7763	1277	1199	5750	4398	905	2722	202	2493
1984	828	7905	1327	1226	5865	4475	933	2778	206	2558

TABLE 16-2. -- PROJECTED LAWE-WILES OF HIGHWAYS IN SERVICE DECEMBER 31, 1964 THROUGH 1984 BY CENSUS DIVISION AND SURFACE TIPE $\!\!\!\!\!\!\!\!/$

1/ Brimsted on the basis of projections reported in Table II-19 of staff report, Study Number 1.

3/ Type 7 was phased out as retired and replaced by higher type flaxible pavament. The original 1964 lane-miles were carried forward to avoid adjusting the computer program.

5. TOTAL CONSTRUCTION EXPENDITURES YEARLY FROM 1965 THROUGH 1984

One additional input to the computer was required for estimating the total highway construction expenditures from 1965 through 1984: the costs per lane-mile of new construction, reconstruction, and resurfacing. The computer also required instructions on how to compute for each of the 20 years the number of lane-miles of new construction, reconstruction, and resurfacing. These three basic factors were determined next for each of the four highway systems and for each surface type.

A. Base Construction Cost

The base highway construction costs are given in Chapter 8. Tables 8-9, 8-10, and 8-11 were used for the base costs for the study of financial requirements from 1965 to 1984.

B. Construction Cost of New Highways

New construction cost for each system for 1965 to 1984 is restricted to the yearly increase in lane-miles as indicated by the control lane-miles. Price factors for new construction that are applicable to the Interstate systems are not the same throughout the 20-year project period. After 1972 all new construction was priced at a lower cost than those lane-miles projected from 1965 through 1972.

All Interstate-system new construction costs for the projected years through 1972, were obtained from table 8-10 (Chapter 8) and were divided by four (reducing four lanes to lane-miles) to give the cost per lane-mile at the base axleweight limit. The costs of new construction per lane-mile for the projected period from 1973 through 1984 were obtained in the same manner as those for 1965 through 1972 but include only pavement costs from table 8-9. It was assumed that the Interstate system will be completed during 1972 and that the increased system lane-mileage for each year thereafter will result from increased traffic lanes, not from increased system centerline length.

New construction costs by surface type on the Federalaid primary system were treated in much the same manner as Interstate-system costs were, but with one factor applied throughout the projected (1965 to 1984) period, and a factor of two instead of four used to produce lane-mile cost. The reduced lane mileage factor was required, since the existing Federal-aid primary system averages approximately 2 lanes per mile. See tables 16-3 and 16-4 for the cost per lane-mile of new construction on the Interstate system and table 16-6 for the cost for the Federal-aid primary system.

C. Reconstruction Cost

For flexible and rigid pavements on Interstate systems 1 and 2, a "ratio" of National reconstruction cost per centerline mile was devised by comparing the Nationwide reconstruction

16-22		limits, kips	26/44		1,929 8,043			201	1168			927	3,796			1,630	3,052
. Intersta er lane-n M.	pavement	eight lin	24/41		1,914 8,029		-	463	465			920	3,790			1,621	3,039
on on the dollars p Method 1-	Flexible pave	um axle-w	22/38		1,899 8,016	r 1972		450	462			913	3,784		ction	1,612	3,025
and reconstruction on the Interstate in thousands of dollars per lane-mile s from analysis Method 1-M.	Flex	ndem maxim	20/35	ah 1972	1,367 5,571	onlv) after 1972		344	350			657	2,631		reconstruction	1,103	2,042
		Single/tandem maximum axle-weight	18/32	: 16-3 new construction through 1972	952 3,988	Table 16-4 construction (adding lanes c		244	253		struction	1462	1,893		construction and	720	1,333
construction m, expressed eight limit j		ts, kips	26/44	6-3 W construi	2,027 8,130	6-4 t:ion (add		552	556	6-5	Cost of reconstruction	980	3,851	6-6	new constr	1,744	3,169
t of new ary syste se axle-w	nt	axle-weight limits	24/41	Table 16-3 Cost of new c		1	- 1 -	247	552	Table 16-5		969	3,844	Table 16-6	Cost of n	1,739	3,159
erage cos -aid prim ve the ba	Rigid pavement	F	22/38	avetem.	1,981 8,099	Cost of new		541	547		Interstate system:	958	3,837		system:	1,733	3,146
-3 - 16-6 National average cost of new cor and Federal-aid primary system, The increment of cost above the base axle-weig	Rig	Single/tandem maximum	20/35	Trtoretato a		1		421	427		Inters	697	2,678		d primary	1,209	2,148
ent 1		Single/tan	18/32	2 H	1,007 4,047	Interstate system.		306	31.3			495	1,930		Federal-aid	795	1,409
Tables 16-3 - 16-6. The increment		Svstem	-		1. Interstate, Rural 2. Interstate, Urban	Tnt		1. Interstate, Rural	2. Interstate, Urban			1. Interstate, Rural	2. Interstate, Urban		ł	3. Federal-aid Primary, Rural	4. Federal-aid Primary, Urban

cost furnished by the Office of Engineering with the corresponding cost taken from table 8-10. This step was necessary owing to the differences in the cost estimates of these two reports. Since the cost of reconstruction contains little right-of-way activity, 90 percent of the right-of-way cost was excluded from the costs taken from table 8-10. The end product of this first step was then applied to the total system costs found in table 8-10, resulting in total system costs per centerline-mile for each individual census division.

The reconstruction price factors for all systems, surface types, and axle-weight groups that are outlined in this section of the report apply equally to all projected years of the study. See table 16-5 for the lane-mile cost of reconstruction on the Interstate System. The comparable costs for the Federal-aid primary systems are given in table 16-6.

These increments of construction cost for the higher axle-weight limits were added to the base costs to arrive at the results given in tables 16-3 to 16-6. The added construction costs include the costs of small drainage and earthwork, pavement structure, shoulders, and bridges.

6. SPLIT OF TOTAL YEARLY CONSTRUCTION INTO NEW CONSTRUCTION, RECONSTRUCTION, AND RESURFACING

A somewhat arbitrary scheme, but realistic in concept, was used to determine separately the amounts of new

construction, reconstruction, and resurfacing for each year from 1965 to 1985. The scheme is based primarily on past construction years.

New construction on the four highway systems from 1965 to 1985 was determined to be the yearly increase in the control lane mileage. Reconstruction and resurfacing combined is equal to the total mileage retired each year. The method used to divide the total retirements (replacements) into reconstruction and resurfacing was based on the age of the retirements (year built) and the surface type.

The Federal-Aid Highway Act of 1956 established a bench mark year in design standards. Although the standards are particularly applicable to the Interstate system, they also have increased the importance of long-range traffic requirements for newly designed primary mileage. The year 1957, when the new design criteria took effect, was selected as the transition year for all four highway systems. For Systems 3 and 4, Federalaid primary rural and urban, an additional transition year, 1946, was used in order to take into account the differences in design and construction before and during the World War II years.

On Systems 1 and 2, Interstate rural and urban, all retirements of all surface types constructed before 1958 are classed as reconstruction. All retired lane-miles from construction vintages of 1958 and later are classed as resurfacing. The percentage breakdown between reconstruction and resurfacing for the Federal-aid primary rural and urban systems varies for each surface-type group as follows:

Surface time	Vintages of and earl		Vintag 1947	ges of -1957	Vintag 1958	ges of -1984
Surface type	Recon- struction	Resur- facing	and an an an a	Resur- facing		Resur- facing
Group F	100	0	90	10	10	90
Group GO	90	10	60	40	0	100
Group J	85	15	50	50	0	100

7. SELECTION OF SERVICE LIVES AND SURVIVOR CURVES FOR INCREASED AXLE-WEIGHT LIMITS

One of the concepts of this analysis is that, under higher axle-weight limits for the period of 1965 to 1985, the pavements constructed before 1965 would reach a state of physical wear warranting reconstruction or resurfacing some years sooner than they would without the increase in axle-weight limits. For all vintages before 1965, the average service life was adjusted for each axle-weight level above the base condition by the ratio of the E 18-kip axle application at the base condition to the E 18-kip axle application at each increased level of axle-weight limits. These reduced service lives are given in table 16-1. Because the pavement design is a function of the total E 18-kip axle applications over a specific period, it is reasonable to adjust this specific period of time used in design proportionally to any change in the total E 18-kip axle applications.

For all vintages 1965 to 1985, no adjustment in service lives is required. The analysis method provides for determining separately the 20-year capital outlays for each axleweight level. Therefore, all construction, reconstruction, and resurfacing within the 20-year period reflected pavement designs for a particular axle-weight limit. The final comparison, then, was between levels of capital outlay required from one axleweight limit to another. The effects of increased axle-weight levels show up in the increased construction cost of the complete highway.

The pavements from 1965 to 1985 with 20-year service lives are perhaps of higher structural quality than are many of the older pavements existing on the highway systems. It would follow, then, that some of the existing pavements would perhaps experience a greater shortening of service life than that given in table 16-1. But no adjustments were made to correct for any possible error in this procedure, because no easily applied method of doing so was conceived. Not knowing the structural quality of existing pavements of their present serviceability index (PSI) precluded making any adjustments on the basis of these factors.

16-27

8. COMPUTER CALCULATIONS AND PRINT-OUTS

The main computer print-out is table 16-8 (for East North Central census division only) showing the total dollars of capital outlay for each highway system, census division, and axle-weight level for each year from 1965 through 1984.

The minus differences on the lefthand side of table 16-8 occur when the more rapid retirements in the early years at the increased axle-weight levels bring about greater construction activities during the early part of the projected period and lesser amounts in the later years than would have been the case had the present pavement design and resulting retirement rates prevailed. These pavements that are retired more rapidly in the early years with increasing levels of axle-weight limit are replaced with 20-year pavement of a high type designed for the specific axle-weight limit--pavement having a much slower rate of retirement than that of earlier vintages. Thus, under the higher axle-weight limits, replacement construction is speeded up in the early years and then slowed down in the middle and later years, as compared to the replacement schedule under the base condition.

The yearly totals of capital outlay from 1965 through 1984 in table 16-8 are summed to get the 20-year totals shown on the left-hand side of table 16-9. On the right-hand side of table 16-9 are shown the 20-year totals of the present worth at 6 percent of each of the yearly capital outlays. These present

			CENSUS	CENSUS DIVISION 5 E	EAST NORTH CENTRAL	TRAL			
YEAR	FROM THE BASE SINGI	STRUCTION (TRUCTION COST +2 - OOLLARS Le/tangem axle weight Limits	OLLARS T LIMITS #3		101	TAL CAPITAL	OUTLAYS -	OOLLARS
	INCREASEO SINGLE/TAN	DEM AXLE	MEIGHT LIMI	LIMITS, KIPS	INCREASEO	1	SINGLE/TANDEM AXLE	HE IGHT	LIMITS, KIPS
	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
1965	3388334	6741108	10250441	13628975	275914236	279302570	282655344	286164677	289543211
1966	3755339	7464823	11482746	15452790	258313507	262068846	265778330	269796253	273766297
1961	3905025	8372491	13024251	17445564	249492108	253397133	257864599	262516359	266937672
1968	4392046	8677773	13226115	17795745	235903653	240295699	244581426	249129768	253699398
1969	. 4253672	8821823	06666661	17486949	232027000	236280672	240848823	245426990	249513949
1970	4462094	8704187	12565081	17587580	232956394	237418488	241666581	245521475	250543974
1791	4209518	8173063	14524223	22254756	233661483	237871001	241834546	248185706	255916239
1972	3993836	10996746	18315008	24821431	231246417	235240253	242243163	249561425	256067848
1973	6041730	13052080	18567164	19058461	82951957	88993687	96004037	101519121	102010418
1974	7251954	13131383	13221294	11628588	84982036	92233990	98113419	98203330	96610624
1975	6607197	7641603	6473732	5523241	87708752	94316549	95350355	94182484	93231993
1976	2466123	1021190	-994002	-2539646	39620528	42086651	40641718	38626526	37080882
1977	-824458	-3190332	-4071882	-8058802	40728320	39903862	37537988	36656438	32669518
1978	-1912255	-2931827	-5701023	-10150675	39473927	37561672	36542100	33772904	29323252
1979	-2193475	-3438315	-7470444	-11546568	38364703	36171228	34926388	30894259	26818135
1980	-1079828	-4120225	-8174159	-11472006	36877509	35797681	32757284	28703350	25405503
1961	-940268	-4448179	-8331700	-10468508	35649396	34709128	31201217	27317696	25180888
1982	-2312361	-6069363	-9046454	-9844639	35798071	33485710	29728708	26751617	25953432
1983		-6674447	-8591156	-8329644	35652511	32506476	28978064	27061355	27322867
1984	-3276867	-6337581	-7117298	-6414245	35196244	31919377	28858663	28078946	28781999

16-28

*3 BASE AXLE WEIGHT LIMITS ARE- 22/38 FOR NE & MA , 20/35 FOR SAN & SAS , ALL OTHER CENSUS DIVISION ARE 18/32.

						,		6			3		-							e			6			
	- Number of the state of the		DOLLARS	LIMITS, KIPS	26/44	279388995	366168404	426638686	471302027	503496046	51476956	244777752	569988169	55970929	54613964	45000666	24304079	18724132	17446175	1623514	16190841	16244348	16290530	16709126	16523590	WEIGHT
			OUTLAYS -	WE I CHT	24/41	277848893	364125786	424045314	468451286	501245895	6116136139	542483420	566041261	51674745	55402560	49644718	29509120	2194,8855	18820199	16835302	16325998	16363199	16461136	16592330	17136101	ICREASE IN AXLE A FORECAST OF
HIGHWAYS	-		TOTAL CAPITAL	SINGLE/TANDEM AXLE	22/38	276382887	362185641	421554552	465676086	498729942	511934529	541126004	560973291	47706961	50279661	52903966	35100812	28032226	21653809	18317090	17509968	16494106	16593652	16764631	16944666	CTED INCRE
PUILATS FUK	1 •	RAL	101		20/35	274924649	360317094	419203634	462640906	496207013	509984998	540272824	558854452	43395873	46925009	49232480	11016066	32965522	26937691	21364345	18414054	17822372	16644640	16868487	17047168	I EACH PROJE
BY AXLE-WEIGHT LIMITS	URBAN	EAST NORTH CENTRAL		INCREASED	18/32	273405521	358120747	417404374	46004 0 4 88	493439551	507726714	538782488	557512802	40326719	42926363	45124627	36383684	36751466	31666204	27166768	22069989	19199679	17993672	17338113	17144987	TIONAL HIGHWAY CONSTRUCTION COST INCURRED WITH EACH PROJECTED INCREASE IN AXLE OUTLAY COST FOR THE BASE AXLE WEIGHT LIMITS ARE ESTIMATED FROM A FORECAST OF
	I 2 INTERSTATE URBAN	CENSUS OIVISION 5 EA	DOLLARS HI LIMITS #3	LIMITS, KIPS	26/44	\$1\$83474	8047657	9234312	11261539	10056495	7042849	5995264	12475367	15644210	11747601	-123961	-12079605	-18027334	-14220029	-10931625	-5879148	-2955331	-1703142	-628987	-621397	Y CONSTRUCTION COST FOR THE BASE AXLE WE
THROUGH 1984.	SYSTEM	CENSUS 0	RUCTION COST *2 - DOLLARS E/TANCEM AXLE WEIGHT LIMITS	WEIGHT LIMII	24/41	4443372	6605039	6640940	8410198	7806344	5852465	3700932	8528459	11348026	12476197	4520091	-6874564	-14802611	-12846005	-10331466	-5743991	-2836480	-1532536	-745783	-8886	GHWAY CONSI OST FOR THE
1965				EM AXLE	22/38	2977366	4064894	4150178	5635598	5290391	4207815	2343516	3460489	7380242	7353298	1179339	-1282872	-8719240	-10012395	-8849678	-4560021	-2705573	-1400020	-573482	-200321	
			ADOED CONST FROM THE BASE SINGL	INCREASED SINGLE/TAND	20/35	1519128	2196347	1799260	2600418	2767462	2258284	1490336	1341650	3069154	3998646	4107853	2653387	-3785944	-4728513	-5802423	-3655935	-1377307	-1349032	-469626	61826-	I BASED UPON ACOITIONAL HIGHM LIMITS. CAPITAL OUTLAY COST
-			YEAR			1965	1966	1967	1968	1969	1970	1791	1972	1973	1974	1975	1976	1977	1978	6161	1980	1981	1962	1983	1984	:
					• .			:																		4

*3 BASE AXLE WEIGHT LIMITS ARE- 22/38 FOR NE & MA , 20/35 FOR SAN & SAS , ALL DTHER CENSUS DIVISION ARE 18/32.

*2 INCLUDES- PAVEMENT, SHOULOERS, EARTHWORK, ORAINAGE AND BRIDGE COSTS.

TABLE 16-80 ADDITICNAL CONSTRUCTION COST AND TOTAL CAPITAL DUTLAYS FOR HIGHWAYS.	
OUTLAYS	*1
CAPITAL	IT LIMITS
NND TOTAL	CLE-WEIGH
N COST A	4, BY AX
CONSTRUCTION	1965 THROUGH 1984, BY AXLE-WEIGHT LIMITS #1
ADOITICNAL	1965
16-8	
TABLE	

SYSTEM 3 FEOERAL-AIO PRIMARY RURAL

			CENSUS	CENSUS DIVISION 5 E.	EAST NORTH CENTRAL	TRAL			
YEAR	AOCED COR FROM THE RASE SIN	CONSTRUCTION COST *2 - SINGLE/TANCEM AXLE WEIG		DOLLARS HT LIMITS #3		10	TGTAL CAPITAL GUTLAYS	1	DOLLARS
	INCREASED SINGLE/IANDEM AXLE HEIGHT LIMITS.KIPS	ANDEM AXLE	MEIGHT LIMI	TS.KIPS	INCRE	ASED SINGLE	INCREASED SINGLE/TANDEM AXLE WEIGHT LIMITS.KIPS	E MEIGHT LI	ALTS.KIPS
	20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
1955	49345896	101677180	156769343	209647421	522378277	571724173	624055457	679147620	732025698
1966	41139952	82712171	124927307	163719049	631109209	672249161	713821380	756036516	194828258
1961	32377218	63547148	94349844	122175055	686494354	718871572	750041502	180844198	808669409
1968	25542893	51241343	11256899	99181728	711925592	737468485	763166935	164281682	811107320
1969	23234482	44178262	62084031	73837160	726792120	750026602	770970382	788876151	800629280
1976	17528727	31608075	39824037	38665024	742412983	159941710	774021058	782237020	781078007
1471	11223767	14477490	9012457	-1593076	505258836	516482603	519736326	514271293	503665760
1972	1769518	-4149018	-17064966	-25854391	422951693	424721211	418802675	405886727	206190795
1773	-6221235	-18324619	-27616661	-31666939	365844736	359623501	347520117	338228075	334177797
1774	-11332059	-21301721	-23947400	-32458973	310357075	299025016	289055354	286409675	277898102
5261	-10168594	-14177125	-25178026	-38770402	275769690	265601096	261592565	250591664	236999288
1976	-6235327	-13532326	-27212356	-46363071	242839715	236604388	229307389	215627359	196476644
1161	-6164020	-17969560	-35638810	-51931263	211401666	205237646	193432106	175762856	159470403
1976	-9412966	-25001634	-44084355	-53820744	193117473	183704507	168115839	149033118	139296729
6261	-11989356	-29528987	-43610028	-49912203	171916177	159926821	142387190	128306149	122003974
1940	-14587913	-32047896	-41024811	-46206297	152015994	137428081	119968098	110991183	105809697
1961	-16530456	-29380672	-364 16662	-39954908	134789320	118258864	104908648	98372658	94834412
1942	-16354636	-25050053	-30627372	-32222746	138420422	122065786	113370369	107793050	.106197676
1983	-13870520	-19742993	-22577577	-23672161	135948872	122078352	116205879	113371295	112276711
1984	-8804040	-13391279	-14781902	-14758245	133157152	124353112	119765873	118375250	118398907
	I BASED UPON AGUI LIMITS. CAPITAL THE LANE-MILES W	DUITIONAL H TAL OUTLAY S WHICH WIL	TIDNAL HIGHWAY CONSTRUCTIO OUTLAY COST FOR THE 8ASE VICH WILL BE REQUIREO TO 8	BASED UPON ADUITIONAL HIGHWAY CONSTRUCTION COST INCURRED WITH EACH PROJECTED INCREASE IN AXLE LIMITS. CAPITAL OUTLAY COST FOR THE BASE AXLE WEIGHT LIMITS ARE ESTIMATEO FROM A FORECAST OF THE LANE-MILES WHICH WILL BE REQUIREO TO BE CONSTRUCTEON, ACONSTRUCTEO OR RESURFACED EACH YEAR.	N COST INCURRED WITH EACH PROJECTED INCREASE IN AXL AXLE WEIGHT LIMITS ARE ESTIMATEO FROM A FORECAST OF GONSTRUCTEO.ARECONSTRUCTEO OR RESURFACED EACH YEAR	H EACH PROJ ARE ESTIMATI STRUCTEO OR	ECTED INCRE EO FROM A FC RESURFACED	ASE IN AXLE DRECAST OF EACH YEAR.	WE IGHT
	*2 INCLUDES- PAYEMENT, SHOULDERS, EARTHHORK, DRAINAGE AND BRIDGE COSTS.	VENENT SHO	ULDERS. EAR	IHHORK. DRAIN	AGE AND BRIDG	F COSTS			

*3 8ASE AXLE WEIGHT LIMITS ARE- 22/38 FOR NE & MA , 20/35 FOR SAN & SAS , ALL OTHER CENSUS CIVISION ARE 18/32.

*3 BASE AXLE WEIGHT LIMITS ARE- 22/38 FOR NE & MA , 20/35 FOR SAN & SAS , ALL OTHER CENSUS DIVISION ARE 18/32.

And a state	OUTLAYS	PS	24/41 26/44	-	534119002 538881381	1237621847 1278775511	1123444880 1134304543	1063462584 1070425973	1883213695 1903612998	1500504595 1513782695	1238056494 1253533880	1565786798 1585864862	1822563272 1831341497	1468151802 1485521136		1128453734 1131366577	2692817755 2704502616	1516777865 1521309924	359659297 361260831	2922899779 2931552298	102123011 104968082	695617340 698535123	1251809510 1257800013	432457547 433712136	
	20-YEAR CAPITAL DU	WEIGHT LIMITS, KIPS	22/38 24	· · · · · · · · · · · · · · · · · · ·	529060363 534	1189308872 1237	1110622662 11234	1056079139 10634	1860440711 1883.	1486666823 1500	1220761081 12380	1542244914 1565	1814006538 1822	1448861796 1468		1124806800 1128	2690121173 26928	1511957972 1516	358014813 3590	2912947375 29220	699169657 702	692385491 6950	1245373347 12518	431182763 432	
	AT 6% 0F	SINGLE/TANDEM AXLE WE	20/35			1	1095852065 1	1048528975 1	1834153796 1	1472034921 1	1201705819 1	1513706802 1	1805397735 1	1427147925 1			2	1506823942 1	356319675	2902826207 2	696223383	689052701	1238427369	429774988	
	PRESENT WORTH	SI NGLE/	18/32	E RURAL				1 1 3 1	1802689304	1456420141	1180835053	1479282872	1796754998	1402562247	E URBAN					2891739398	693187926	685382865	1231307125	428305419_	
SAVIIO RI			26/44	EM 1. INTERSTATE	746541676	1778984893	1529832977	1517743124	2646378099	2201397517	1744231719	2261301367	2573657664	2079785028	EM 2. INTERSTATE	1485519895	3583271415	1997520814	505580248	3990843165	952175268	972721398	1703352816	580252841	
		S, KIPS	24/41	SYSTEM	740730587	1727805582	1517615990	. 1508796229	2628070679	2186653370	1725967535	2240710025	2562526163	2060134782	SYSTEM	1483269682	3575085772	1992416780	504262226	3984535297	949432380	970024124	1696742709	578792737	
	TAL OUTLAYS	WEIGHT LIMITS.	22/38	1	734171762	1665307265	1502478237	1498787835	2608106753	2170286424	1705258656	2216692049	2551318133	2031126995		1479805809	3565865914	1986900843	502804963	3976864480	946663787	967008573	1689216164	577419248	
	20-YEAR CAPITAL OU	SINGLE/TANOEM AXLE WEIGHT	20/35				1483847010	1487946590	2581560673	2152085120	1631365001	2182762348	2539678582	2010903133				1980873562	501200540	3969060282	943738827	963806848	1680350663	515593579	
			18/32						2542518752	2131493849	1654422210	2135927188	2521776847	1978354193						3960524956	940599868	959865863	1670933394	573652810	
	CENSUS	MAISIATA			. NE	2. MA	3. SAN	4. SAS	5. ENC	6. WVC	7. ESC	8. WSC	9. I	10. P		I. NE	2. MA	3. SAN	4. SAS	5. ENC	6. WNC	7. ESC	8. WSC	9. M	

*I INCLUGES PAVEMENT, SHOULDERS, EARTHWORK, ORAINAGE AND BRIDGE COSTS INCURRED WITH EACH PROJECTED INCREASE IN AXLE WEIGHT LIMITS. CAPITAL OUTLAY COST FOR THE 8ASE AXLE WEIGHT LIMITS ARE ESTIMATED FROM A FORECAST OF THE LANE-MILES WHICH WILL BE REQUIRED TO BE CONSTRUCTED, RECONSTRUCTED OR RESURFACED EACH YEAR.

20-YEAR CAPITAL C	TAL CUTLAYS			PRESENT WORTH	AT 68 0F	20-YEAR CAPITAL	TAL OUTLAYS	
SINGLE/TANDEM AXLE WEIGH	WEIGHT LIMITS.	5, KIPS		SINGLE/TANDEM	AXLE	WELGHT LIMITS,	S, KIPS	
20/35	22/38	24/41	26/44	18/32	20/35	22/38	24/41	26/44
		SYSTEM		3. FEDERAL-AID PRIMARY RURAL	AL			
	1991603582	2002580049	2012881335			1360173867	1377711718	1395269402
	5271013120	5310498787	5344305323			3563544622	3626199270	3684858493
2493485784	2525735800	2551450993	2574176577		1716665308	1766438286	1807912965	1842936461
4636282175	4651223691	4664991408	4678912742		3145290908	3159839176	3174169864	3188106777
1414901356 7485392687	7540245142	7589344348	7632941374	5019571919	5132987651	5233442742	5325434807	5403301667
4555768551 4581120534	4606646035	4630707779	4653430466	3093119744	3119568940	3147095275	3174287451	3200244692
1558900403 1580126977	1599863763	1563261043	1577281532	1101477392	1131681745	1164804986	1150251234	1171654321
2774883256 2809735308	2836476066	2860555651	2886901642	1884550481	1934069383	1977573936	2017130718	2065485927
2697794819 2701943522	2706711020	2711139823	2716667391	1768265505	1772472313	1777201614	1782026580	1786978466
3811344927 3845586407	3876694081	3936230807	3933672696	2502549332	2543218549	2580057744	2614880361	2646524000
		SYS	*	PRIMARY UR	AN		1	
	1281209389	1287466615	1293745224			776051458	784049540	791852134
	4119003768	4140896047	4159166663			2538428360	2571850593	2601825156
836233939	842470795	848023907	853090004		51138C870	520375229	528650356	536013309
858729781	861022122	863304889	865550888		502392648	504551076	506723488	508950880
2946401559 2864447396	2819372663	2893452252	2906281760	1699949119	1731836700	1759491578	1783967559	1804907013
543120469 597051135	600521938	603669344	606481390	359115966	363195397	367007444	370710400	374169473
353535571 357799778	360957730	363833069	366396569	222646915	228214660	232710306	236692924	240076019
556748603 562295032	566510826	570370417	513957965	335860176	342267226	347862777	352765068	357137430
218231195 219369886	220193318	220855076	221419998	137499153	138883043	139950305	140902270	141750852
5 1506431739	1519415494	1531785989	1543467902	911471877	925832915	938613272	950635017	961542504
	249348579 249348579 463628217 748539268 458112697 158012697 158012697 270194352 280973530 270194352 384558640 85872978 85872978 35779977 56229503 21936788 150643173	2493485739 4636282175 7485392687 4581120534 1580126977 2809735308 2701943522 3845586407 85623393939 858729781 2864427396 564447396 562275032 357799778 562275032 21936731739	1991603582 20025800 5271013120 53104987 5271013120 53104987 5493485794 5525735800 255145091 4636282175 4651223691 46649914 75493485794 255735800 255145091 4636282175 4651223691 4654077 7485392687 1540245142 75893443 4581120534 4606646035 46307077 1580126977 1599863763 15632610 27001943522 2706711020 27111398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 3845586407 3876694081 39062398 844578958 4119003768 41408960 8455886407 3878659389 41408960 8455886407 387959389 41408960 845579395 842470795 86933452 28944	1991603582 2002580049 201288 5271013120 5310498787 534430 5271013120 5310498787 534430 2493485734 2525735800 2551450933 257417 46352821/5 4651223691 4664991408 467891 746352821/5 4651223691 4654991408 763294 46362831/5 4650666 7589344348 763294 4581120534 460646035 4630707779 465343 1580126977 1599863763 1563261043 157728 2809735308 2830476066 286055651 288690 270194352 2706711020 2711139823 271666 270194352 2706711020 2711139823 271666 3845586407 3876694081 3976230807 393367 3845586407 3876694081 3976230807 393367 3845586407 3876694081 3976230807 393367 3845586407 3876694081 397623993 271666 3845586407 3876694081 397623993 271666 38455866407 3863059374 4159374 44	1991603582 2002580049 2012881335 5271013120 5310498781 534430523 5249348739 525135800 5514176577 249348739 2525735800 5514176577 64690281/5 645901408 4678912742 46302821/5 46505693 2574176577 64502821/5 465064035 4650707779 4653430466 7465392687 7589344348 7532941374 5019571919 4581120534 460664035 4530707779 4653430466 3003119744 1580375930 28904750645 1653261043 1577281532 1101477332 2800735565 1553261043 1577281532 1101477332 2800735566 286055651 2886901642 1768265063 28012053 2706711020 2711139823 2710663134 1768265063 3845586407 387646615 1293672666 393657665 2902817696 38455866017 3936756615 129374524 1768265696 369156665 3845231339 842470795 863304809 865506808	1991603582200258004020128813355211011205310498181531410532352493487395274176577501957191924934873925573580025514509932574176577463028217546512236914664991408467891274246302821754651223691465030717946534304663093119744463028217346064603545007077794653430466309311974446312053446064603545007077794653430466309311974415801269771599863763115532610431577281532110147739228097350828054750662860555651286690164218845504812809735082805475066286055655286057667391176826550528097350828707110202711139823271666739117682655052809735082870511020281113982327166733911788466556528097350828705108073936756673911778815254188455048128454739628120338912874666151293745224176905688855588863304889865550888865550888865550888858233338424707958480239078655088888655508888581231338424707958490239078530900004855048915858233338424707958490239078553088888655088885823333842470798490239078653056635991596685827303258054139650330761175139550653599560176858273032565510826570317	19916035622002500040201288133557101312053104981875344305323171666530857101312053145097325741765771716665308659508015551450932574176577171666530865950817559344348763294137450195119197465926817159964031572815321101477927465926817159964031572815321101477927589735908280575651286690164218845504811580126931159326104315728153211101477921580126931280555651286690164218845504811945586407387664081393575690250254933227001943522706711020271119982327166673911701477302271119982327166673911768265505280973530828054064139357569625025493322700194352270671102027111998232716667391280973530839356506474459766625025493322809733313876940813935756962502549332281528640738766615129746666625025493228152804073876666152201456665350126658552589330984270795843070661522914666685525803184270795843074666685530688855258043184002468553068985530689855258043184002466151297466668552580431840024661512974666685525804318400246666855306888552581588400246665	19160352 200236004 201288133 34430533 136013867 136013867 136013867 136013867 136013867 136013867 136013867 136013867 13603916 13603916 136033016 136033016 136033016 136033016 136034015 1116657 111665708 116665908 1177201614 11777201614 11777201614

worth totals afford a better comparison of the effects of axleweight limits, because they are expressed in terms of an equivalent common year: 1965.

Tables 16-10 and 16-11 for the East North Central census division give the dollar capital outlays year by year separately for new construction, reconstruction, and resurfacing. It may be noted from table 16-11 that over the 20-year period the dollars of capital outlay shift from reconstruction in the early years to resurfacing in the later years.

9. DISCUSSION OF RESULTS--20-YEAR FINANCIAL REQUIREMENTS

Construction costs at the five levels of axle-weight limits were given in table 16-8 for the East North Central census division and for the rural and urban Interstate and primary highway systems.

A. Interstate Systems 1 and 2

From table 16-8, it may be observed that the annual construction outlays for the Interstate rural system at all axleweight limits are highest for the year 1965 and that they decrease to 1972, when they suddenly fall to a much lower figure. The construction program on Interstate rural and urban systems was set to provide for completion of the system by the end of 1972. After 1972 the construction on the Interstate system is only that necessary for adding some additional lanes and for resurfacing retired mileages of prior vintages.

Figures 16-4 and 5 for the Interstate rural system in census division 5, East North Central, show the total capital outlays from 1965 to 1985 as a percentage of what they are -- Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Interstate system, East North Central Table 16-10.

census division, for five levels of axle-weight limits.

(thousand dollars)

262,893 346,608 404,187 445,535 477,062 490,490 522,017 542,665 24,805 24,742 24,862 13,092 13,092 13,156 13,092 13,092 13,099 13,092 13,099 13,092 26/44 kips Sheet 1 of 3 Single/tandem axle weight maximum limits. 262,592 346,204 403,716 445,016 476,507 521,409 521,409 542,032 24,637 24,574 24,694 13,003 13,003 13,003 13,003 13,003 13,010 13,003 13,003 13,003 Interstate urban 24/41 262,276 345,783 403,230 444,479 475,932 24,510 12,906 12,905 12,905 12,905 12,906 12,913 12,905 12,913 12,905 1489,326⁻ 520,780 541,377 24,454 24,391 22/38 System 2. 24,319 12,805 12,806 12,868 12,806 12,805 12,812 12,805 12,812 12,805 261,955 345,364 402,736 443,934 475,349 488,726 520,141 540,713 24,263 24,201 20/35 261,629 344,934 402,234 443,330 474,756 1115 519,491 54,037 24,055 24,055 24,120 12,701 12,701 12,703 12,701 12,701 12,703 12,701 12,703 12,703 18/32 New construction costs 275,975 256,719 246,253 230,759 225,526 225,526 225,526 222,596 72,174 17,168 18,987 18,982 18,982 18,982 18,982 72,232 18,932 18,937 18,932 18,932 26/44 kivs - thum limits. 274, 412 255, 263 244, 860 229, 451 224, 247 224, 247 71, 442 18, 774 18, 780 18, 774 18, 774 18,780 18,774 18,774 18,774 18,774 224,247 224,247 221,333 71,384 71,378 Interstate rural Z4/47 18,549 18,543 18,543 18,543 18,543 272,769 253,729 24,3,332 223,052 222,889 222,889 222,889 219,991 70,507 70,501 70,564 18,543 18,549 18,543 18,543 Single/tandem axle weight : 22/38 System 1. 271,055 252,132 241,843 226,620 221,478 221,478 221,478 218,593 69,571 69,564 69,628 13,297 18,304 18,297 18,297 18,304 18,297 18,297 18,304 18,304 20/35 18,039 18,032 18,032 18,039 18,032 269,269 250,464 240,244 225,111 222,001 220,001 220,001 217,140 63,5564 68,556 68,620 18,032 18,039 18,032 18,032 18/32 Year 1972 1973 1980 1981 1982 1983 1965 1965 1967 1968 1968 1971 1975 1976 1977 1978 1978

	2 of 3		ss, kips	25/44		16,474	19,538	22,421 25,728	26,367	22,415 22,415	26,713 30,240	28,635	18,434 9,140 2,270	1,777	456	319	164	
tral.	Sheet	te urban	weight maximum limits	24/41		15,241	17,901	20,303 23,398	24,639	23, 554 20,827	23,547 26,304	29,771	23,517 14,675 675	3,271 3,271	1,25	376	317	+ 67
construction, reconstruction, and resurfacing, , on the Interstate system, East North Central ion, for five levels of axle-weight limits.		. Interstate	weight may	22/39		i4,093	16,380	21,168	22,758	22,529 20,191	19,277	25,064	27,242 20,665	-2, 285 6, 385 2, 779	1,728	417	370	200
ruction, au ystem, East of axle-vei		System 2.	Single/tander axle	20/35		12,956	14,936	18,632	20,825	21,210 20,025	17,916 18,721	22,072	23,973 24,953 28,105	12,000	2,791	438	401 401	J.C
n, reconsti terstate si ve levels (dollars)		Single/ta	1.8/32	n costs	11,765	13,172	16,639	18,657	19,576 19,221	17,326 15,966	18,425	20,254 22,633 22,653	12,254	6,740	1,896	910 920	
onstruction on the In on, for fiv	(thousand do		ts, kips	26/44	Reconstruction	13,565	17,009	22,432	22,731	22,146 24,876	24,368 16,731	8,224	3,671 1,665		1	: :	1	
of new to 1984 a divis	(t)	ate rural	weight maximum limits	T#/#2	Rect	11,744	14,500	19,440	20,494	19,686 20,659	22,631 21,402	14,762	3,671	570	8		1	
1		. Interstate	weight may	22/38		9,886	12,033	14,430 16,335	17,633	17,931	19,052 20,257	19,772	14,134	2,454 1,137	306	5.76 •	1	
Table 16-10		Systen 1	Single/tanies ande	20/35		8,246	929,929	13,718	14,652	15,58% 15,520	14,979	18,102	18,003 14,700	3,094	2,033	331	175	
			Single/t	18/32		6,645	7,947	9,239 10,772	11,974	12,820 13,304	13,320 12,867	13,877	15,210 16,063 15,27h	11,983 8,858	5,481 2,815	1,987	1,220	~~~
			Year			1965	1965 1965	1966	1969	1971 1971	1972 1973	1974	1975 1976	1976	1930	1982	1983	->>

(thousand dollars)

Sheet 3 of 3

	s, kips	26/44		17 23 31 67 67	163 346 610 926 1,297	1,704 2,072 2,362 2,513 2,625	2,643 2,756 2,879 3,116 3,132
Interstate urban	rationa limits	24/42		15 26 37 50	105 243 462 734 734 1,053	1,434 191,031 191 101,603 0,603	2,837 2,920 3,082 3,266
Intersta	weight rax	22/33		14 18 29 39 39	79 319 319 825 825	2,452 2,529 2,0000 2,0000 2,0000 2,0000 2,0000 2,00000000	2,875 3,120 3,482 3,488 3,18
System 2.	tandem axle	20/35		85 P 16 8 2 P 16 8 2 P 16	50 107 412 653	941 279 254 254 254 254 254 254 254 254 254 254	2,817 3,130 3,401 3,655 3,655
	Single/ta	18/32	costs	8,5,5,5,5 8,5,5,5,5,5,5,5,5,5,5,5,5,5,5,	10 1200 1200 1200 1200 1200 1200 1200 1	1,059 1,393 1,792 2,212	2,629 3,030 3,720 4,050
	cs, kips	26/44	Resurfacing	4 38 152 1,257 1,257	2,872 5,514 9,105 13,056 16,219	17,329 16,434 13,554 10,342 7,836	6,418 6,199 8,335 9,800
Interstate rural	clumn limits	24/HS	Re	600 83 m 600 83 m	1,589 3,280 5,598 8,733 12,053	14,849 16,181 15,935 14,429 12,007	9,923 8,544 8,281 9,305
	weight maximum	22/38		2 11 135 327	1,779 3,199 5,240 7,841	10,652 13,244 14,971 15,545 15,245	13,902 12,367 11,186 10,429 10,316
System 1	Single/tandem axle	20/35		101 102 141 141	356 873 1,663 4,567	6,680 9,022 11,346 13,421 13,421 14,731	15,411 15,494 14,853 14,028 13,383
	Single/ta	18/32		и со о си	135 356 787 1,521 2,549	3,879 5,521 7,415 9,459 11,476	13,357 14,803 15,780 16,597
	Year			1965 1966 1966 1963 1969	1970 1971 1972 1973 1973	1975 1976 1977 1978 1978	1980 1981 1982 1982 1982 1984

	Sheet 1 of 3	rban	cs, kips	26/44		151,627 94,143 63,679 34,612 21,207	16,514 30,004 54,145 65,644 73,271	82,979 96,384 100,256 102,221 111,813	116,424 95,645 106,151 111,871 111,650
lag, orth c limits.	Sheet	primary u	weight maximum limits	24/41		151,050 93,785 63,438 34,473 21,125	16,446 29,910 53,948 65,398 72,989	82,665 96,013 99,871 101,830 111,382	115,974 95,278 105,750 111,444 117,200
and resurfacing, system, East North of axle-weight limits.		Federal-aid primary urban	weight may	22/38		150,433 93,402 63,180 34,323 21,038 21,038	16,373 29,812 53,738 65,135 72,688	82,330 95,615 99,458 101,413 110,921	115,493 94,886 105,322 110,987 116,719
		System 4. Fe	Single/tandem axle	20/35		149,790 93,003 62,912 34,166 20,947	16,296 29,711 53,520 64,861 72,374	81,980 95,200 99,027 100,977 110,440	114,991 94,477 104,877 110,010% 116,218
new construction, reconstruction, 1984, on the Federal-aid primary census division, for five levels	dollars)	Sys	Single/te	18/32	on costs	149,112 92,583 62,629 34,000 20,851	16,215 29,607 53,292 64,574 72,044	81,612 94,762 98,574 100,519 109,933	114,461 94,046 104,408 110,010 115,689
new construction, 1984, on the Fede: census division, :	(thousand do]	lal	ts, kips	26/144	construction	60,768 201,038 290,157 349,232 392,532	431,101 211,718 150,291 118,150 90,293	80,234 70,234 57,288 54,164 49,194	43,473 40,063 57,406 67,288 75,145
	(t)	al-aid primary rural	kimum limits,	24/41	New o	60,517 200,142 288,849 347,630 390,734	429,121 210,655 149,552 117,563 89,858	79,845 69,896 57,020 53,902 448,959	43,274 39,879 57,146 66,969 74,776
L Cost of 1965 to Central		Federal-aid	weight maximum	22/38		60,247 199,173 287,433 345,896 388,786	426,975 209,501 148,750 116,926 89,386	79,424 69,530 56,729 53,618 48,705	43,057 39,681 56,864 66,623 74,375
Table 16-11		System 3. Fe	tandem axle	20/35		59,968 198,173 285,972 344,106 386,777	424,762 208,310 147,922 116,268 88,898	78,989 69,151 56,428 53,325 448,442	42,834 39,476 56,574 66,266 73,961
		Sy	Single/te	18/32		59,682 197,145 284,470 342,265 384,709	422,483 207,081 147,068 115,590 88,396	78,540 68,761 56,119 53,022 48,172	42,604 39,266 56,275 65,898 73,534
			Year			1965 1966 1967 1968 1969	1970 1971 1972 1973 1974	1975 1976 1977 1978 1978	1980 1981 1982 1982 1984

Table 16-11. -- Cost of new construction, reconstruction, and resurfacing, 1965 to 1984, on the Federal-aid primary system East North Central census division, for five levels of axle-weight limits.

(thousand dollars)

Sheet 2 of 3

นสท	s, kips	26/44		164,090 141.398	129,092	120,982 107,382	89,860 75,080	64,166	53,434	43,368	33,706 27,338	22,102	17,702 13,712	9,694 5,664	3,300	1,352	6 20
primary urban	imum limits,	24/41		152,406 131.762		114,244	91,986	614.13			39,530	23,640	18,550	10,786	3.958	2,010	694
Federal-aid I	weight maximum	22/38		139,782 122.064			92,984	69.706	60,796	52,986	45,232 38,046	28,494	20,828	11,998 862, B	4.752	2,912	1,230
4.	Single/tandem axle	20/35		127,372 112.194	104,288	97,486 94,152	89,960	70.942	63,096	56,192		35,460	27,840	14,556	6.476	3,664	1,944
System	Single/te	18/32	1 costs	115,092 102.574	95,816	89,864 86,304	84,374						33,690 27,274	20,962	9.926	5,086	3,270
ral	ts, kips	26/144	Reconstruction	644,056 563.046	483,730	422,764	304,514				120,392 93,666	72,920	58,038 46,478	35,346	17.320	10,736	5,866
primary rural	weight maximum limits	T#/#2	Reco	593,804 528.070	1460,930	406,928 360,108	312,386	213,268			131,830		. 63,592 49,486	38,516		13,076	
Federal-aid]	weight may	22/38		541,338 489.740	435,170	387,008 348,916	311,228	230,600	190,638	159,774	12,674	99,820	78,972 59,380	43,652	23,572	15,782	9,782
з.	Single/tandem axle	2C/35		491,482 451.848	408,636	366,894 334,362	303,944	241,770	206,884	172,840	120 302	110,700	92,586 74,168	57,648	28.954	19,124	13,054
System	Single/te	18/32		414,470	380,608	346,522 317,068	292,884	245.252	218,024	188,204	162,220 138,048	118,328	102, <i>2</i> 74 85,288	70,524	42,568	29,996	19,014
	Year			1965 1966	1967	1969	1970	1972 1972	1973	1974	1975	1977	1978 1979	1980	1982	1983	1984

	3 of 3	38 D	s, kips	26/44		3,747	4,414	6,270	7,140	7,803	о, 193 8.190	7,888	665 ().	6,972 6,672	6,562	6,745	6,960	7,098	7,016	7.40,7
lng, orth t limits.	Sheet 3 of	primary urban	maximum limits	てヤ/ヤჇ		3,417	3,920	5,422	6,172	6,856	7,748	7,854	+08, J	7,577 7.387	7,257	7,046	7,072	7,059	7,025	7,032
and resurfacing, system, East North of axle-weight limits		Federal-aid	weight	22/38		3,077	3,440	4,586	5,223	5,843	0,412 6,942	7,379	7,609	7,858 7,909	7,895	7,733	7,585	7,428	7,100	7,012
~		System 4. Fe	andem axle	20/35		2,742	3,0LY	3,806	4,334	4,840	5,938	6,508	0TT,7	7,597 7.987	8,268	, 8,429	8,345	8,164	7,577	7,303
receral-	ollars)	Sys	Single/tandem	18/32	costs	2,429	o To'n	3,168	3,559	3,969	4,449 4,970	5,524	0, L((6,84 1 7.474	8,005	8,729	8,837	662,8	8,381 100	8,098
new construction, 1984, on the Feder census division, j	(thousand dollars)	rural	ts, kips	56/44	Resurfacing	27,198	30,743	39,110	42,756	194, 54	45,660	43,675	40,307	36,373 32.576	29,262	26,333	26,990	28,966	34,253	37,388
new co 1984, census)	primary ru	ximum limits	L 4/42	R	24,824	190 12	34,621	38,033	40,728	42,040	42,524	41,223	38,915 36,245	33,724	29,861	29,201	29,615	33,327	36,280
l Cost of 1965 to Central		ederal-aid	-weight maximum	22/38		22,467	24,900	30,262	33,266	35,817	39,453	39,954	39,895	39,495	36,884	34,302	33,259	32,698	33,802	35,609
Table 16-11		System 3. Fe	axle	20/35		20,271	122,22 190 100	26,466	28,886	31,235	35,029	36,471	37,205	37,832	38,109	37,315	36,945	36,653	36,688	37,338
		Sys	Single/tandem	18/32		18,223	1020, 6T	23,138	25,014	27,045	30,631	32,230	33,70	35,010 36.029	36,954	38,457	38,887	39,176	40,055	40,608
			Year			1965	1067	1968	1969	1970	1972	1973	+J.6T	1975 1976	1977	1979	1980	1981	1983	1984

Figure 16-4 and 5. -- Total annual capital outlays, 1965 to 1984, for each increased axle weight limit expressed as a percentage of the base axle weight limit (18/32) for the Interstate and federal-aid primary rural systems, Census Division 5, East North Central.

forecasted to be on the basis of the existing axle-weight limits--18/32-kips. For the 20-year period, capital outlays at the base axle-weight limits are shown at 100 percent levels on a horizontal line.

The highest percentage increase in construction costs for the period from 1965 to 1985 is for the 26/44-kip axleweight limit. Beginning with 1976 on the rural system and 1975 on the urban system, there is a decrease in total construction costs as compared with the prior years. In the comparison of the base axle-weight limit with the 20/35 increased axleweight limit, this decrease occurs in 1977. The maximum increase in construction costs --139 percent of the base costs-occurs in 1973 on the urban system for the 26/44-kip limit. The minimum costs --51 percent of the base costs-- occurs in 1977 on the urban system.

The total Interstate-system costs for the 20-year period are first controlled by the arbitrary scheme of completing the construction of the system by the end of 1972 at a uniform yearly rate. Thereafter, the annual construction cost, which is largely for resurfacing, is controlled by the shape of the survivor curve and the 20-year service life applied to the prior construction vintages. Some construction of additional lanemiles after 1972 is assumed to accommodate the increase in traffic volume on the Interstate system.

B. Primary Systems 3 and 4

The Federal-Aid primary rural system in the East North Central census division is shown in table 16-8 to have increasing capital outlays from 1965 through 1970 when a decrease starts, continuing to about 1981 before a second increase sets in. Again the cyclical behavior is a result of the increasing and decreasing rates of retirements of old pavements according to the retirement distribution based on the frequency curve and mileage of the original construction of the early vintages. Unlike the plan for the Interstate system, the primary system construction, 1965 to 1972, is a direct result of the retirement of the earlier vintages and the schedule of controlled existing mileage provided for in the computer input. These controlled mileage inputs provide for a general increase in the existing lane-miles on the system from 1965 through 1984. All of the increase in controlled mileage is considered new construction. Reconstruction is largely the replacement of retirements from construction of the vintages before 1957.

The greater amounts of reconstruction compared with the overall outlays explain a change from the trends noted for the Interstate system. The result is that, for the rural system, the increased axle-weight limits produce their greatest effects on construction cost in the early years. The highest percentage increase over the base condition is 140 percent in 1965, with the 16-44

percentage trend decreasing to a low of 70 percent of the base level in 1980. The decreasing cost begins in 1973 for the 20/35-kip axle-weight level and 1971 for the 26/44-kip level.

On the Federal-aid primary urban system, the trends are similar. Greater cost effects are found at the higher (26/44) axle-weight limits. The percentage is lowest in the early years, increasing to a high of 127 percent of the cost at the base axle-weight limit in 1968 and then progressively decreases to a low of 87 percent in 1977. This difference from the trend on the rural system where the greater cost effects were found in the first years is assumed to be due to the higher design standards of the urban pavements and less mileage of early vintage on this system as compared with the rural system.

Table 16-8 as well as figures 16-4 and 5 show the pronounced shortening of average service life of existing pavement starting in 1965 to account for the probable more rapid reduction in the structural adequacy of the pavements under axle-weight limits increasing to 26/44 kips. But once the system mileage has been paved with pavement having a 20-year life and designed for the higher axle-weight limits, the capital outlays naturally decrease.

C. Percentage of Capital Outlays Required for New Construction, Reconstruction, and Resurfacing

Figures 16-6, 16-7, 16-8, and 16-9 for the East North Central census division and the four highway systems show the

n

20

percentages of the total capital outlays, year by year, divided between new construction, reconstruction, and resurfacing. The percentages for the primary system are somewhat different than for the Interstate system.

Each additional lane-mile of the Interstate system being a "new" mile of road designed to a high standard, there is relatively little reconstruction activity on either the rural or urban system (0 to 41 percent on the rural and 0 to 64 percent on the urban) as compared with the Federal-Aid primary system (5 to 88 percent on the rural and 1 to 81 percent on the urban). New construction activity is heavy throughout the projected period on both the Interstate and Federal-Aid primary systems but at different periods of time.

The 1972 planned completion date of the Interstate system results in the domination of new construction during the first ten years with a period of low activity in 1975, when because of increased projected traffic on the system, new lanes for added traffic capacity would be built, thereby increasing new construction activity. During the midpoint of the projected period, reconstruction contributes the most to the total capital outlays.

On the Federal-Aid primary system, reconstruction of old highways is the emphasis in the early years (1965-1972), particularly on the urban system. New construction on the rural system is on the rise in the early years and tends to stabilize between 1962 to 1981, when projected traffic would require new construction for increased traffic capacity. For the urban system, the trend of new construction is a decreasing one between 1965 and 1971, when the projection of urban versus rural travel results in a reversal of this downward movement in new construction outlays that holds throughout the remainder of the projected period.

Resurfacing activities on the Interstate rural and urban and Federal-Aid primary rural and urban systems are generally similar, both requiring small amounts of total capital outlay (0 to 47 percent for the Interstate and 3 to 26 percent for the Federal-Aid primary system). In both cases there is a continuous upward trend in the early years and a leveling out or decreasing movement in the closing years of the projected period.

These general trends are merely more rapid as the axleweight limits are increased. In other words, where increased axle-weight limits result in greater amounts of reconstruction and resurfacing in the early years, because of the decreased service lives of these early vintage mileages, a lesser amount of reconstruction and resurfacing is required in the later years.

The effects of increased axle-weight limits on new construction are negligible, since only the pricing of the construction is increased, not the service lives, as is the case with mileage already existing (reconstruction and resurfacing activities).

D. 20-Year Total Capital Outlay

Table 16-9 sums up the yearly capital outlays in table 16-8 for the full 20 years for each of the four highway systems and ten census divisions. The left half of the table is the forecasted actual capital outlay and the right hand section of the table is the present worth, at 6 percent per year interest rate, of the yearly capital outlays summed up for the 20 years.

A comparison of the 20-year totals for the higher axle-weight limits with 20-year totals for the base axle-weight limits indicates the additional financing required over the 20-year period, should the higher axle-weight limits be adopted. It should be recognized that in table 16-9 the first four census divisions have no capital outlays for the 18/32-kip limit because their existing base axle-weight limit is higher. Likewise, the New England and Middle Atlantic census divisions have no base capital outlays for the 20/35 axle-weight limits because their limit is approximately 22/36 kips.

E. Capital Outlays on a National Basis

Table 16-12 gives on a national basis the 20-year totals of the 10 census divisions from table 16-9 and the outlays at the higher axle-weight limits expressed as a

1	6	-	5	2

Table 16-12.-Twenty-Tear Total National Capital Outlays and Present Worth Values for Highways 1965-1984. By System and Azle-Weight Limits Expressed in Absolute Values and Percentage of Base

		20-Year T	20-Year Total Capital Outlays	Outlays		Present Wo	Present Worth at 6 Percent of 20-Year Total Capital Cutlays	ent of 20-Yee	r Total Capit	al Cutlays
System		Single/Tandem	m Axle Weight	Limits, Kips			Single/Tandem Axle Weight	Axle Weight	Limits. Kips	
	18/32	20/35	22/39	24/41	26/44	18/32	20/35	22/39	2h/41	26/114
			-	·	Thousan	Thousand Dollars				
System 1. Interstate Rural	18, 3 ⁴ 1, 766	18,519,628	18,690,136	18,899.011	19.079.854	12.981.295	13,116.897	13.258.053	13,436,925	13.5°6.0hh
System 2. Interstate Urban	18,934,906	18,981.260	19.030.443	19.086.085	19,131,820	14,076.815	14.118,334	14.164.218	1 ⁴ .223.945	1^{l_1} . 277. 352
Subtotal	37,276.672	37, 500, 888	37,720,579	37,985,096	38,211,674	27,058,110	27.235.231	27.422,277	27,660.870	27.873.395
System 3. Federal-Aid Primery Rural	37.205,982	37, 396, 290	37.606,212	37,790,761	38.010,571	25,155,209	25.419.673	25.730.172	26.050.005	26.385.360
System 4. Federal-Aid Primary Urban	13,155,727	13,202,572	13,250,678	13, 323, 648	13.389.558	2.99 ⁴ .796	8,058,483	8.125,042	8.226.947	8.318.225
Subtotal	50,361,709	50,593,862	50,856.890	51,114,409	51,400,129	33.150.005	33,478,156	33 , 855.21 ^μ	34.276.952	34 .703 585
Grand Total	87,638,381	88,099,750	88,577,469	89,099,505	89,611.803	60,208,115	60, 713. 387.	61.277.485	61.937.822	62.576.981
			Percentage	Percentage of the 18/32 Kip Base	Kip Base					
System 1. Interstate Rural	100.0	0.101	101.9	103.0	104.0	100.0	0.101	102.1	103.5	104.7
System 2. Interstate Urtan	100.0	100.2	100.5	100.8	0.101	100.0	100.3	100.6	101.0	101.4
Subtotal	100.0	100.6	101.2	101.9	102.5	100.0	100.7	101.3	102.2	103.0
System 3. Federal-Aid Primery Rural	100.0	100.5	1.101	3.101	102.2	100.0	101.1	102.3	103.6	104.9
System 4. Federal-Aid Primary Urban	100.0	100.4	100.7	101.3	101.8	100.0	100.8	101.6	102.9	104.0
Subtotal	100.0	100.5	101.0	101.5	102.1	100.0	101.0	102.1	103.4	104.7
Grand Total	100.0	100.5	101.1	101.7	102.3	100.0	100.8	101.8	102.9	103.9

percentage of the base limits. These national totals of capital outlays for the 20 years from 1965 through 1984 for the increased axle weights range from 100.2 to 104.0 percent of the base capital outlays without axle-weight limit increases. On a dollar basis, these increases would amount to \$46,354,000 for Interstate urban 20/35 kip limits, and \$738,088,000 for the Interstate rural, 26/44 kip limits. On a yearly basis, these increases in 20-year totals would average from \$2,317,700 to \$36,904,000.

Another comparison of the financing required under the four increased axle-weight levels is afforded by reducing the 20-year total capital outlays for each system to outlays per year per lane-mile of highway. The comparisons are given in table 16-13, showing the extreme differences in system cost and the relatively insignificant effects on total outlays obtained by increasing axle-weight limits. The greatest cost is found for the 26/44 axle-weight limit for all systems. By system, the Interstate urban requires the greater outlays. The greatest incremental differences are found between the 22/38 and 24/41 axle-weight limits. The only deviation from this trend is on the Federal-aid primary rural system, where the increase in axle-weight limit from 24/41 to 26/44 produces the highest incremental cost, \$22.

Table 16-13.--Dollars cost of construction per lane-mile per year for the 20-year period 1965-1984 for each axle-weight limit--National averages by highway system

	Single/1	tandem ax	le weight	limits, H	lips
System	18/32	20/35	22/38	24/41	26/44
System 1. Interstate Rural	4,523	4,567	4,609	4,661	4,705
System 2. Interstate Urban	19,418	19,465	19,516	19,573	19,620
Subtotal	7,411	7,455	7,499	7,552	7,597
System 3. Federal-Aid Primary Rural	3,654	3,672	3,693	3,711	3,733
System 4. Federal-Aid Primary Urban	8,754	8,785	8,817	8,866	8,910
Subtotal	4,309	4,330	4,352	4,374	4,398
Grand Total	5,243	5,270	5,298	5,330	5,361

Based on lane miles in service December 31, 1984 (in dollars)

10. PROBABLE CONSTRUCTION PROGRAMS AND REPLACEMENT OF BRIDGES

Table 16-8 illustrates a year-to-year variation in the financial requirements for different axle-weight levels, including the base level. It is not likely that any State highway department would want to provide such unequal year-toyear construction money immediately as higher axle-weight limits are permitted, with decreasing requirements in later years. As a practical expedient, the highway departments would carry on a program of gradual upgrading through reconstruction and resurfacing, as money became available. Further, it is probable that some additional maintenance expenses would be required to improve temporarily the quality of service of many miles of pavement pending the year when they could be reconstructed or resurfaced to adequate structural quality, as provided for in this analysis.

It is probable that the construction outlays indicated in tables 16-8 and 16-9 may be somewhat deficient in provision for the replacement of structures of older vintages or for strengthening their structural quality for service under conditions of increased axle-weight limit. However, provision is made in the base construction cost per mile for construction of completely new bridges on all mileage of new construction and reconstruction. What and how many bridges would need to be replaced or strengthened for safe movement of traffic operating under higher axle-weight limits cannot be determined without a more detailed inventory of the bridges on the system. It is reasonable to expect that, under the increased axle-weight limits up to 22/38-kip limits, no bridges on the Interstate system and few on the primary system would require replacement or strengthening. At the 24/41-kip and 26/44-kip levels, a large number of bridges would need to be replaced or strengthened.

Certain bridges of inadequate structural strength for the higher axle-weight limits could be expected to be posted against higher loads until they could be brought up to standard. This practice would be comparable to present general practice of the States in protecting bridges of unsatisfactory structural strength against prossibly damaging loads. Such posting would not greatly interfere with truck transport, however, because the heavier trucks are more apt to travel on roads having bridges of adequate design. This condition could be expected at all limits probable except for the 24/41 and 26/44-kip limits.

11. AASHO REPORT ON THE PAVEMENT EVALUATION SURVEY--1962

In November 1962, the Committee on Highway Transport of the American Association of State Highway Officials submitted its "Report on the Pavement Evaluation Survey." J This report was intended to show the effects of increased axle-weight limits in decreasing the remaining life of existing pavements and to show the added dollars required to resurface the pavements as needed. The study was made by 39 States in accordance with the Manual of Instructions issued by the Committee on Highway Transport in August 1962.

The AASHO study was restricted to resurfacing, the need for which was predicated on the PSI (present serviceability index) at the time of the study and as forecasted for ten years, with and without increases in axle-weight limits. Each State made the study for its State highways on a lane-mile basis. The axle-weight limits used were as follows: present base limits, 20/35 kips, 22/38 kips, and 24/42 kips.

The concepts and factors in the AASHO study vary so widely from those in this 1966 study of the desirable dimensions and weights of motor vehicles that any comparison of the final dollar requirements would probable lead to wrong conclusions. Some of these differences are set forth as follows:

American Association of State Highway Officials. Pavement Evaluation Survey, by Committee on Highway Transport.
 R. R. Bartelsmyer, Chairman. 917 National Press Building, Washington, D. C. 20004. November 1962.

	AASHO STUDY		BPR 1966 STUDY
1.	For each axle-weight	1.	The first year (1965) was
	limit, all route sections		assumed to be a normal
	below a PSI of 2.0 were		construction program. No
	resurfaced in 1963.		catch up of deficiencies
			was provided for.
2.	Highway costs include	2.	Highway costs include new
	resurfacing only.		construction, reconstruction,
			and resurfacing.
3.	Study made State by	3.	Study made on Federal-Aid
	State for 39 States on		systems grouped by census
	State highways grouped		division.
	by basic axle-weight		
	limits.		
4.	Enforcement tolerance not	4.	Enforcement tolerance
	considered.		included in determining
			current axle-weight limits.
5.	Resurfacing needs based	5.	Reconstruction and
	upon the decrease in the		resurfacing needs based upon
	PSI.		retirement of prior construc
			tion as calculated from
			survivor curves.

12. TWENTY-YEAR CAPITAL OUTLAYS COMPARED TO REDUCTIONS IN TRUCK OPERATING COSTS

The truck operating costs presented in table 15-4B permit comparisons of 20-year truck operating costs with the 20-year highway capital outlays given in table 16-12. The first of two types of comparisons is shown in the left section of table 16-14 for each of four highway systems and the four systems combined. This section of the table shows the reduction in 20-year accumulated total truck operating cost compared with the 20-year accumulated incremental capital outlay for highway construction resulting from an increase in axle-weight limits. The figures are based on increases from the 18/32-kip single/tandem axle-weight limits to each of four higher axleweight limits. The ratio of the truck operating-cost reduction to the increment of capital-outlay increase was shown for each of the increases in axle-weight limit.

A second comparison is shown in the right section of table 16-14. Here the reduction in truck operating costs and the increase in capital outlays for each of the 20 years, caused by an increase in axle-weight limits, have been discounted at a 6-percent interest rate to present-worth values and the results totaled. The ratio of the truck operating-cost reduction to the capital-outlay increase was then calculated for each change in the axle-weight limit from the base 18/32-kip single/tandem axle-weight limit. Table 16-14Ratio of the 20-year total truck operating cost reductions to increased total highway capital outlays from 1965 to 1984 at higher axle-weight limits - National total by highway system.

All costs are in millions of dollars.

	3	ALL CO	sts are 1	STALL COSTS AND IN THE SUSSESSMENT OF THE SUSSESS	of dollars.			
	Sing	Single/Tandem Axle Weight Limits in Kips	Axle Wei in Kips	ght	S	Single/Tandem Axle Weight Limits in Kips	/Tandem Axle We Limits in Kips	ight
Highway System and Item	18/32 to 20/35	18/32 to 22/38	18/32 to 24/41	18/32 to 26/11	. to 20/35	18/32 to 22/38	18/32 to 21/112	18/32 to 26/144
		Direct Dollar Basis	llar Basi	9	Basis of	Present W	vorth at (Present Worth at 6% Interest
System 1. Interstate rural								
Total incremental truck operating	2,208	4,913	7,778	10,244	1,168	2,596	4,103	5,404
Total incremental highway canital untlaw increases	179	346	557	738	136	277	456	615
Ratio of truck cost reductions to capital outlay increases	123		מיונו	13.9	8.6	64	0.6	8.8
System 2. Interstate urban								
Total incremental truck oper dig	1,168	2,427	4,234	5,734		1,281	2,232	3,020
Total incremental highway	1 ⁴ 6	96	151	197	142	87	242	201
Ratio of truck cost reductions to capital outlay increases	254	25.3	28,0	29.1	744	7442	12	15.0
System 3. Primary rural								
Total incremental truck operating	5,494	965 , II	17,911	23,236	111,5	6,569	10, نابھ	12,171
Total incremental highway	190	1,00	584	805	264	575	895	1,230
Control output under and Ratio of truck cost reductions to capital outlay increases	28.9	29.0	30.7	28.9	811	זית	541	10.7
System 4. Primary urban	•							
Total incremental truck operating	3,099	6,376	10,180	13,045	1,693	3,475	5,556	7,125
Total incremental highway	. 47	95	168	234	64	130	232	323
Ratio of truck cost reductions to capital outlay increases	ó S 9	129	69.6	55.7	26.5	26.7	23.9	22.1
All systems combined								
Total incremental truck operating cost reductions	11,969	25,315	40,103	52,259	6,588	13,921	22,039	28,720
Total incremental highway canital outlaw increases	462	937	1,460	1,974	506	1,069	1,730	2,369
Ratio of truck cost reductions to capital outlay increases	259	27.0	27.5	26.5	130	130	12.7	12.1

The ratios shown in table 16-14 are not directly comparable to the benefit-cost ratios in Chapters 10, 11, and 12. In these chapters a mile of highway construction was the basis for determining the benefit-cost ratio. Here in chapter 16 we are dealing with yearly capital outlays and with both operating costs and capital outlays related to highway systems on a nationwide basis.

In table 16-14, the capital outlays late in the analysis period are charged out against the motor vehicle cost reductions without regard to service life. In other words, the analysis would not include construction outlays from which benefits will be derived after the study period. Also, at the end of the 20-year period, the systems would be in a condition of high quality under the design standards required for each axleweight limit. From then on, the rate of capital outlays to highway-system renewal will be much less than for the 20-year study period.

Note that, in table 16-14, the ratios are high, varying from 12.3 to 65.9 for the direct capital outlays (top section) and from 8.6 to 26.7 on the present-worth basis. These ratios are in harmony with those for Method 1-M in Chapter 10, and they serve as an additional check on the reliability of findings.

This analysis includes only axle-weight increase. Should the increase in vehicle length to Step 1 (Chapter 11) also be included, the resulting ratios would be at least 50 percent greater.

13. COMPARISON OF REPORTED CAPITAL OUTLAYS FOR 1964, BY HIGHWAY SYSTEM, WITH REQUIREMENTS UNDER HIGHER AXLE-WEIGHT LIMITS

A comparison of what highway construction would cost under increased axle-weight limits with what the construction cost under the existing limits for the year 1964 is presented in this section. The approach is simply to compare, for each of six highway systems and 10 census divisions, the total dollars of actual outlay for construction in 1964 with the cost of constructing the same number of miles at the per-mile cost computed by analysis Method 1-M for economy of axle-weight limits.

A. Assembly of Basic Information

Table 16-15 gives the miles of rigid and flexible pavement built in 1964 and the estimated incremental cost for this same mileage if it had been designed for each of the four levels of axle-weight limits above the base limits for each of the six highway systems and 10 census divisions. These incremental costs are the result of Method 1-M on economy of axle weight presented in Chapter 10. The costs include the pavement structure, shoulders, bridges, and earthwork. Table 16-15 also gives the total capital outlay for highway construction in 1964 under the then existing axle-weight limits.

Table 16-15 does not present a true relationship of the miles built and total capital cost in 1964, because the

Table 16-10. -- Additional 1964 highway construction cost by axle-weight limits and the percentage increase over 1964 actual capital outlays had higher axle-weight limits been provided for <u>1</u>

Dollar amounts in thousands

ł

					2	TTOT OTTO		e Di la							
	Mflor	Milce built	Total added construction cost 2	ded cons	truction	cost 3		Total system capital cost	em capital	cost	H	Total system capital cost	sten c	apital	cost
System		1 T F D A	compute	d from t axle-we	computed from the base single/ tandem axle-weight limit 3	single/ it 3	Actual cost	Calcu	lated cost	Calculated cost at increased		at increased limits as percentage of 1964	ased 1: ntage (increased limits a percentage of 1964	ସ
	Rigid	Flexible.	t	o increa	to increased limits	ts	of 1964	Ø	axle-weight limits	limits		BC	actual cost	ost	
	pevement	pevement jevenent	20/35	20/35 22/35 24/41	24/41	26/44	axie-weight limits	20/35	22/38	24/41	26/44	20/35 22/38 24/41 26/44	22/38	24/41	26/44
l. Interstate, Rural	1,087	916	7.410	7,410 1.5,525 25,581	25,581	34,798	34,798 1,814,426	1,306,149	1,606,731	1,306,149 1,606,731 1,840,007 1,849,224 100.6 101.0 101.4 101.9	1,849,224	100.6	0.101	101.4	101.9
2. Interstate. Urban	185	116	1,131	1,131 2,534 4.199	4.199	5.950	5.950 1,381.787	859,722	1,007,383	859.722 1.007,383 1.385,986 1.387,737 100.1 200.3 100.3 200.4	1,387,737	100.1	100.3	100.3	100.4
Subtotal	1.272	1,034	6.5 41	0.541 18.059 29.780	29,780	10,748	40.748 3,196.213	2,165.871	2,614,114	2,165.871 2,614,114 3,225,993 3,236,961 100.4 100.7 100.9 101.3	3,236,961	100.4	100.7	6.001	101.3
3. Federal-aid Primary. Rural	1.093	10,196	11,939	11.939 27.076 43.341	43.341	770.62	59.077 1,251.451	845,495	1.053,240	845,495 1.053,240 1,294,993 1,310,528 101.4 102.6 103.5 104.7	1,310,528	4.101	102.6	103.5	104.7
4. Federal-sid Primery, Urban	335	644 0	2.125	4.608	7,721	10,614	733.592	500.808	570,811	500.808 570,811 741,313 744,206 100.4 100.8 101.1 101.4	744,206	100.4	100.8	1.101	101.4
Subtotal	1.431	1.1,060	14,064	14.064 31,764 51.062	51,062	169,69	1,985.043	1,346.303	1,624,051	1, 346. 303 1, 624, 051 2, 036, 306 2, 054, 734 101.1 102.0 102.6 103.5	2,054,734	1.101	102.0	102.6	103.5
5. Federal-aid Secondary. Rural	293	18.564	4.360	4.360 10.096 16,222	16,222	22.441	717.142	4/39,708	409,708 637,610	733,364	739,583 100.9 101.6 102.3 103.1	100.9	9.101	102.3	103.1
6. Federal-sid Secondary, Urban	31	462	261.	.197 2,0 ⁴⁸ 3.69 ^o	3.690	5.303	75,591	52,262	70,124	79,290	80,894	80,894 101.5 103.0 104.9 107.1	103.0	104.9	1.701
Subtote]	324	19,026	157 ، را	1,157 12 1Å4 10,921	139,01	27.744	192.133	541.970	4757, 73 ⁴ 4	812,654	820,477 101.0 101.7 102.5 103.5	101.0	101.7	102.5	103.5
Total All Systems	1:30.5	31,120	291. Id	62,007	100.763	27.762 62.007 100.763 133.163	5,973.949	4,054.144	4,945,899	4.054.144 4.945.899 6.074.953 6.112,172 100.7 101.3 101.7 102.3	6.112,172	100.7	101.3	101.7	102.3
Y Based upon additional highway construction cost incurred with each projected increase in axleweight limits as applied to 1964 constructed centerline milease and capital outlay cost. The 1964 mileages represent completed reading projects as reported from "Highway Statistics," 1964, Table SF-11, p. 80	al highway	construct	ton cost 964 milea	Incurred ges repr	with ea esent con	ch projec	ted increase	in axle-wei ts as report	ght limits ted from "	as applie Highway St	d to 1964 atistics,	constru 1964,	cted c	enterli SF-11,	ne p. 80.
	on cost of	: pavemen	t, should	ers, ear 28 for M	thwork .	drainage,	and bridges.	13 GAG. (3)	1 othow	the suscess	ricione er	05/81 0 2		The edded cost	+ 000
Jusse and the weight run of the restortions. (A red out of and why (r) red 20 to the and why (r) out outer believe unvisions are 10/25. Is that throwers from the one of the bree little to the and one of the bighow why and all little.	and the area	the tot the he	/77 (T)	00 101 N	to to tot	, \c/ cu/	57 IUF PER AL	(C) (cover b)	TANYO TTP	Th analian	TD GUOTETA	JC INT DI		nanne	CO3 6

16-63

Bese axle weight limits are as follows: (1) 22/38 for NE and MA; (2) 20/35 for San and SAS; (3) all other census divisions are 18/32. Is that increase from the cest at the base limits to the cost at the higher axle weight limits.

reported capital cost includes projects for which no paving was constructed. This discrepancy is on the conservative side, because the total miles assumed to have been paved in 1964 at the higher axle weights produce a higher total incremental cost above the actual cost than would the correct mileage of paving.

Table 16-15 also gives the computed total system capital cost for each of the four higher axle-weight limits. In the last four columns, these final costs are compared on a percentage basis with the reported 1964 capital costs.

B. Comparative 1964 Capital Costs for the Six Systems

On a census division basis, the ranges of percentage increase in construction costs in 1964 over actual costs for increased axle-weight limits are as follows:

System		Single/tan	dem axle wei	ght limits, k	ips
Uys cem	18/32	20/35	22/38	24/41	26/44
1. IR		0.3 to 0.9	0.3 to 1.8	0.3 to 2.7	0.6 to 3.5
2. IU		0.0 to 0.3	0.0 to 0.6	0.1 to 0.9	0.1 to 1.1
3. FAPR		0.3 to 3.4	0.6 to 6.9	0.4 to 10.4	0.9 to 13.7
4. FAPU		0.2 to 0.5	0.4 to 1.2	0.3 to 2.4	0.6 to 3.6
5. FASR		0.2 to 2.4	0.3 to 4.8	0.1 to 7.4	0.3 to 10.0
6. FASU		0.5 to 3.1	1.1 to 6.3	1.2 to 9.5	2.1 to 13.5
and the second					

The above tabulation indicates that on a percentage basis the least affect of increased axle-weight limits is found on Systems 1 and 2, Interstate rural and urban. The percentage increases in cost are the greatest on Systems 5 and 6, Federal-Aid secondary rural and urban, with the urban having the greater percentage increase. The reason for this trend can be assumed to be the much higher standards of design for the Interstate system compared to the secondary system, thus creating greater need for improvement on the secondary system when higher axleweight limits are applied. Lane for lane, in the axle-weight economy study, all six systems have the same basic design, varying only by the E 18-kip axle applications. The higher 1964 construction costs on the Interstate system provide for a much higher dollar amount for the percentage base than do the lower 1964 costs on the secondary system.

A review of table 16-15 indicates no general trend on a census-division basis. It is noted that the greater costs, on a percentage basis, are found in those census divisions (5 through 10) having the 18/32-kip limits. This is disproved to some extent for the East South Central census division, where the general trend indicates the least effects of increased axle-weight limits on rural systems. As would be expected, the greater the axle-weight limit increase, the greater the cost differential.

On a national basis the comparative construction costs in table 16-15 are summarized as follows to show the dollars of added cost in 1964 if the construction had been designed for the higher axle-weight limits:

Increase in National Construction Cost for 1964 Compared with Actual Costs for Higher Axle-Weight Limits

Highway System	Single/tandem axle-weight limits in kips				
	18/32	20/35	22/38	24/41	26/44
1. Interstate rural		7,410	15,525	25,581	34,798
2. Interstate urban		1,131	2,534	4,199	5,950
3. Federal-Aid primary rural		11,939	27,076	43,541	59,071
4. Federal-Aid primary urban		2,125	4,688	7,721	10,614
5. Federal-Aid secondary rural		4,360	10,096	16,222	22,441
6. Federal-Aid secondary urban		797	2,087	3,699	5,303
All systems		27,762	62,006	100,915	138,177

In 1,000 Dollars

The total dollars for each highway system in this tabulation are relatively small sums, considering the total mileage involved. Should all the 1964 construction have been designed for the 22/38-kip axle-weight limits--the approximate maximum limits now legal in any state--the increased construction outlay would have been only \$62,006,000, of which \$27,076,000 would have been for the Federal-Aid primary rural system.

CHAPTER 17

GENERAL SUMMARY AND EVALUATION

At the risk of some repetition, a few final comments are presented in this chapter to add to the reader's understanding of the subject and to aid him in evaluating the results of the research reported upon.

With only minor exceptions, this report on the desirable maximum dimensions and weights of motor vehicles fulfills the initial research plan for it. The several studies included in it not only developed suitable methods of research, but achieved both qualitative and quantitative results for each of the variable factors related to the desirable dimensions and weights. This statement does not mean, however, that there are not many factors still needing study.

1. GENERAL SUMMARY

The analysis of the State laws and the truck weight studies indicate two significant factors needing improvement. The first is lack of uniformity among the States in maximum limits on dimension and weight, and its unfavorable consequences to the costs of highway transportation. The second

factor is the high percentage of vehicles with overweight axles and excessive gross weights. Overloading combined with liberal enforcement tolerances, higher legal limits for certain commodities, and unprecedented issuing of special permits for trips made by overdimension and overweight vehicles actually have nearly the same effects on the pavement as would be expected from an increase in legal limits without tolerance and without legal exceptions for hauling of certain local commodities.

Without doubt, unexpectedly high economy can be realized by increasing axle-weight limits, gross weight limits, and vehicle length limits. The indicated economy is so high that its existence should not be questioned. The additional annual outlay for highway capital construction occasioned by immediate increase in motor vehicle weight limits would be small-perhaps one percent--in the expenditures for highway construction.

The fear on the part of many individuals and the public at large that increased vehicle weight limits would quickly destroy existing pavements is not in agreement with past experience. Axle-weight limits have been raised over the last 45 years from about 8,000 to 23,500 pounds per single axle and, during this time, the number of heavy axle applications and their average weights applied to the pavements have increased. Yet over the 45 years that these increases have been experienced, improvement and reconstruction of highways for this reason alone has been a gradual yearly factor. The highways have been financed from year to year without pinpointing any particular part of the financing that has resulted from increasing axle and gross weight limits.

In the event that the State laws were altered to provide for higher axle-weight and gross weight limits, it is not likely that an increase in the rate of deterioration of highway pavements would be specifically noticed. The analysis, however, shows that any expected increase in the rate of reconstructing pavements that might result from increased weight limits would be many times offset by a decrease in the cost of highway trucking operations.

It may be taken for granted that the highway trucking industry will continue to grow, both to meet the demands of increasing population and to provide improved quality of service. The rate of growth might be retarded or prevented by changes in technology or through the development of improved modes of transport that are more competitive with highway truck transportation. It was not the purpose of this report to investigate such matters, but they are mentioned here only to emphasize the potential and the fact that there is no immediate foreseeable end to the need for providing increased facilities for highway trucking operations, with or without changes in axle-weight limits.

The research findings in this report point to a high economy for the 3-unit combination with a length limit of 65 or 17-4

70 feet and a gross weight limit of about 110,000 pounds. A gross weight-limit increase does not necessarily mean an increase in highway costs, provided that a control is placed upon axle weight and axle spacing together with the overall length of the vehicle.

With approximately 14 States legalizing the 65-foot long combination in 1965, 1966, and 1967, it may be concluded that other States will follow in 1968. So ideal a vehicle from the point of view of transport operation is the 65-foot long combination that its eventual spread to the eastern and southern States may be taken for granted, especially since such vehicles could be permitted without increasing highway costs and perhaps with no net detriment to traffic as a whole. The move to the eastern seaboard has begun with recent (1967) legislation in Delaware and Maryland.

2. EVALUATION

Again it is emphasized that unless overall highway transport costs per payload ton-mile are reduced or the service values of highway transport are greatly increased, there is no solid basis for increasing the legal maximum dimension and weight limits. A sizeable economy to be obtained by increased vehicle length and weight limits would still remain, even after discounting heavily the reductions in truck operating costs to be achieved with the increased limits arrived at in this research and increasing somewhat the estimated highway costs that would result. In other words, although the policy followed herein was conservative (low benefits and high costs), even should the trucking benefits be cut in half and the incremental highway costs doubled, worthwhile economy would still be found. This statement is made because of some uncertainty as to just what would be the trucking practice and fleet composition under increased limits of dimension and weight. These factors were determined by sound logic and careful procedures, but other analysts may come up with different results. A more thorough examination of the effects on bridges may be in order, particularly for the longer combinations with variation in axle arrangements.

Because in many instances, the AASHO pavement design formulas produced pavement design depths materially less than are now being used by the States, some question may be raised as to whether the analysis by Method 1-M reaches the correct answer. But here again the margin of economy is so great that the question is only academic.

The analyses in Chapter 16 leading to an estimate of the highway financing required for the period from 1965 to 1985, with and without increases in axle-weight limits, may justly be questioned. Although the total dollar requirement may depart from what other analysts would estimate, the differentials between the requirements with and without increases in axle-weight limits are sound. The yearly distribution of reconstruction and resurfacing over the 20-year period is just one of many probable results, depending upon the procedures adopted to estimate the yearly needs for reconstruction or resurfacing.

Continued studies of the subject of the desirable dimensions and weights of vehicles will no doubt lead to improvements in methodology and greater proof of certain conclusions, but this report offers a substantial and reliable basis upon which to consider highway-department and other public policies and State and Federal laws affecting the dimensions and weights of motor vehicles.

REFERENCES TO THE LITERATURE

1. MOTOR VEHICLE CONFERENCE COMMITTEE. State Restrictions on the Size and Weights of Motor Vehicles, p. 3. 366 Madison Avenue, New York City. July 1, 1920.

2. MOTOR VEHICLE CONFERENCE COMMITTEE. State Restrictions on Motor Vehicle Operation, pp. 2-2. 366 Madison Avenue, New York City.

3. JOINT COMMITTEE OF RAILROAD AND HIGHWAY USERS. Regulation and Taxation of Highway Transportation. 380 Seventh Avenue, New York City. January 30, 1933.

4. BUREAU OF PUBLIC ROADS, U.S. Department of Agriculture. Uniform Motor Vehicle Code, Act V: Uniform Act Regulating Traffic on Highways, pp. 36-37. Washington, D.C. 1934.

5. WESTERN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Proceedings, 17th Annual Convention, pp. 99-101. August 1938.

6. FEDERAL COORDINATOR OF U.S. TRANSPORTATION. Public Aids to Transportation. U.S. Government Printing Office, Washington, D.C.

Vol. I. General Comparative Analysis and Public Aids to Scheduled Air Transportation. 1940.

Vol. II. Aids to Railroads and Related Subjects. 1938.

Vol. III. Public Aids to Transportation by Water. 1939.

Vol. IV. Public Aids to Motor Vehicle Transportation. 1940.

7. INTERSTATE COMMERCE COMMISSION, Bureau of Motor Carriers. Sizes and Weights of Motor Vehicles in Relation to Highway Safety, Report No. 3 in Ex Parte No. MC-15. Washington, D.C. 1940. See Reports 1, 2, and 4 or more.

8. INTERSTATE COMMERCE COMMISSION, Bureau of Motor Carriers. Sizes and Weights of Motor Vehicles in Relation to Highway Safety. Washington, D.C. June 1940.

9. O. K. NORMANN. Progress in Study of Motor Vehicle Passing Practices. Public Roads, A Journal of Highway Research, Vol. 20, No. 12, pp. 221-227. Washington, D.C. February 1940. 10. REX M. WHITTON, Chairman. Report of Committee on Permits for Oversize and Overweight Vehicles. Proceedings, Highway Research Board, Vol. 21, pp. 305-310. 1941.

11. INTERSTATE COMMERCE COMMISSION. Federal Regulation of the Sizes and Weights of Motor Vehicles. House Document No. 354, 77th Congress, 1st Session. Washington, D.C. 1941.

12. A. A. JAKKULA. An Analysis of Highway Loads Based on the Special Loadometer Study of 1942. Agricultural and Mechanical College of Texas. January 1944.

13. THOMAS H. MCDONALD. Recommended Policy on Sizes and Weights to Permit Free Movement of Motor Vehicles between the States. Address before the Federal-State Conference on War Restriction. Washington, D.C. May 5, 1942.

14. THOMAS B. DIMMICK. Heavy Axle Load Frequency. Proceedings, Highway Research Board, Vol. 25, pp. 354-363. 1945.

15. HIGHWAY RESEARCH BOARD. Special Papers on the Pumping Action of Concrete Pavements. Research Report No. 1-D. 1945.

16. G. S. PAXSON. Factors Influencing the Stress in Concrete Pavement from Applied Loads. Proceedings, Highway Research Board, Vol. 25, pp. 59-71. 1945.

17. FRED B. LOUTZENHISER. Effect of the AASHO Code on Truck Design. Commercial Car Journal. July 1946.

18. HIGHWAY RESEARCH BOARD. Special Papers on the Pumping Action of Concrete Pavements. Research Report No. 1-D, Supplement. 1946.

19. U.S. BUREAU OF PUBLIC ROADS. Traffic Trends on Rural Roads. Public Roads, A Journal of Highway Research, Vol. 24, No. 10 and Vol. 25, Nos. 3, 7, and 12. (October 1946, March 1948, March 1949, and February 1950). Washington, D.C.

20. PUBLIC ROADS ADMINISTRATION, Federal Works Agency. Preliminary Report on the Economics of Motor Vehicle Size and Weight. Washington, D.C. October 1946.

21. NATIONAL CONFERENCE ON STREET AND HIGHWAY SAFETY. Model Traffic Ordinance. U.S. Government Printing Office. Washington, D.C. 1946.

22. K. B. WOODS, F. H. GREEN, and H. S. SWEET. Pavement Pumping Correlated with Traffic Loads. Proceedings, Highway Research Board, Vol. 27, pp. 209-231. Washington, D.C. 1947. 23. HIGHWAY RESEARCH BOARD. Maintenance Method for Preventing and Correcting the Pumping Action of Concrete Pavement Slab. Current Road Problems, No. 4-R, Revised. September 1947.

24. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Who Shall Use the Highway and How. Washington, D.C. Probably 1947.

25. HAROLD ALLEN. Final Report of Committee on Maintenance of Concrete Pavements as Related to the Pumping Action of Slabs. Proceedings, Highway Research Board, Vol. 28, pp. 281-309. 1948.

26. HIGHWAY RESEARCH BOARD. A Survey of Pumping in Illinois. Research Report No. 1-D, 1948 Supplement.

27. NATIONAL CONFERENCE ON STREET AND HIGHWAY SAFETY. Uniform Vehicle Code, Act V: Uniform Act Regulating Traffic on Highways. U.S. Government Printing Office, Washington, D.C. 1948.

28. H. S. FAIRBANK. Sizes and Weights of Motor Vehicles Require Economic Study. Civil Engineering, p. 40. June 1949.

29. THE FOUR WHEEL DRIVE AUTO CO. Truck and Trailer Size and Weight Restrictions. Clintonville, Wisconsin. 1949.

30. SAMUEL C. HADDEN. The Problem of Highway Vehicle Size and Weight Distribution. Presented at the Midwestern Regional Conference of the Council of State Governments at Davenport, Iowa, July 26, 1949.

31. N. E. LANT. Overloads Injure Roads and Are Menace to Safety. Louisiana Highways, Vol. 3, No. 12, pp. 3-6. December 1949.

32. JOHN T. LYNCH and THOMAS B. DIMMICK. Axle Load and Gross Load Trends. Proceedings, Highway Research Board, Vol. 29, pp. 301-303. 1949.

33. THOMAS H. MCDONALD. Highways in the Public Service. Presented at the American Roadbuilders Association Conference and 46th Annual Meeting, Washington, D.C., February 1949.

34. P. E. MASHETER and H. E. MARSHALL. Foundations for Pavements. Presented at the American Roadbuilders Association Conference and 46th Annual Meeting, Washington, D.C., February 7, 1949. 35. OHIO STATE HIGHWAY DEPARTMENT. Effect of Increased Truck Weight Limitations on Highway Pavements Proposed in Ohio State Senate Bill No. 163.

36. PORTLAND CEMENT ASSOCIATION. A Charted Summary of Concrete Road Specifications Used by State Highway Departments. Chicago, Illinois. 1949.

37. TRUCK-TRAILER MANUFACTURING ASSOCIATION, INC. State Size and Weight Limits for Trucks and Truck-Trailers. Washington, D. C. 1949.

38. K. B. WOODS. Effect of Heavy Loads on Pavement Design. Presented at the Highway Division of ASCE meeting, Oklahoma City, Oklahoma, April 21, 1949.

39. HIGHWAY RESEARCH BOARD. The Truck Weight Problem in Highway Transportation. Bulletin No. 26. Washington, D. C. July 1950.

40. CARL SAAL. Time and Gasoline Consumption in Motor Truck Operation as Affected by the Weight and Power of Vehicles and the Rise and Fall in Highways. Research Report No. 9-A, Highway Research Board. Washington, D. C. February 1950.

41. BUREAU OF PUBLIC ROADS, U. S. Department of Commerce. A Factual Discussion of Motortruck Operation, Regulation, and Taxation. Washington, D. C. 1951.

42. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS. Policy Concerning Maximum Dimensions, Weights, and Speeds of Motor Vehicles to Be Operated over the Highways of the United States. Adopted April 1, 1946. Published by the Association (sixth printing), February 1953. Also June 1953.

43. C. C. SAAL and F. W. PETRING. Braking Performance of Motor Vehicles. Bureau of Public Roads, U. S. Department of Commerce. Washington, D. C. 1954.

44. F. WILLIAM PETRING. Improvement in Stopping Ability of Trucks in Use on the Highway. SAE Transactions, Vol. 63, 1955.

45. ROBERT F. BAKER and EMMETT H. KARRER. A Study of the Relationship of Pavement Cost to Vehicle Weight. Engineering Experiment Station Bulletin No. 161. Ohio State University. 1956.

46. ROBERT F. BAKER. Fundamental Factors in Incremental Cost Studies of Pavements. Proceedings, Highway Research Board, Vol. 36, pp. 33-43. 1957. 47. R. CHIERUZZI. Earthwork Incremental Cost Study. Proceedings, Eleventh Annual Ohio Highway Engineering Conference. Columbus, Ohio. 1957.

48. JOHN L. LINDLEY. An Incremental Cost Study of Highway Structures in the State of Ohio. Proceedings, Highway Research Board, Vol. 36, pp. 44-50. 1957.

49. F. W. PETRING. Stopping Ability of Motor Vehicles Selected from the General Traffic. Public Roads, A Journal of Highway Research, Vol. 29, No. 8, June 1957; also SAE Transactions, Vol. 65, 1957.

50. C. C. SAAL. Relation between Gross Weights of Motor Trucks and Their Horsepower. Public Roads, A Journal of Highway Research, Vol. 29, No. 10, October 1957.

51. ROBERT F. BAKER and R. CHIERUZZI; R. W. BLET ZACKER. Highway Costs and Their Relationship to Vehicle Size. Engineering Experiment Station Bulletin No. 168. Ohio State University. 1958.

52. MALCOLM F. KENT. The Freight's the Weight. Proceedings, Highway Research Board, Vol. 37, pp. 21-44. 1958.

53. ROBERT F. BAKER. Fundamental Problems in Relating Vehicle Size to Highway Costs. Bulletin No. 222 (Highway Investment and Financing), Highway Research Board. Washington, D. C. 1959.

54. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Transport. Pavement Evaluation Survey. November 1962.

55. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Transport. A Policy on Maximum Dimensions and Weights of Motor Vehicles to Be Operated over the Highways of the United States: Part II -- Supporting Data. November 1962.

56. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Design. AASHO Interim Guide for the Design of Rigid Pavement Structures. February 1962.

57. INDUSTRY ADVISORY COMMITTEE TO THE AASHO COMMITTEE ON HIGHWAY TRANSPORT. Recommendations for Commercial Vehicle Sizes and Weights. (A booklet and film produced in cooperation with the Motor Truck Committee, Automobile Manufacturers Association). 1962. 58. HENSON K. STEPHENSON, JAMES S. NOEL, and A. DWAIN MAYFIELD. Truck Weight Trends Related to Highway Structures. Texas Transportation Institute. College Station, Texas. July 1962.

59. HOY STEVENS. Line-Haul Trucking Costs in Relation to Vehicle Gross Weights. Bulletin 301, Highway Research Board, 1962.

60. AMERICAN ASSOCIATION OF STATE HIGHWAY OFFICIALS, Committee on Highway Transport. Policy on Maximum Dimensions and Weights of Motor Vehicles to be Operated over the Highways of the United States. 1963.

61. MALCOLM F. KENT and HOY STEVENS. Dimensions and Weights of Highway Trailer Combinations and Trucks -- 1959. Highway Research Record No. 26 (Motor Vehicle Use Characteristics). Highway Research Board. 1963.

62. BUREAU OF PUBLIC ROADS, U. S. DEPARTMENT OF COMMERCE. Maximum Desirable Dimensions and Weights of Vehicles Operated on the Federal-Aid Systems. House Document No. 354, 88th Congress, 2d Session. Washington, D. C. 1964.

63. IDAHO DEPARIMENT OF HIGHWAYS, Research Division. A Study of Highway Operations with Truck Trailer Double and Triple Units. September 1964.

64. L. M. CLAUSON. Policy on Maximum Dimensions and Weights of Motor Vehicles to be Operated over the Highways of the United States. American Highways, July 1965. American Association of State Highway Officials. Washington, D. C.

65. SOCIETY OF AUTOMOTIVE ENGINEERS HANDBOOK. Turning Ability and Off Tracking -- SAE 1965, pp. 913-918. 485 Lexington Avenue, New York City 10017. 1965.

66. HOY STEVENS. Line-Haul Trucking Costs and Weighing Vehicles in Motion. Highway Research Record No. 127, Highway Research Board. Washington, D. C. 1966.

67. HOY STEVENS, S. C. TIGNOR, and J. F. LOJACONO. Offtracking Calculations for Trailer Combinations. Public Roads, A Journal of Highway Research, Vol. 34, No. 4 (October 1966), pp. 89-100.

68. S. C. TIGNOR. Braking Performance of Motor Vehicles. Public Roads, A Journal of Highway Research, Vol. 34, No. 4 (October 1966), pp. 69-81. 69. TRUCK TRAILERS MANUFACTURERS ASSOCIATION. A Panel Discussion on Doubles. 1413 K Street, N. W., Washington, D. C. March 1966.

70. J. M. WRIGHT and S. C. TIGNOR. Relations of Gross Weights and Horsepowers of Commercial Vehicles. Public Roads, A Journal of Highway Research, Vol. 34, No. 4 (October 1966), pp. 84-88.

71. NATIONAL HIGHWAY USERS CONFERENCE. Motor Vehicle Law Series, Service No. 1: State Restrictions on Sizes and Weights. Washington, D. C. Current loose leaf.

GP 0 860-359

-

۰.

.

DOT LIBRARY